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Translator's Note

The authors use the terms "seignettoelectric" and
"seignettoelectricity" [by analogy with the properties of
Seignette's salt] instead of "ferroelectric" and "ferro-
electricity", and explain their reason for doing so in the
third paragraph of chapter 1. However, because Seignette's
salt is only one of dielectric materials (the others being
Rochelle salt, potassiu•m dihydrogen phosphate, barium titanate,
etc.) exhibiting spontaneous polarization and hysteresis be-
tween polarization and field and to conform to the usage in
English-language sources the translator has used the terms
"ferroelectric" and "ferroelectricity.,,
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UDC 537.226.23

FERROELECTRICS AND ANTIFERROELECTRICS (Book by G. A. Smolens.kiy
et al.); Nauka Publishing House, Leningrad Branch, Leningrad,
1971, pp 1-476

Abstract

The book is devoted to a systematic description of phys-
ical phenomena in ferroelectrics and antiferroelectrics. Seri-
ous attention is given to thermodynamic, dynamic and model the-
ories of ferroelectricity, which are set forth in a form under-
standable to a wide range of readers. Results of experimental
studies and their correspondence to theoretical respresentations
are discussed.in detail using several of the most typical ferro-
electrics as an example. Considerable space is set aside for the
study of ferroelectrics with the aid of new methods: radiospec-
troscopy, Messbauer effect, scattering of slow neutrons, elec-
trooptics, etc. A review of ferroelectric and antiferroelectric
materials is given including ferroelectrics with magnetic order-
liness and with a blurr3d phase transition. The book is in-
tended for engineers, scientific workerst for graduate and upper-
class undergraduate students studying problems of solid state
physics, problems of radio electronics, electroacov.stics, etc.

Bibliography of 1,988 titles, 189 figures, 33 tables.
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FOREWORD

Ferroelectricity is a young secticn of solid state phys-
ics which, however, has already gained a firm foothold. The
interest in it is very great. This is explained on one hand by
the importance of physical problems in the field of ferrcelec-
tricity and on the other -- by the ever increasing practical
application of ferroelectrics.

Ferroelectrics are characterized by a high specific induc-
tive capacitance, a high piezowrodulus, by the presence of dielec-
tric ysteresis loop, by interesting electrooptical properties,
and are, therefore, widely used in many fields of present-day
engineering: radio engineering, electroacoustics, quantum elec-
tronics and measuring technique. Ferroelectronics are used
for making small-sized capacitors, piezoelements, pyroelectric
radiant-energy receivers, nonlinear capacitive elements, posi-
stors, laser-radiation modulators, parametric generators, etc.

The flow of works on ferroelectricity physics increases
every every year and the processing of information contained ia
them is an important task. Under these conditions, periodic gen-eralization and evaluation of results achieved in this area of
physics are very desirable.

A number of books on ferrcelectricity physics have been
published at the present time: Kentzig's survey (1957), a book
small in volume by Megaw (1957), a fundamental monograph by
Jona and Shirane (1962), a book by Martin with a stress on ap-
plication (1965), a book by Boerfut (1967), a small monograph
by Fatuzzo and Merz (1967), a book by Zheludev (1968); a popular-
science book by Smolenskiy and Kraynik (1969), etc. The mono--
graph by Jona and Shirane and Kentzig's survey have been trans-
Jated i.nto Russian.

The works cC the Soviet scientists are insufficienl'.
illuminated in these publications but their role in the devel.op-
ment of ferroelectrivity Dhysics is great. The most important
stages of development of this field of science are connected
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with the names of I. V. Kurchatov, B A. Vul and V. L. Ginzburg.
I. V. Kurchatov investigated in detail Lor the first time the
properties of Seignette's salt and laid down the fundamentals
of ferroelectricity physics. B, M. Vul discovered and inves-
tigated ferroe3cti._, properties of barium titanate -- represert-
ative of a nr :lass of ferroelectrics. This discovery played
a decisive r( . n the development of ferroelectricity physics
and in the r.ppC',cation of ferroelectrics in engineer:ng. V. L
Ginzburg developed thermodynamic Lheory and la-d down the funda-
mentals of dynamic tneory of ferroelectricity. A lange number
of ferroelectrics and anrAferroelecurirs with different crystal-
line structures have been discovered i: the Soviet Union. The
Soviet sciontisis investigated in detail the physical properties
of many ferroelectrics, ý.hey applied symmetry thieory to the
ored ctixn o± cv.arocteristics of ferroelectric state, and sue-
-e5S) !Lj utilized the latest methods of physical expe:.imtents
-r :ives-i1;ation of feirxoelectric phenomena.

Ib i of thi ; book is setti- , forth the fundamentals
f ferro r, icity physi s and di'scussion of its present-day

s..aoe. ziing in advance the entire complexity of this task
the authous accomplished it using a large group. Nevertheless,
apparently the number of ,ut1-)rs is as yet not sc Large as to
have a negative effect on the qualfty of the book. In any case,
evt., .hing possible was done during its writing in order that
the authors' individuality would not interfere with the integ-
r:fy of t e presentation.

In essence the book is an assemblage of thematically in-
terconnected survey (in some cases quite detailed) chapters
which throw light on different sections of ferroelectric and
antiferroelectric physics.

ChapLer I is devoted to a description of basic pheromena

in ferroelectrics. An idea of special features of ferroslec-
tric phase ,.-ansitions of the 1st and 2nd kind is given. Break-
ing up of crystals into domains and also behavior of ferroeIec-
trics in strong fields are examined. Classification of frero-
electrics according to the type of chemical bond is given. Con-

cept of antiferroelectrics is also given. A semiempirical cri-
terion of the appearance of ferroe).ectricity is examined in con-
clusion.

Chapter 2 gives information on crystalline structure of

the most important ferroelectrics. lsing them as an example

ferroelectric phenomena are discussed in later chapters. Con-

ditions for the existence of per-ovskite-type structure in which

barium titanate and many other ferro-lectrics crystallize are

examined. Phase transitions in BaTiQ2 and displacements of ions

in these transitions are described. Crystalline structure of

potassium dihydrophosphate, triglycine phosphate, Seignette' s

salt and sodium nitrite are discussed.

-- 3-
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Chapters 3-6 set forth theory of ferronlectric phencmena.
The authors strove to illuminate it sufficiently completely and
in a form understandable to a wide range of readers. Chapter 3
sets forth thermodynamic theory based on Landau and Ginzburg
general theory of phase transitions. In addition to this, a
new and fruitful direction of theory connected with the use of
concepts of critical indices and with similarity relationships
is examined. Theoretical description of a number of properties
of ferroele'trics, including nonlinear effects, is also given.

Chapter 4 is devoted to microscopf.c model theorLes.
Both comparatively early model representations (model of local
minima, model of anharmonic oscillators, Janes electron theory,
etc.) which hqve not lost their significance are set forth,
and recently published works in which problems of ferroelec-
tricity are analyzed with the aid of Ising model, Bogolyubov
method, within the framework of pseudo-Yang-Teller effect, with
the aid cf isospin method, etc. in doing so, the authors en-
deavored to trace historical lines of development of model -he-
ories, ccnnecion between them, to compare model theories with
dynjmic approach to the problem of ferroelectricity and to
drao! attention to the similarity of some of their most important
propositions.

Chapter 5 sets forth dynamic theory of ferroelectricity
5ased on Ginzburg's ideas develcped later by Arderson, Cochrane
and others. it examines dynamic theory of Born-Karman crystal
lattices, sets forth the fundamentals of thecretical group
analysis of vibration spectra necessary for interpretation of
experimental data, and gives resuits of calculations of vibration
spectra of actual ferroelectric crystals. The main attention
is devoted to the connection of ferroelectric transition with
the loss of stability of crystal lattice relative to one of
its vibrations ("soft mode"), and some of the effects caused
by the presence of "soft mode" are also examined.

Chapter 6 is in essence a theoretical group supplement.
Its aim is to make understandable to a w;ider range of readers
the problems connected with the application of symrimetr, theory
and set forth in chapters 3-5, 1)5, etc.

Chapter 7 is devoted to a description of domain sl- dc-
ture of ferroelectrics. Causes of the formation of domains
are analyzed. Representations of domain walls are briefly
examined. A description of domain structure of some of ferro-
electrics is given and also a description of methods of detect-

ing the domain s,ýructure.

4-• -



Chapter 8 examines temperature dependences of spontane-
ous polarization of several of the most typical ferroelectrics
and also repolarization processes. Nonlinear electric prop-
erties brought about by repolavization are also described here.

Chapter 9 is devoted to polarization of ferroelectrics
in a weak electric field. It discusses temperature dependences
of specific inductive capacitance and losses, nonlinearity inparaelectric phase, reversible characteristics, and dispersion
of specific inductive capacitance.

Electromechanical properties of ferroelectrics are ex-
amined in chapter 10. General relationships connecting piezo-
electric coefficients with elctrostrictive coefficients.
spontaneous polarization and dielectric susceptibilities are
derived for ferroelectrics not having piezoelectric effect in
paraelectric phase. A description of electromechanical prop-
erties of barium titanate and triglycine sulfate is given.
Electromechanical properties of ferroelectrics having pieso-
electric effect in paraelectric phase are discussed using po-
t3ssiun dihydrophosphate and Seignette's salt as an example. Ex-
perimental. data on internal friction and absorption of ultra-
sound in ferroelectrics are briefly cited at the dof~ tchapter.

Chapter 11 is devoted to electrooptical and certain
other nonlinear optical phenomena in ferroelectrics. General
concepts of such nonlinear optical effects as electrooptical
effect, generation of harmonics, and of their characteristics
in ferroelectrics are given in this chapter, Data on nonlin-
ear optical properties of the principal ferroelectric materials
are cited.

Thermal properties of ferroelectrics are described in
chapter 12. Thermal anomalies at the Curie point are examined
using several compounds as an example, and a few -- for the
tiime being -- experimental data on thermal -onduction and
electrocalorific effect are cited.

The effect of external actions (of electric field and
hydrostatic pressure) on ferroeiectric phase transition is
discussed in chapter 13.

Chaptei- 14 describes studies of ferroelectrics using
the methods of electronic paramagnetic, nuclear magnetic and
nuclear quadrupole resonances, and with the aid of Messbauer
effect. An idea of physical parameters determined by these
metnods is given, Results of invest igation of a number of
ferroelectr2z. are cited.

Chapter 15 is Ievoted to the studies of vibrations of
the crystal lattice, of ferroclectric:n near Curie temperature
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using the infrared spectroscopy, Ramnan effecI~ inelastic neu-
tron scattering and thermal diffusion scattering of x-rays and

elcruns. In doing so, the main attention is devoted to in-
vestigations in which data on ferroactive low-frequency vibra-
tions of the lattice were obtained.I ~Chapter 16 describes the features of ferroelectrics with1
a blurred phase transition. Transitions of this kind were found
in many ferroelectric substances, in particular in a number of
ferroelectric materials used in practice.

Chpe soli solutiones.th Ych attentof ntis erroteleto
Chpunsapte 17i exsiestelroetiess of attntioniferrotedectoi

antiferroelectrics with a structure of perovskite type. The
coneptofantiferroelectricirly is discussed.

Chapter 18 is devoted to a comparatively new cl-ass of
substances -- ferroelectrics .with magnetic order. The mailn re-
suits of phenological theory of ferioel~ect~rics-ferlromagnetics
are given ý,nd three groups of ferroelectrics with magnetic or-
deredness are examined -- perovskites, hexagona-l manganites
and boracites.

Chapter 19 gives a survey of properties of ferroelectric
oxides, halides, and chalcogenohalides. Crystalline and domiairi
structures, characterist ics of phase transit ions, diel-ectric
polarization, piezoelectric, elastic, thermophysical, opt~ical
and electrooptical properties are described.

Foreword and chapter 1 were writl'ten~ bv G. A. Smolenskiy,,
chapter 2 -- bi G. A. Smnolenski4y and V. A.Isupov, chaipt~ers 3-6

6- y R. Ye. Pasynkov and M. S. -Shur, chapters 7-10, 12 and 13
-- by V. A. iBokov, chapters !1 and 15 -- y G. A. Sm-ole.-Skiv

and N. N. Kraynik, chapte~rs 1Lh and 17 -by N. N. Kraynik,
chapter 18 -- by G. A. Sniolenskliy and V. A. Bokov, and chapters

16arid 19 -- by V. A. Isupov.



CHAPTER 1. BASIC CONCEPTS OF FERROELECTRICITY PHYSICS

Sei.gnettoelectrics [called so by analogy with the prop-
erties cl Seignette's salt; see Translator's Note in front] :s
the term used t: call crystalline substances in which spontane-
ous polarizaticn occurs in a certain temperature range in the
absence of an external electric field and mechanical stresses.
The direction of this polarization can.be changed by an electric

field and in a number of cases by mechanical stresses. As a
rule, seignettoelectric crystalo are divided into separate re-

gions (domains) characterized by the direction of spontaneous
polarization.

With a rise of temperature, seignettoelectri.cs undergo
a phase transition accompanied by the disappearance of spontane-
ous polarization and by a change in the symmetry of the crystal

lattice. Temperature at which a phase transition takes place
is called Curie temperature (T ) regardless of whether this

transition is of the first or second kind. This transition

may be brought about by a change in mechanical stresses and
electric field. A high susceptibility of a seignettoelectric

in regard to various physical influences (temperature T, mechan-

ical stresses 6'ik, electric field E) is usually observed near

a phase transition. For tho same reason the dependence of seign-

ettoelectrics' polarization on T, 4ik and L may have a non-

linear character. In classical pyroelectrics (tourmaliner etc.)

no such phase transition exists and the respective dependences

are practically linear.

Seignettoelectric properties were discovered for the
first tiide in Seignette's salt from which this name originated.

The term "ferroelectricity" which underscores analogy with

ferromagnetism is used in foreign literature more often [1, 23.

However, this analogy exists only in the purely pheAomenological

scheme. The microscopic nature of these phenomena is completely

dissimilar. [Except to draw the distinction as above, the trans-

lator has been and will be using the terms ,"ferroelectricity"

and "ferroelectric" to conform to the English-language sources].
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Spontaneous polarizaticri (Ps) occurs in classical pyro-
electrics and in ferroelectrics owing to a displacemeht of ion
sublattices or ordering of atomic groups having a dipole moment.
In doing so, ions responsible for the appearance of Ps in f'erro-

electrics are displaced comparatively easily (dipole groips
change the direction of electric moment). It is precisely owing
to this that ferroelectric phase transition proves to be .os-
sible. In classical Duyroelectrics such ions or dipole groups
are rigidly fixed in the entire temperature range of existence
of solid state. In this case, external electric fields and
mechanical stresses are unable to reorient spontaneous polar-
ization. 1i. is helpful to note that ferroelectric substances
with very high Curie temperature approaching the melting points
are known at the present time, for examole LiNbO . etc. Thus,
the "hardness" of somie ferroelectrics is also very great and
in properties they approach classical pyroelectrics.

Phase (including ferroelectric) t-ansitions are subdi-
vided into transitions of the first and second kind *). Sec-
ond derivatives of the thermodynamic potential speci ic in-
ductive capacitance, thermal capacity, coefficient of linear
expansion, moduli of elasticity, piezomodulus, etc. sharply
change in phasc transition of the second kind. In addition to
a sharp change in these quantities, first derivatives cf the
thermodynamic potential such as spontaneous polarization and
entropy undergo a jiump in phase transition of the first kind,
and latent heat of the transition is released.

Temperature dependence of the specific inductive capac--
itance, nore c-xactly of ausceptibility above ferroelectric
transition, "s described by Curie-Weiss law:

C c (1.1)

Here C is Curie constant and e -- Curie-Weiss tem-
perature. Hence, by anslogy with magnetism the nonpolar phase
is ofter, called p•"aelectric. In some cases it is necessary
to take into account the additional term F, which actually

does not depend on temperature, and then
C

6Cft-,+--V-• •(1.2)

Tn phase transitions of the first kind the temperature
of transition T c>; (Tc - 0) is usually of the order of 100,
•nd in phase transitions of the second kind Tc=i, (Figure 1.1)

The behavior of ferroelectrics below Curie point is de-
termined to a considerable degree by their domain structure.

- *) ranslator's note: English-language sources use the
term "•irst and second order transitions".
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Figure 1.1. Temperature dependence of
inverse dielectric susceptibility l/x
(the curves 1) and of spontaneous polar-
ization Ps (the curves 2) in the case
of transitions of the first kind (a) and
of the second kind (b).

The causes of the formation of domains may be qualitatively ex-

pla~ed n te flloing manner. If a homogeneous crystal is
spontaneously polarized, then the charges appearing on its sur-
face create an electric field (this field is called a depolar-
izing field). Breaking up of a crystal into domains, i.e. into
regions with different directions of spontaneous polarization,
decreases the depolarizing field and, consequently, the energy

connected with it, and is, therefore, advantageous from the
standpoint of energy. However, with the breaking up of a crys-
tal into domains energy necessary for the formation of domain
walls increases and, thus, the domain structure is determined
by "energy compromase" between these two factors. in a more

rigid examination the effect of mechanical stresses has to be
taker into account.

In ferroelectrics the thickness of the boundary between

antirarallel domains is small; it does not exceed a few inter-

atomic distances while the boundary energy is high (energy den-

sity of the boundary layer is of the order of 10 ergs/cmL). In

particular, ferroelctrics differ in this respect from ferro

magnetics in which the thickness of the boundary layers between

the domains reaches tens and hundreds of interatomic distances.

A rearrangement of domain structure takes place in a

multidomain crystal under the effect of external field. In

this process, spontaneous polarization changes its direction

in a :certain vo?3ume of the crystal. The process of reorienta-

tion of spontaneous Polarization is accomplished by means of

motion of domain walls and also by means of formation and in-
tcrgrowth of nuclei of new domains with a direction of sponta-

neous polarization approaching the direction of electric field.

-9-
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Figure 1.2. Schematic representation
cf dielectric hysteresis loop in a ferro-
electric.

In sufficiently weak fields, polarization linearly de-
pends on the field (Figure 1.2). Processes of reversible dis-
placement of domain walls predominate on this section. With
an increase of the field, the formation of nuclei of new do-
mains begins and displacement of domain walls becomes irrevers-
ible. In doing so, polarization increases faster than in ac-
cordance with linear law.

At a certain field strength corresponding to the point B
the crystal becomes a single-domain crystal and the so-called
saturation is reached. With a further increase of the field
the total polarization of the crystal continues to increase
only owing to an increase in induced polarization (the section
BC) which is especially high near the phase-transition point.
The curve OABC is often called the initial or fundamental branch
of hysteresis loop. If after reaching the saturation the field

strength is decreased, the polarization of the crystal will
change not in accordance with the initial curve but in accordance

with the curve CBD and in the case of a field equal to zero the

crystal remains polarized. The magnitude of polarizaticn de-

fined by the line segment OD is called residual polarization.

Extrapolation of the section CB ont: thc Y-axis cuts off the line

segment OK which is approximately equal to spontaneous polar-

ization. if the direction of the field is changed, then polar-

ization will decrease, it will change sign and with a certain

.field will again reach saturation (the section DFG" Field

strength defined by the line segment OF, at which polarization

is ecual to zero is called coercive field (Ec). Thus, relation-

ship of polarization tc electric field strength is described by

the curi.e CBDFGHBC called hysteresis loop.

At the present time, a considerable number of ferroelec-

trics are known which represent different types of chemical

compounds: oxides, sulfates, tart~ates and other compounds

having different crystal structure. With respect to chemical

bond and type of the phase transition ferroclectrics may be di-

vided into two large groups.

1- 0 -
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1. Ferroelectrics which are mainly crystals with a con-

siderable degree of ionicity of the bond and which do not con-
tain atomic groups having a permanent dipole moment. In these
crystals spontaneous polarization is brought about by a displace-
ment of equilibrium. position of anharmonically vibrating sublEit-
tices of the ions. Inasmuch as in this case the phase transi--
tion from paraelectric state into ferroelectric state occurs as
a result of displacement of ions it is called phase transition
of the displacement type and the crystal -- ferroelectric of
the displacemenc type. A classical example of a ferroelectric
of this type is barium titanate. lune-Weiss constant C for
specific inductive capacitance in displacement-type transitions

proves to be large and amounts, for example, for barium titanate

to about 1.5 - 105 OK.

2. Ferroelectrics containing dipole groups formed by
atoms bound with each other chiefly by covalent forces. These
dipole groups may have a charge. In this case, theii bonds
with ions not contained in these groups have chiefly an ionic
character. In crystals of this type there are several possible
equilibrium positions of dipole groups with these positions
correspondi:.g to different orientations of the dipoles. In the
paraelectric region the long-range order is absent in the ar-
rangement of the dipoles but it appears in the ferroelectric
region.

Thus, here the phase transition and appearance of spon-
taneous polarization are connected with the orderedne-s of the
dipoles. Hence the names: phase transition of the order-dis-
order type and ferroelectrics of the order-disorder type. In
this case the value of Curie-Weiss constant amounts approxi-

mately to 10 OK, i.e. two orders less than in ferroelectrics
of displacement type. Examples of ferroelectrics of the order-

disorder type are potassium dihydrophosphate, sodiumw nitrite,
etc. it should be rioted thar. the division examined is approxi-

mate and ferroelectric transitions of mixed type are possible.

This is nct the only method of classifying the ferro-

electrics [1-3]. They may also be grouped according to the

character of phase transition from nonpolar into polar phase
(of the first or second kind), according to the presence or
absence of piezoeffect in paraelectric phase, according to the

number of oossible directions of spontaneous polarization (uni-

"axial and "ultiaxial), and according to the type of crysta.
structure.

Phase transition with a change in lattice symnetry talkes

place in some crystals at certain temperatures. In doing so,

ions of the same kind are displaced not parallel to each other

as in ferruelectrics but antiparallel to each other. This

- *ii -



leads to an antiparallel orientation of dipole moments. Such
an orderedness of moments also exists in some crystals having
dipole groups. Crystals wit. dipole moments ordered in anti-
parallel are called antiferroelectrics. Crystals whose free
energy approaches the free energy of isomorphous ferroelectrics
have been assigned of late to antiferroplectrics. It should
be noted that a noncollinear arrangement of dipole moments
which produces a zero resultant polarization is possible.

Antiferroelectrics may be regarded as an assemblage of
two or more sblattices with one being inserted into the other
and with the aipole moments in each sublattice being oriented
parallel to each other. Spontaneous polarization in each sub-
lattice is not equal to zero but the aggregate spontaneous
polarization in tihe crystal proves to be equal to zero. In
the simplest cases the crystal lattice in an antiferroelectric
hae a center of symmetry and the piezoeffect is absent. A
maxim m of specific inductive capacitance the magnitude of
whic> is smaller than in ferroelectrics with the same crystal
structure is observed at the point of transition. A multiple
increase of dimensions of unit cell is usually observed in a
phase transition from paraelectriý state into antiferroelectric
state. In Figure 1.3, in paraelectric region the unit cell is
represerted by the squares abcd whereas in antiferroelectric
phase the unit cell is represented by the rectangle abef.

a d f

4- - - --

Figure 1,3. Schematic representa-
tion of dipole moments in an anti-
ferroýlectric.

When a sufficiently strong electric field is superimposed
the antiferroelectric mey change into ferroelectric state. The
fact is that parallel oe'ientation of dipole moments in the pres-
ence of an exte.-nal field may prove to be more advantageous
from the standooint of energy than an antiparallel orientation.
With such a "forced" phase transition, "tdouble" livsteresis
loops are observed in a strong variable field (Figure 1.4).
In the case of a small field strength, polarization vs. field
dependence is practically linear. Transition into ferroelec-
tric state occurs when field strength reaches a critical mag-
nitude Ecr 1- With a decrease of the field strength the
crystal returns into ferroelectric state but with an Ecr 2
which is .3maller than Ecr 1.

- 12 -
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Figure 1.4. Double hysteresis
loop.

Incomplete compensation of dipole moments of the sublat-
tices may occur in more complex cases. By analogy with ferro-
magnetics these substances are called ferroelectrics.

According to the present-day concepts which are based
on Ginzburg's ideas [4] developed later by Anderson [5], Cochran

E6] and others, ferroelectric transition of the displacement
type takes place owing to the compensation of effective force
constants corresponding to the long-range dipole-dipole forces
and short-range repulsive forces. With such a compensation
the frequency of optical oscillation of the lattice reaches
anomalously small values, the crystal loses stability relative
to this oscillatign and a ferroelectric transition takes place.
On the basis of these theoretical concepts and also on the ba-
sis of an earlier model of an anharmonic oscillator [7-9] it

was possible to formulate certain qualitative considerations
which were used for finding new ferroelectric crystals, chiefly
of the oxyoctahedral type. It is obvious that dipole-dipole
interaction will be the stronger the larger the internal field
in a crystal, and also the higher the electronic and ionic
polarizability.

Calculations have shown that in crystals containing oxy-
gen octahedrons arranged in a certain manner the internal fields
are large [8, 10, 11]. Thus for example, connection of octa-
hedrons with their apexes,, the way this occurs in structures of

the perovskite type. lithium niobate and potassium-tungsten
bronze is opportune. Oxygen octahedrons containing ions of

transition elements which have a noble-gas shell after yielding

the s- and d-electrons ar• characterized by a high electronic
polarizability. It is assumed that a 1lge number of electronic

states with like energies [12, 13] P.id a relatively small size

of the sli! between the filled p-region of oxygen and d-region

of ccnducta:'ce [14-16] are characteristic of these octahedrons.

Upon superimjnsitioni of electric field the small size of the

slit between V-region anL d-region ensures a high probability

of transition cf electrons to an excited state and a high elec-

tronic polarizaLility of the octahedron.

- 13
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An important role is played not only by electronic po-
larizability of an oxygen cctahedron in perovskites and in
crysta's of some of the other structural types but also by •he
polarizability of ions located between the octahedrons. The
PB3+ and Bi3+ and apparently the T1I+ ions are characterized

by high electronic polarizability [17]. Accordingly, many
compounds containing Pb2+ and Bi3+ ions are ferroelectrics
with h•gh Curie temperatures.

A mnmber of authors have voiced a supposition that loose
packing of ions in crystals contributes to the appearance of
spontaneous polarizability. An excessively great significance
was ascribed to this factor in early works.

The semiempirical crystallophysical considerations ex-
amined above which are useful in the search for new oxyoct@-
hedral ferroelectrics were 1ormula•ed in the works [28, 19].
They played an important part in the discovery of new ferro-
and antiferroelectrics and also of substances with a high spe-
cific inductive capacitance.

A number of ferroelectrics have been discovered recently,
for example, Y•mO• in which minor cations have no electron
shell characteristic of noble-gas atoms. In addition to this,

cations do not •lways have the coordination number six, for
example in Mn3+ and YMnO• the coordinstion number is equal

J

to five. Thus, the criteria in question for" the appearance
of spontaneous polarization in crystals of oxyoctahedral type
cannot be considered as general criteria. Therefore, an im-
portant problem is the further clarification and ,•ore exact
determination of conditions for the appearance of spontaneous
polarization for this broad class of substances. In searching
for ferroelectrics the guide used is first of all considera-
Lions of the existence of hydrogen bonds in crystals and of• o_
groups ha•,•g a large dipc!e moment in crystals (NO•, NO•, SO

SeO?-, etc.).
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I
CHAPTER 2, CRYSTAL STRUCTURE OF THE MOST IMPORTANT

FERROELECTRICS

This chapter gives a brief description of crys-
tal structure of those ferroelectrics which will
be chiefly used as an example in the discussion
of ferroelectric phenomena in the subsequent
chapters. Among these ferroelectrics are barium
titanate, Seignette's salt, potassium dihydro-
phosphate, triglycine sulfate and sodium nitrite.
Crystal structure of the other ferroelectrics is
discussed in a survey of properties of ferroelec-
turic crystals. Crystal structures of antiferrc-
electrics are discussed in chapter 17.

Par. 1. Barium Titanate

A X a

Figure 2.2. Crystal str-..ture
of perovskite type.

a -- unit cell; b -- framework
of octahedrons.

Many ferroelectrics crystallize in a strz-tuee oi perov-
skite type characteristic of comumpounds with a general
chemica2 fXr.ul& ABi, where A and B are cations and X" -- anions.
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A structure of perovskite type is constructed of BX6 octa-

hedrons connected with each other by vertices (Figure 2.1).
Connection of octahedrons takes place in such a manner that
rectilinear chains of octahedrons parellel to each other can
be differentiated by all of the three mutually perpendicular
axes. Octahedrons of the neighboring chains are connected
by their vertices. As a result of this, a three-dimensional
framework of octahedrons is obtained (Figure 2.1b). A cat-
ions are located in the spaces between the octahedrons. Thus,
if B cation3 are surrounded by six X anions. then occupying
the enter of the cubo-octahedron the A ions are surrounded by
12 anions. X anions are surrounded by six caitions: four cat-
ions A lying at a distance a/1/2 (where a is lattice para-
mete,) in the vertices of the square whose center is an anion,
and two B cations lying at a distance a/2 in a direction per-
pendicular to the square made up of A ions.

The crystal lattice of compounds with a structure of
perovskite type: of ferroelectric compounds in paraelectric
state and of nonferroelectr-ic compounds has in many cases a
cubic symmetry and belongs to the space group Oý--Pm3m. In
this oa-e the unit cell contains one formulaic unic.

Satisfaction of the following two geometric ccnditions
ensuring a close packing of atoms and determining the permis-
siblc dimensicns of A and B cations and of anions is mandatory
for tha existence of the compound ABX_ with a structure of
perovskite tyre [1]:

fRA +R Rx

RB and R. are here th:.. Labular ionic radii assigned to ions

with the coordination number (c-n.) 6, and R, is tabular ra-

dius for cocrdinat on number 12 (R(cfn.2)!. 1 2 n(c.n" 6).
The vaLue of' t approaches unity but, as a rule, differs
from it and lies in a range fro- t, tats-
faction of the condition alone is i'nsu -ficient to
zorm z erovskite structure. Fo- eximp]e, for 115 (eremt-

vevite structure -= 1 and i. ith.n oze,•-!-sibe limits
but oerovs'-;t9 c•- ctu-e does not fc-m owing to a small radius
,if boron ion.

"'the case of complex -erovskite co-,ounds the general'
chemical formula may havt the following i-c.r-- [2

- i,- .A
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k V

where Zx,=1 and Zyi=l (x)>0; yj>O). 'In addition -Lo
i"

this, the following requirement of electric neutrality of the
crystal must be observed:

& 5

I ZXnA,,, + rJ813.1 34- -0

(wheren
( r A(M), nB(J) and n are the valences of the respective

ions), and also the requirement of the condition:
< A -_ RX ±,: .< tS* 1"(J)

Vi (As +R 1) < -x ft ,

k I
where ý= X.Ri 0 and RB= __YjR ) These conditions

A-i=l 3.ABU

limit the dimensions of the Aýi) and B ions and the mean

radii TA and R. As already mentiond, b1 =O..1; the values

of a,, a2 and b2 have not as yet been determined exactly but

apparently u2 is not less than 0.74; al'y0O.73 and a 2 is not

less than 1.3.3 (RA were corrected to c. n. 12).

If X is an oxygen ion 02-, then by combining in octa--
hedrons the ions with different valences the following groups
of complex perovskite compounds may be obtained.

With nA=1:

A (1134 Dj 03, A (Bj*,8j.) 10,, A (0"B. ") ,. A ita:II uri
.6:,• o. M (1.,1•o . 1h .... ..... V3

A (,Wfi?,) 0j. A (BO-,3.,) 0,. A (B'iZ) 0,. A (.1,0874) 03,

w•.th nA= 2 :

A (B•,eB5) 0O. A (e~U,) 03, A (:]I ) * ,:

A 1B1hP) 03. A (W.,B.) 0. A (81+RV) 0,.
A (B 0,B.1)0O. A (D.t. :1..) 03. A (1:..j1+) 0,:

w i t h n A A=( S r, 0 rj . A:( 8 1 + 8 5) 0 3. A B j * A0

A (BkBV.) 0s. A j0 S~,S~) 0ý. A (85 48.4 Cq. A 0.

Only the A A3 5 B 
4 +O3  group of compounds can be obtained with

nB= 4 . (Owing to the small size and, probably, too high a

charge, ions with a valence of 4, 5, etc. cannot be taken as

- 1$ -
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ions with c.s,. 12). Apparently the compounds A+ .A3 5 Bo .Bo.603+

A+ A 03 + B2 B 6 + 0 Ao. A3 _ B+ B7 + 0 and A • + 3+ B2 + B7 + o
0.5 0.5 0 .5 0.5 3' 0,5 0.5 0.5 0.5 3 0.5 0.5 0.6 0.4 3

can also be obtained. These groups exhaust all of the possible
types of complex perovskite compounds. Apparently not all of the'
types can be realized. In any case, for many of them the re-
presentatives have not been found up to the present time.

It is necessary to underscore that, as a rule, complex
formulas, for example (AA-t -) (BYB_ 0y and A(B'B"B'1' y)O3y 1.-y xy -_ 3
describe solid solutions. The following may be cited as an
example:

(Iit, ~ (Tpb",) (F,,Nb Os .. SO.5Nab3  (5Mb GS,N O,

''f... L4..NGn 5
Pb (LI hbqkw,, o jP (fýb,- 3 ~ Pb (L4,%,4W . ) 03.

In the case of the last equality, compounds correspond-
to the formulas on the right apparently do not exist. However,
solid solutions may exist even in this case and a phase with
perovskite may be observed in a more or less wide range of val-
ues of the concentrations. Whether the compound Pbl/3(Lil/3 x
x Nbl/3WI/3)0 3 exists in thiis case can only be determined from

the form of the phase diagram of the system formed by two com--
binations of oxides that are on the right in the last equality
(for example, from the prescice of a maxirunam on the liquidus
curve). A compound of pDrovskite type cannot, by far, form
with any cowbination.s of ions satisfying the formulas cited
above. The tendency of the ions to the formation of these or
other hybrid bonds leads to this or other oxygen encirclement.
It may turn out that the preferable oxygen encirclement wil
not correspond to the encirclement of atoms in a structure of

perovskite type.
Barium titanate BaTiO3 is the most investigated ierro-

electric with a structure of perovskite type. Above Curie

temperature (12 0 0C) this compound has a cubic lattice with a

lattice parameter of ,0410 In this case the coordinates of

the atoms of Ba are:(O 0) of Ti: (i, ½, P), of 30: (½, ½,

0), t, a, P, (0, ar 1)( . OBelow 1200C barium titanate be-

comes tetrogonal with the lattice parameters a=3.99 2 A and

c=4.036 • at room temperature [41 and belongs tc the space

group C v- P4mm. The lengthening ox the cell's edges tak-es

place in the direction in which spontaneous polarization oc-

curs (along the c ax.s)(Figure 2.2b). Coordinates of the
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Figure 2.2. Unit cell of BaTiO3
in different phases.

a -- cubic; b -- tetragonal; c --
rhombic; c -- rhombohedral. BSok-n
lines show the in:,tiai cubic cell.
Arrowhead indicates the direction
of spontaneous polarization.

a I

,olupper) 0

tzj Ti

0 (lower) --

Figure 2.3. Displacement of ions
in a tetragonal BaTiO3.

a -- distortion of TiO3 octahedron;

b-- directions of the displacementsof ions in a un-it cell.

atoms may be described in the following manner:

I,: ID. 0. 0). TI: -. ( -! .L L+ 13, 01 f .U

2,.: .0. 2o,, (0.

The quantities 8 z represent here the displacements of atoms
from the center of parallelepiped formed by bariunn ions (Fig-
-are 23.



An exact determination of the displacements if ions is
difficult owing to a strong connection between the magnitudes
of displacemernts and parameters of thermal vibrations of the
ions t.4]. However, as Megaw [5] points out, the average mag-
nitudes of the disDlacements of ions and of the parameters of
thermal vibrations determined in various works satisi'actorily
agree with each other both in the signs and in the order of
magnitude. Thus for example, the average magnitude of SZo

=0.014o, (expressed in fractions of lattice parameter), and the

avErage deviation from this magnitude in the works of differ-
ent investigators amounts to 0.000 The average tz0 =-0.0255

and the average deviation is equal to 0.0023, the average SZo

=-0.0123 and the average deviation amounts to 0.0082. It may

be seen from these figures that the values of 8 ZTi and S zo

obtained in different works agree well, and there is no satis-
factory agreement only for 8zo0 I.

A phase transition from ferroelectric tetragonal to ferro-
electric rhombic phase take- place near 00C. In doing so,
spontaneous polarization sets in in the direction of i.i.h. diag-
onal of the face of the cubic unit cell and the lengthening of
the lattice takes place in this same direction. The cell ac-
quires a monoclinic distortion (Figure 2.2c). The rhombic
cell a transition to which from the monoclinic cell is possible
has the p.rameters a'-;aMV, , baMJ/V, L-cM where aM, bM and cM
are paramLters of the monoclinic cell, and no longer contains
only one but two formulaic units. The lattice symmetry is de-
F~ribed by the space group C v--C2mr.

At -100C t.he parameters of BaTiO3 are equal to: a=5.682,
b=5.669 and c=3,990 R. The positions of ions are determined
by the displacements SxTi, £ 1xo, 8yeiI (Figure 2.4a). Ac-
cording to the data of neubiron difraction study [6] BXTi=

=+0.0109 Ax 0 =-0.010, •o O• o=-O.013, SY 0  =+O-03 or expreesed in

angstroms: SXTi=0.06, 8xor=-0.06, xo iI _07, Yoi-01 0-Th--os-o0Ti0o7

-==0.017 A. The ions of Ti and Ba are displaced relative to
the oxygen octahedron by 0.13 and 0.07 X-respectively along
the positi.ve direction of the x-axis. Distortion of the octa-
hedron may be seen from Figure 2.4b. Spontaneous polarization
calculated on the basis of ion displacements is equal to 16
1l04 coulombs/cmr (experimental value is ~30 • 1O-6 c/cm2 ).

- 21 -



,of 92 f f

Figure 2.4. Displacements of ions
in rhombic BaTiO3 .

a -directions and magnitudes of dis-
placements; b -- distortion of TiO6

octahedron (after Shirane et al. [6]).
I -- oxygen; 2 -- barium; 3 -- titanium.

tv -W-N-5 3V l ST'

Figure 2.5. Temperature dependence of
lattice parameters and of the volume V
of unit cell of BaTiO3. (After Kay and
Vousdon [7]).
1 -- cubic phase; II --- tetragonal phase;
III -- rhombic phase; I -- -hombohedral
phase.

Transition into ferroelectric rhombohedral phase takes
place at about -900C. In this phase, spontaneous polarization
is oriented along the volume diagonal of the cubic cell and
the cell is elongated in this directiun (Figure 2.2d). The
rhombohedral phase of barium titanate is described by the

space group C),--R3M. At -100C the lattice parameter a=
0 3v •

=3.998 A [31-

Temperature dependence of lattice parameters (of the
length of unit-cell edges) is shown in a wide temperature
range in Figure 2.5.
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Par. 2. Seignette's Salt

Seignette's salt is a double sodium-potassium tartrate

NaKC H0 6 • 4H2 0. In nonferroelectric state (above 23-24 C)

this salt has rhombic structure. At +35°C tte lattice para-

meters are equal to a=11.878, b=14.246 and c=6.218 ý [3]. The
unit cell contains 4 formulaic units. In doing so, the lat-

tice is dezsribed by the space group D32--P212 1 2. According

to [3] the atoms in the unit cell occupy positions shown in
Table I.

Table 1

Positions of Atoms in a Unit Cell of
Seignette's Salt

0.00 0.50 0.15 HC (8 025 0.03 0.7Kwa b 0.0 0.00 0.05 11,0(7 0.40 0.30 0.500 0.12 0.10 0.37 11o (10) 0.42 0.40 A0.4

0 0.22 0.20 0.12 C ,) 0.15 0.15 0.35
0.23 0.40 O0.82 C O.*2 0.0n 0.42

I .OA 0.37 O.8S C(3 0.47 O.X OAS
O %) 0.3 O 0.6 0.32 C(4) 0.15 0.35 0.80
OH (6) 0.29 0.24 0.63

95 odV7aly v .37' 0 1(

0.t5 .0

am 0 08"OM

t$ 5I t 0. 95 9 0.55

0 2 * 5 1 AaA

Figure 2.6 Projection of the structure ofSeignette's salt onto the plane (OO1).

Figures in circles are the numbers of the

atoms; figures near the atoms indicate the
z coordinates (after Beevers and Hughes [8]).
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Projection of the structure onto the plarn. (1Ou) is
shown in Figure 2.6. Each atom of sodium is sqrrounded by a o
group of six atoms of oxygen with an average distance of 2.39 A

0
(2.39, 2.34, 2.29, 2.31, 2.49 and 2.52 A). Out of them, three
atoms of oxygen belong to the tartrate group and three -- to
the water molecules. An atom of potassium in (O, 0, 0.05) has
a coordination number 4 with two atoms of oxygen from the tar-

trate group and two -- belonging to the water molecules. The
other potassium atoms 'lave a coordination number 8 with four
oxygens from the tartrate group and with four water molecules.

0
The distances lie in a range of from 2.75 to 3.07 A. Carbon
atoms in the tartrate molecule lie in nearly one plane. The

groups -C(OH) - COOH are nearly coplanar and are inclined 60+20

to the plane of the carbon atoms.

Ferroelectric phase existing in a temperature range of

from -18 to +240 C is monoclinic and bclongs to the space group

C 2__P2,1 [9 with the polar axis being parallel to the direction

of the rhombic axis of [I00]. Spontaneous deformation consists
of a displacement cf Yz in the plane (100). Owing to this,

the angle between the b- and c-axes differs somewhat from 90 0 G
(by a quantity of from l'48" to 31 [3]).

The low-temperature phase of Seignette's salt, stable
below -180C, as well as the high-temperature phase, is described

by the space group D2--P2 1 212 [10]. Some of the atoms in this

phase are displaced somewhat from positions characteristic of
the high-temperature phase. Anisotropy of the oscillations of
the oxygen 03 and 08 atoms was noted (Figure 2.6) with the di-

rection of maximum. oscillatior being parallel to the rhombic
a-axis. At the same time, oscillations of the 0 ion are most
intensive along the b-axis. Very strong thermal vibrations
were found in potassium atoms.

The most important problem in the study of crystal struc-
ture of Seignette's salt is determination of the position of

hydrogen bonds in a crystal. As the neutron diffraction
study1ll] showed, orientation of hydroxyl group, indicated by
nunlerml 5 in Fivurm 2.6, is of great significance for the emer-

gence nf ferroelectric state. According to [3] a change in the

orientation of this hydroxyl group leading to a change in the

direction of its electric moment brings about a displacement
of protons along vte a-axis and makes the main contribution to

the development of spontaneous polarization. Displacements of

the other ions apparently also make a contribution to sponta-

neous polarization.

- 24 -
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Pr- 05qm#-

~~~~ o-- @Ow,,,s -3

Figure 2.7. System (,f hydrogen bonds in
Seignette's salt (broken lines) in projec-
tion onto the plane (,001). (After Frazer
et al. [11]).

Key: 1 -- 0 of the COOH group; 2 -- 0 of
the OH group; 3 -- 0 of the H 20 group.

In Figure ý2.7 is shown a system of hydrogen bonds ac-
cording to the daa in [11]. This system agrees well vih h
conclusions drawn from a study of Raman-effect spectra. It
should be noted that although crystallographic class of rhom-
bic modification of Seignette's salt allows the existence of
two enantiomorphons modifications the Seignette's-salt crys-
tals usually belong; to the right-handed form [31. The most
developed and typical. forms are the c-faces f600• and pris-
matic m-faces {ii--, the n-faces J1201, 1-faces 210} and
b-faces f{01l whereas a-faces 110Cý are very small in most
cases or are absent altogether.

Par. 3. Potassium Dihydrophosphate

At room temperature, potassium dihydrophosphate (KH2PO 4

has a teti-agonal lattice with the parameters a=7.453 A and c=
_7 ~~6.959 1, belonging to the noncentrosymmetrical groupD 2_Zd

[9]. Crystals described by this space group are piezoelectric.
This unit cell contains 4 formulaic units. The crystal lattice

S- ~25-
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Table 2

The Lengths of Bonds in KH2 PO According to

the Data in [133], Expressed in A (OH is Oxy-
gen With Neighboring Hydrogen)

rj Bond I Room±.'d emDeratu~e

P--O

0-0 t,4 *I4 -'6O1

0~0 1256*40 *0.05 M&MS.
o0-o 2.5t7±042

0-H-0- 2A42*0.005 2.430±0430 2.49i ±0.006
on-0 i07= x.07 ,.± 1.05-*.X1'
0-H H 1.42 _ .I 041. 14D*0•4

K-ff 2M940.006 }2.876±0=30 "M±000
K-0-

U.25-0.004 1  2.._s)o~0.8•5 jL-0.0i

Figure 2.9. System of Hydrogen Bonds in

KH2 Of 4 (broken lines) in Projection onto

the Ilane (001). (Ait.•r Frazer and Pepin-
sky [ ']).
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Figure 2.8. Unit cell of KH2POA cor-

responding to the space group IM2D.
(After West r:.2]).

of KH2 PO4 may be described by using another tetragonal unit

cell in which the edges forming the square base are diagonals
of the square face of the cell mentioned above and accordingly
are �V times larger (that is a=l0.534 A and c=6.959 ). How--

ever, in this case the space group will be Dd2 -- F7,i2.

The arrangement of atoms in a tetragonal unit cell with
0

a=7.453 A is given in Figure 2.8. The lattice consists of PO4

tetrahedrons of nearly regular form. Potassium ions are located
in the spaces between tetrahedrons. Each one of these ions is
surrounded by eight oxygen atozas belonging tc PO4 tetrahedrons

with four of them lying somewhat closer to the potassium atom
than the remaining four [13]. In Tabie 2 -,re given the inter-
atomic distances in KH2PO . Each PO4 group is linked with

four neighboring PO4 groups by hydrogen bonds of about 2.4

in length. As may be seen from Figure 2.8, hydrogen bonds are
perpendicular to the c-axis and link the "lower" oxygen atoms
in one tetrahedron of PO with the "upper" oxygen atoms in an-

other tetrahedron. The system of hydrogen bonds in KH2PO4 may
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be seen from Figure 2.9 where a projection of the lattice onto
the plane (001) is given. According to [13] the oscillations
of hydrogen atoms have a high anisotropy with the amplitude of
the oscillations being maximal along the direction of the bond.
Hydrogen atoms in paraelectric phase of KH2PO4 are statistic-

ally distributed in two positions lying on a straight line con-
necting the nearest oxygen atn.Ls. The distance between these

0
two positions amounts approximately to 0.35 A (difference be-
tween the distances 0 -- H and 0--I1 in Table 2). Statistical
distribution of hydrogen atoms in these two positions accounts
for the absence of spontaneous electric moment in the substance.

Ferroelectric phase transition takes place in KH2 PO4 at

-150 C (123 0 K). In doing so, the lattice becomes rhombic and

belongs to the space group C. 9 -- Fdd. An elongation of the unit
4V

cell with the space group IZ2d takes place along one of the di-
agonals of the square base and a contraction -- along the other
diagonal so that a rhombic unit cell with a=l0.44, b=10.53 and

0
c= 6 .90 A at 116 0 K results upon transition to the other axes [3].

Distortion of the unit cell with the space group F~d2 consists
in the elongation of the edges parallel to the b-axis and in
shortening of the edges parallel to the a-axis. The polar
axis i.s oriented along the tetragonal c-axis. The change in
interatomic distances during the phase transition .,ay be seen
from Table 2.

The length of the hydrogen bond changes little during
the phase transition but hydrogen atoms become ordered in such
a manner that in a single-domain crystal all hydrogens are near
the "upper" or "lower" oxygens according to the polarity of the
crystal [3]. The change in the polarity of the crystal is con-
nected with the displacement of hydrogen atoms along the dir~c-
tions of hydrogen bond from the "upper" 'xygen atoms to thr
"lower" and from the "lower" to the "upper". The orderin, of
hydrogcn atoms is eccompanied by the displacements of the other
atoms. Displacements of oxygen are very small. Potassium and
phosphorus atoms are displaced along the c-axis in opposite
directions relative to oxygen frFrmewor4 withdrawing from those
oxygen atoms which the hydrogen atoms approach, i.e. the posi-
tive charge of proton approaching th'e oxygen atoms repulses

the positive potassium and phosphorus ions ad'acent to oxygen

atoms. The magnitudes of the displacements o' potassium atoms
0

are evaluated at 0.04-O.05 A and those of potassium rsic] atoms
0

-- at 0.03-0.08 A [13, 14].

Inasmuch as spontaneous polarization as oriented along

the c-axis and hydrogen bonds are practically perpendicular to
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the c-axis it is clear that appearance of spontaneous polar-
ization can be explained only by displacements of heavy ions
along the c-axis. Calculation of spontaneous polarization by
the displacements of ions (ionic component) [13] on the assump-

tion that phosphorus, potassium and oxygen ions have a charge
of +5, +1 and -2 respectively gives a good agreement with the

experimental value of spontaneous polarization. A good agree-
ment, although with opposite sign of spontaneous polarization,
also results with the assumption that phosphorus charge is
equal to +3. Results of the study of KH2 PO using the method

uf 9nomalous scattering of x-rays agree with the assumption
that phosphorus charge is equal to +5 [3].

In accordance with the results of struztural investiga-
tions, the data of the study of infrared spectra and Raman-ef-

fect spectra indicate an absence of changes in The lengths of
0--1 bonds in the case of a phase transition [']. This con-
firms the mechanism of transition, which consi.3ts in -rdering
of hydrogen atoms in two positions lying along the hydrogen bond

and which follows from structural studies.

Par. 4. Triglycine Sulfate

(A) , J_

Fi0 Pj tion of t

""7 ta .[16] )

e 2.10. Projection of the structure o
triglycine sulfate along c-axis. (After Hosh-
ino et al. [16]).
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Table 3

Coordinates of Atoms in Triglycine Sulfate

,uirate ion

a O . Y"g Oast
i.8g3 25/ 0.2M04

COjgoM 0.2A472 0.872

o0."1 O.4.l 0.457814M 0~9 .1505 o0ý=
0.00 .070 0.3469 0.t1,

T i s a oN
O 2b 0.2472 0.8727

O " 0 . 3 M9 O . M 6 1r O . ag mG .1AW 0.5231 0 .6

th te0peatur 
0

.5 Aov 0. Cip tt

glycne slfat ha a ronocni lattice beongngtothsac

O' 0.545% 0.85W 0.A1

C 0.693"7 0.4749 0.,,1•
CN 0.7440 O.MO,' 0.590%

Triglycine sulfate (NH2Ch2COOH) 3 - H2SO 4 is a ferroelec-

Stric with a Curie temperature of 49°OC. Above Curie point, tri-
Sglycine sulfate has a monoclinic 'Lattice belonging to the space

group C2 h--P2 I/m. A unit cell of triglycine sulfate may be

selected by two methods. The b and c parameters are the
same for both unit cells but, the angles a and parameters "all
differ. In both cases the unit cell contains two formulaic
units. At room temperature, the lattice parameters in one se-

0
lection are equal to: a=9.15, b=12.69, c=5.73+0.03 A, @=

=1050 401+20 according to the data in [15], and in the other
0

selection a=9.42, b=12.64, c=5.73 A. 8=110023' according to
the data in [16].

Coordinates of atoms in triglycine sulfate at 200C ac-
= cording to the data in [16] are given in Table 3 in fractions

of the edge of the cell.

= in the triglycine sulfate lattice, phosphcrus atom is

- 30-



in a distorted oxygen tetrahedron. The S--0 distances lie in
a range from 1.477 to 1.481 X and are considerably shorter

1r
than in inorganic sulfates such as KH 2 Q 4 and MgSO.. The

0--S--O angles lie in a range of from 105 to 1150.

In Figure 2.10 is given a projection of the structure
of triglycine sulfate along c-axis. For convenience in de-
scription different gioups of atoms are indicated by the let-ters A, Bt A* and B* placed in parentheses. The numerals I,
II and III indicate three glycine groups which are a part of

the composition of the substance.

Glycine group II is a so-called "zwitterion", i.e. a
molecular greup one side of which has a positive charge and
the other -- a negative charge, so that molecular group has
a dipole moment. Glyciae groups I and III carry only one
charge - a positive charge and, therefcre, may be regarded
as complex positive ions which are called glyciniums. Hence
a second possible name for triglycine s';lfate -- glycinedi-
glycinium sulfate -- and the feasibility of writing the chem-

inal formula in the form (NH CH2 CO0-) (NH'CH2CCOH)2SO-

Table 4

Displacements of Atoms From the
"Planes of Glycine Groups (in )

Atomo Glycine groupa

0 OAO~C' 0•, O,0 0 004,

As may be seen Vrom Table 4, carbon, nitrogen and oxy-
gen atoms in glyciniums I and III lie practiically in one plane.
In zwitter-ion of glycine (II) carbon and o;.ygen atoms also
lie practically in one plane but nitrogen atom is displaced

0
from this plane by 0.27 A.

In paraelectric state above Curie point the planes
y=J and 3/4 are crystallographic mirror-iulage planes. The

planes of glycinium ions form an angle of 12.50 with the
planes y=4 ani 3/4. A glycinium molecule may go out of the
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plane y=& (or Y=3/A) both on one and the other side of this
plane with the direction of the deviation from this plane
being different for each glycinium molecule and being in a
chaotic state. Thus, above Curie point the planes y=¼ and
y-'A/ are mirror planes only statistically. With an ordered
deviation of glycinium molecules below Curie point these
planes cease to be mirror planes even statistically.

Determination of the system of hydrogen bonds in tri-
glycine sulfate is of great importance. A possible system of
hydrogen bonds assumed in _i6]' is shown in Figure 2.10 by dot-
and-dash lines connecting different atoms. Attention is drawn
by th.e short hydrogen bond between the O'liA) and OliI(A) oxy-0
gens of 2.44 A in length. It is assumed in [16] that proton

is located closer to the atom of 0' 1 1 1 (A) oxygen of the com-

oletely plane tlycinium III ion. Owing to this, group III
is considered to be glycinium ion and glycine group II is re-
garded as a zwitter-ion.

The possibility of the transition of hydrogen from

group III into group II along the short 0 (A)--H--O (A) bondSIII TI

accounts for the possibility of repolarization of the crystal.
In doing so, tke groups change roles: group IIi becomes a
zwitter-ion and group II -- a glycinium ion. NII(A) atom re-

turns into the plane og the remaining atoms and NiII(A) atom

leaves the respective plane. This regrouping of atoms in
these groups leads to a change in the position of glycinium
group which, as a result, assumes a symmetrical position rel-
ative to the plane y=-. Thus, repolarization in triglycine
sulfate is not a simple change in the direction of the mo-ent
of one of glycinium groups bit is connected with the disappear-
ance of the moment in one glycinium group and transformation
of the zwitter-ion of glycine into a glycinium grcup with a
dipole moment of opposite direction.

Further studies confirmed that ferroelectric transition
in triglycine sulfate is a transition of the order--disorder
type and is in the main of the 3anie nature as the transition
in potassium dihydrophosphate but differs from it by a tighter
bond between the motion of protons and the motion of heavy

groups [171.

With the phase transition into paraelectric state the

lattice remains monoclinic. In doing so, along the ferroelec-
tric b-axis the crystal contracts during the heating and ap-

oroach to Curie point and begins to expand in paraelectric

phase while, conversely, along the a- and c-axes it expands

during the heating in ferroelectric phaze and begins to con-

tract in paraelectric phase [F18



Par. 5. Sodium Nitrite

Figure 2.11. Projection of the struc-
ture of NaNO, onto the plane (100).

A_

Small circles are nitrogen, medium-
sized circles -- sodium, large cir-
cles -- oxygen (After Wyckoff [20]).

At room temperature sodium nitrite (NaNO2) has a rhom-
bic structure belonging to space group C20--Im2N r19]. Unit

2v L 0
cell has the parameters a=5.390, b=5.578 and c=570 A [20] and
contains two formulaLc units. The lattice of NaN02 may be

represented as the lattice of NaCl in which chlorine ion is
replaced with N0 ion with 0--N--C angle equal to I150 whose

bisector is oriented along b-axis of the NaNO 2 lattice and

whose plane lies in the plane (101) of the cubic lattice of
NaCI (Figure 2.11). Socium atoms are surrounded respectively
by six ions of NO and the ions of NO2 -- by six sodium atoms.
The b-axis is the ferroejectric axis.

Approximately at l60C the noncentrosymmetrical struc-
ture changes into a centrosymnietrical. structure. Paraelectric
phase is rhombic and belongs to space group D2 -- Immm. At

2050C, param-eters of the unit cell are equal to: a=5.33, b=

=5.68 and c=3.69 A.

Above Curie point, oxygen atoms in NO2 grou.ps oscillate

along the axis [010] near those positions which are defined by
the centrosymumetrical space group.

With the assumption of a purely ionic structure the cal-
culated value of spontaneous polarization proved to be equai to
-7 •.1-6 ,o 2ombs/cm -211. This value exceeds by one order
the experimentsl value of spontaneous polarization in NaNO,.
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Agreement between the calculated and experimental valueb re-
sults if a charge equal to unity is assigned to a sodium ion,
to nitrogen -- a charge equal to -0.36 and to oxygen -- a
charge equal to -0.32 [21]. This indicates a strong covalence
of bonds in NO2 group.
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CHAPTER 3. THERMODYNAMIC THEORY OF FERROELECTRICITY

Mavy physical properties of ferroelectrics are well described by

thermodynamic theory (with the exception, perhaps, of their behavior in

d narrow temperature range near transition point, and also with the ex-

ception of some noalinear effects).

The principles of this theory were laid down by Ginzburg [I1 2]

and Devonshire [3] who applied Landau [4) thermodynamic theory of phase

transitions to ferroelectric crystals.

Thermodynanic theory makes it possible to describe phenomenologi-
cally therma. -mechanical and dielectric properties of ferroelectric crys-
tals, predict possible changes in their symnietry in the case of transi-

tion of the second kind, to interconnect various physical quantities with
anomalous temperature dependence, etc.

This chapter qets forth the principles and sawe recults of thernmo-

dynamic theory, and also examines the question of the range of its appli-
cability. Material presented in this chapter pertains only to single-

domain crystpls. The last circumstance is connected with the fact that

thermodynamic theory of domain structure has been developed cons;derably

less (a brief review of results of this theory may be found in chapter 7).

Far. I. Ferroelectric Phase Transition

The basis of Landau theory is representation of phase transition

which takes place as a result of a change in symatetry and not in che

statc of aggregation of a body. From the standpoint of macroscopic theory

the syz•metry of a systen is described by the so-called factor of order

vt, p) whichis equal to zero it, disordered phase and is nonzero in phases

characterized by a lower syrinetry. For ferroelectric transitions the

order parameter may be provided by spontaneous polariLation occurring as a

result of displacement of atoiaic sublattices or ordering of atomic or

molecular groupss which bri. 6 s about the appearance of macroscopic dipole

moment 1).

1) See footnote *n next page.
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If during the change in temperature the order factor of 'T. changes
suddenly, then a phase transition of the first kind exists, when the sys-
tem permits in a certain region the existence of two phases within which
thermodynamic functions are two-valued. Therefore, with the transition
the state of the system changes suddenly, a temperature hysteresis is ob-
served and, consequently, absorption or release of heat takes place.

In the case of a phase transition of the second kind 'A, as. well
the thermodynamic functions, changas continuously, but a sudden change is
experienced by their derivatives (thermal capacity, compressibilitv, spe-
cific inductive capacitance, etc.); however no release of latent heat
takes place.

1. Phase Transition of the Second Kind

Suppose the state of a system is described by thermodynamic poten-
tial 4,(p, 1,q) 2) which is postulated in the form of an expansion with
respect to the powers of A, i.e.

01 . .)--efp. r)+&j+ A,3+Bj3+Cj4+Di,•+.. (3.1I)

where coefficienLs a, A, B, etc. are functions of the temperature T and
of the pressure p.

Inasmuch as the states with en T=.O and n#ki are characterized
by their symmetry and since at any point with an 44-0 near the transi-
tion 4 must be minimal, an a:0 should be assumed in the entire range
of temperature variation. It is also obvious that in symmetrical phase

42\
A>O in accordance with the condition that >-) >0. Conversely, w~thZ .•2)

an A*O0, A <0 corresponds to the condition of minimum ý and C>0. Con-
sequently, at the transition point itself Ae=O. In addition to this, on
the basis of these considerations Be=O. Attention htas to be paid here to
one important circumstance: if in a certain region B(p: T) vanishes iden-

I) In the general case, lattice symmetry is symmetry of the density
function e(x, y, z) [4] which defines the probability of different po~si-
tions of particles, including el ictrons. The last is of basic signifi-
cance inasmuch as a ferroelectric transition does not necessarily have to
be imagined as a result of dis1 lacement cf ions. As Jaynes and otherF
[5, 6] have shottn, -,% p.inciple, ransition may also take place as a re-
sult of a change in the syrmmetry of the function describing the state of
iattice electrons.

2) It is assumed here that in the case of equilibrium (p, T, 1)
has a minimum in relation to the variable v. (p, T, ,T) is se ected in

such a manner that entropy S is connected with Pt by the relationship S-

= .. ('). • See Par. 3, subparagraph 2 concerning thermodynamic functions

as applied to different external condition>.
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tically because of the properties of syrmetry, then only the condition
A6 (p, T)=O remains in this case, and a line cf phase transitions cXists
in the p, T plane. If however, B(p, T) does not vanish identically, then
only izolated points of the phase transitions exist in the p, T plane with
these points being determined from the condition A0 (p, -)=0 and Bg(p, f)=O.
We will assume that the conditions B(pr)=O and D(p, i7}--- are saris'-ied.

Thus, on the basis of the above considerations the expression for
thermodywamic potential has a fo3rm of expansion with respect to the iven
powers of q

o ( P. t. 10 -. iP, ) + A ll 4 % + F %4+ + . . ( 3 . 2 )

In addition to this, on the basis of the condition or minimum (i.e.
AT<aO; 40 rA=O and AT> o>0) A(T) may be written in the form of a lin-

ear temperature function:

-. 3)

(9 is Curie point).

Next. from the condition of the minimum - 0 we will find

A__L(eA~ (3.4)

after which the change in the entropy AS and a sudden change in thermal
capacity &p with transition are determined as follows

6S S So ; - V. 10 5)

• F -- 03 .6 )

where SO nd C., are respectively entropy and thermal capacity in dis-
ordered phase. V'

Represen.ati ,ons set iorth above and fortmAlas (3.2)-(3.6) obtained
on the basis of them are made use of in Ginzburg 12] thbrmouynamic theor-
of ferroelectricity. Inasmuch as spontaneous polarization P. has prop-
erties which are characteristic of the order factor (Ps-- in disordered
phase and Ps#=O in ordered phase), the expansion of $(Ps) in chg absence
of external field E has a form similar to d?-X (fonmula 3.2) 1 .
If the field E is nonzero, then total polarization P-Ps+Pi (Pi is polar-
ization induced by the field) is present in the expression for t.

I) Later, expansion of 4) with respect to induction components U
was made use of in 17h Withl £=$ , 0s= 41TtP i.e. expansions of I(P5
Ind 4(Ds) are qtivalent. However, when ZO, expansion of 4(n) is more
correct. It can be shosvP that the total differential of polarization work
function of a dielectric is (-WOEdD, and not UdP. The relative error
when VtI-c (P) is of the order of E/P or ýE/bP and is subsrantial only
when sut:tciently far frem ()(TG>3) or is in the saturat-on region P(E).
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On the basis of this, we have:

-(3.7)

whence the characteristics of ferroelectric 1w-h which we are concerned are

determined. From the condition =0 and >-•0 we have:

UPe + 2PPS--Z. (3.6a)
S+ o.(3.8b)

In the absence of field the equation (3.8a) gives:

•,--(---. T-); T<#. (3.9a)

P •-0; 7>0. (3.9b)

Next, making use of formula (3.5) and (3.6) we will obtain the
following expression for the sudden change in thermal capacity:

(3.10)

Dielectric ccnstant will be found after substituting the definition

of P - 4& in (3.8a) with account taken of (3.9):
2%

I--+ ; r > . (3.11la)

-.*(S). r.(3. lb)

By analogy with the well known law for permeability t&(T) t~ de-
pendences e.(T) have the name Curie-Weiss law and the quantity C= is

called Curie constant.

It follows from the formulas (3.11a and b) that the slope of the

straight line I(T) when r>O is smaller by one half than when T<1.

This effect ("the law of dyad") is well confirmed by experiments. It
should be underscored that formulas (3.11a and b) are valid if t2rms of

2
the order of Pi and higher, i.e. when Pi'? 3 may be neglected in (3.9).

PifPs occurs only in weak fields and at temperatures that are not very
close to I. Nonlinear effects cannot be neglected in direct proximity
to 0 even when E are very small.
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2. Phase Transitions of the First Kind

The relationships Ps(T), Z(T) and Cp•f) obtained on the basis of

(3.8) are valid in the case of phase transitions of the second kind. How-
ever, in many cases experimental relationships contain explicit indica-
tions of transition of the first kind. The character of phase transitions
may vary according to the values and signs of the coefficients of expan-
siun of @, forming a "continuous gamut" of transitions of the second and
fi-st kind. Indeed, in accordance with theory of phase transitions of the
second kind, in the expression for § (3.7) the coefficient 0>0. If
f (0, then we can no longer limit ourselves to the fourth-order terms (the
coneition of mivimum .ý is not satisfied) and, consequently, it is neces-
sary to take the terms -p6 into account:

I- +, + 1i • (3.12)

Repeating the saine considerations as before, we will finds

J", =E I +Y., 431(3.13)

With a decrease of P the character of the transition starts to
change and in the extreme case of ý=0 we have the so-called critical
Curie point below which:

(3.14)

11P - cop,+ 20h i-T' (3.15)

and, consequently, at the cmitical Curie point thermal capacity becomes

infinite. Such a phase transitibn is also calied As-point.

The law of variation of dielectric constant when T> 9 coincides
w•t.h (3.11a). However, below Curie point

X

*, r) t<O. (3.16)

In the case under consideration f is ideatrically equal to zero

in a certain region adjacent to Curie point. ,14owever, crystals are also

possible in which , vanishes at the %;urie point itself or in its neighbor-

hoods, i.e. ý= A (T--ac). In doing so, the character o• the relation-

ships differs little from the case with zi constant coefficient 0--0 that

has been examined. i)

We will now exami.ne a case of phase transition of the first kind

< c<)).

I) In principle a case is possible when #(T)-#0 and changes sign

when frr from () i.e. in the case of finite values or OCtT). Apparently

this case is realized in ferroelectric-emiconductor SbS1 tsar T-230 0K

(Curie point in SbSI corresponds to a temperature t=293°K).
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Both phases (ordered and lisordered) are in equilibrium and, con-
sequently, 4Ps/0--'(ps=0 at the transition point (more exactly, in the

transition region since temperat,.r•, hysteresis is possib:.e) anad Ps changes
suddenly. On the basis of equality of thermodynamic potentials and condi-

tion 2i =0 we will find that at th; trarsiticn point itself P2_ 4
bpss9)2=- "4y

With T= QI' k does not vanish here. Unlike the phase transition ofthe
second kind, in this case transition occurs as a result of the circumstance
that one of the states lpsO ot 4Ps=0 becomes metastable. Therefore,

it is convenient to represent the quantity OL in transition region in tha
following form

• -- ,. + ;.iT-*).(3.17)

Making use of (3.17), we will determine &(T):

•- (3. 18a)
* " ". + e6(r- .). Latente.

(3.13b)

Thus, the jump at the transition point 2 . Latent heat of

the transition is determined in terms of entropy jump:

(3.19)

In most of ferroelectrics known at the present time the phase tran-
sition is transition of the first kind approaching critical Curie point.
In particular, temperature dependences of a, A and ? (Figure 3.1) cal-
culated in [8] from empirical daca of Meherhofer [9] indicate that pre-
cisely such a transiLion occurs near 6=1200C in BaTiO3 single crystals.

Strictly speaking, the case examined here corresponds to phase tran-
sition of the first kind approaching criticaql Curie point, i.e. o. and 1
near T=-61 are very small. If this condition is not satisfied, ie. A<0
and is large in absolute value, then we have a case of sharply marked
phase transition of the first kind. With 98<0, very large 1P corre-
spond to a typical pyroelectric differing from a ferroelectric (undergoing
transition both of the first and second kind) in that all temperature, pres-
sure and electric-field dependences are marked extremely slightly. The
reason for this "hardness" can; be easily understood if qualitative curves
't(E, P) shown in Figure 3.2 are compared.

It is obvious that with the transition from the case "a" to the case
"b" the effect of external factors (field, pressure and temerature) will
decrease owing to the build-up of the "activation barrier". At the limit,
transition is not realized at all in the case "b" and, consequently, the
temperature and nonlinear effects characteristic of ferroelectrics are
absent.
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--3 -ff -M$

Figure 3.1. Temperature dependence of
OL, P and for BaT1O3.

t

E-o EO0

Figure 3.2. The function COP for a

ferroelectric (a) and for a pyroelectric
(b).•

The character of a phase transition depends on many factors: sym-
metry, interaction of atoms making up the crystal lattice, internal
stresses, etc. Some of thera are object~s of microscopic theory; oLhers,
for example, symmetry and elastic effects (see Par. 2 Pnd 3) may be ex-
amined within the framework of phenomenological theory.

3. Range of AppLicabilf•ty of Thermodynamic
Theory and Effect of Fluctuations

Fluctuations of parameters characterizing the equilibrium of a
thermodynamic system, in particular fluctuations of the order factor Vý,

may materially increase near the phase transition points, ice. during
the rearrangement of crystal lattice. Therefore, description of a tran-
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sition on the basis of representations concerning equilibrium thermody-
namic functions cannot be justified, at least in the region directly
adjacent to Curie point. Assumption of the fluctuations of order factor
requires abandonment of examination of the spatially uniform case, and
taking spatial distribution %%(r) into acccunt in the expression for it
i.e.

4"*0+ Av + Cv4 + ?V$ + Is (Cr~a i + ... (3.20)

The term 8l(grad _%)2 is called correlation energy in Ginzburg's
works [10, 11]. This term is essential not only in the descriptions of
fluctuations but also in all of those cases when regions of appreciable

change of -%(r) exist.

The range of applicability of thermodynamic theory on the basis of
the expansion (3.20) was examined for the first time by Ginzburg [10].
His approach was developed to a certain extent by Kadonoff, et al,. [121.
The theory in [12] as applied to ferroe,:trics is also set forth in the

lectures by Blinc [131.

Substituting ' by Ps we will rewrite the expansion (3.20) for
ferroelectrics limiting ourselves as before to a unidimensional case:

T) +. M. P2-Oi, +}÷F(M)_P+ + 1h{() {tr Pp (3.21)

Here 4' is tbermodynamic potential per unit of volume
Thermodynamic potential 4v of the entire body is equal to

4=S+r)dv.
In equilibrium the quantity 4V + (Edv P must remain invari-

able relative to infinitely small changes

P Mr -- P WD "t- &P (r).

In other words it is necesaary that

to IP (;;Ip Jý 2P) -2S 3ad I'.d F E) d" - J

From this we find:

tP + 2W3-..213adt P V. (3.22)

With 81=0 the equation (3.22) changes into the equation (3.8a)
and the results set forth above follow from it.

1) in the examination given below we neglect the change in volume.
In this case it is of no difference whether free energy or thermodynamic
potential is discussed.
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We uill expand the fluctuation of the quantity P

into Fourier series

hP •r)-• eP$; P,-P..

Here the the probability of the fluctuation AP(r) is proportional
to:

t •-•(3.23)

where 64)v is the change in thermodynamic potential oving to the fluc-

tuation AP(r).

Taking into account that + AP) - 4)(P)r A +
+ algrad2 AP we will find

.,. j, (p + ap ( (p)| e, , z. (r) + a,921 1 Pt V. (3.24)

In the expression (3.24) w2 limited ourselves to terms quadratic

with respect: to q and, consequently, it is valid when q are not too

large. Substituting (3.24) into (3.23), we find:
r0-23)

Since in phase transition of the second kind d-40, then for long-

wave fluctuations Pq-->Oo, and consequently neglecting of fluctuations is

impermissible. In phasc transition of the first kind approaching critical

point the value cf VTc)#1=O but is small and accordingiy the 'on;ý-weve

fluctuations sharply increase. Thus, Landau theory is inapplicable in

direct proximity to the transition point.

Specifically, it becomes inapplicable in the temperature region

in which thf inequality

1,P W• -- P1IP We() - -1 <l' (PP.(. '•

is not satisfied. This inequality requires that fluctuations of the order

parameter at distances of the order of coherent length t be much smaller

than the paramcter itself. Therefore, to evaluate the range of applica-

bility of thermodynamic theory it is necessary co examine the correlation

of fluctuations.

We will introduce the ccrrel'tion function;

I (4r4) - JP(,) - Pj (P () - Fl.
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The functiar. f(6, r') can 1t- calculated by fill.owin t, he ti',-rem of
classical statistical ahauc3 (s.o in gretst&r detail i-a .211 from which
it follows that: a si-l variation of the field .,(rY brins a&uat c!,:Ages
in polarization P(r):

0( 27)

On rwse olher 1;aud, it follows from Landad theory (see 3.22) that

Substituting the expr!:s.oar (3.27) into (3.28), f'. nd-

1 - (3.29)

Sine 4F s arbi t rarv, uhe ioltzi-wng is necesssry to satisfy the
equP)ity (0. 29)-:

w•ere d(r - e*, is PrL-ac delta fP'•ctlon.

With T> and &o-, •-'i artd, conseque:aOy:

[2.,' fr_ _,) ,d (TO .. •rt (I,-.VI.

With T<O and D=O, P2 se 3. 30)

Solution of theýý differential equaticos `,as the fotlowir•. farz:

r' .• - r- • F " . • ( 3 . 3 0 ',

where

3 1

It i; assumed here that r - r' is rmch 1arger than A?£tice ccid-
""tant.

?t may 1A, .eeaj from 3.71) that crherc..t ienývzh I 4,,crcases as
.T -" Qi)'* t-n T-4 where, accordin4j to Lan~a% theory, V =-k. When T=•

k becomes infinite and corrlation. ho:vec fiuctuation- decreases as 1/r

(see (3.30).



It is of interest to r.ote the correspondence between the diverget.ce
of the quantity 4 and Curie-Weiss Law. Indeed,

' +4%(1 i+ Sr. d,-- +.-P. (3.32)

Taking (3,31) into account we will obtain equalities coinciding
with (3.11):

£' - + T;('"=-j roIr
This result indicates how divergence in :oherent length beings about

divergence in thermodynamic derivatives.

We will introduce the following parameter:

Then, with account taken of (3.30), (3.31) and (3.10) the condition
(3.26) gives:

From this we find the following for critical value of L aing
the range of applicabilicy of thernoaynamic theory:

k1#P (3.33)

Taking (3.6) into account, (3.33) may be written in the following
f o -at:

( 2 k(3.34)

where X= (T ):is coherent length extrapolated to T=0 and Ac is spe-

cific-heat jump.

According to Ginzburg's evaluations [10] r_•10"4 for BaTiO3. In
this work the value of 81 (thc evaluation 'of whicb naturally goes beyond

the framework cf thermodynamic theory) is determined for the aggregate of
dfpoles whose momeats change in accordance with the following formula:

With qdCl (d is the lattice constant) the energy of such a system

3 ,(3.35)
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The first term in (3.35) is volume energy and the seccnd -- corre-

lation energy. It follows frou (3.35) that 81- .S "!

Experimental verification of Landau theory was carried out by raeans
of checking Curie-Weias law. It was found [14] that it is observed for tri-

glycine sulfate, KH2?04 and upper Curie point of Saignatte's salt up to '?k

eqtal respectively to 2 • 10-4, 3 * 10-4 and 4 * 10"4. It was found that
near Curie point

with Y =1+0.02.

The reasons that Tr is so small for ferroelectrics in comparison
with the echer transitions (for ferromagnetics r_10-2) consist appar-
ently in that spontaneou. polarization is low in comparison with the maxi-
mum possible polarization, when ion sublattices are displaced by the lat-
tice constant.

It should also be roted that evaluations for and (,p2) ob-
tained in [I0, i1] coirncde in regard to the crier of value with the cor-
xesponding values dete--inined with the aid of model theories [15, i6] based
on rep-eset.tat,-n of a self-consistent effective field (see chapter 4,
Par. 1). In doing so, it provjs to be that in general the condition for
transition may be stated as a certain relationship between the energy of
fluctuations in the displacements of ions and Plectrostatic energy of fluc-
tuations of "hat.i" (i.e. j=--0) s'blattices.

The fact thdt inxoubtedly .here must be a connection bet4een fluctu-
aticns and conditioi. determining th., tr;Insition of a crystal into a rew phasi
is obvious enough since Ps fluctuates relative ta its equilibrium value
owing to the existence qf thermaL agitatic•, of atoms which leads to a "dis-
ordering" of the system. With T>9 the e.istence of f)uctuaticns of Ps
means that regions with a Ps•O appear and disappear in nonferroelectric
phase, i.e. nuclei of a phase with a lower synmetvy appear. Conversely,
with T<• regions with noreqtvilibri'im values of Ps appear and disappear.
At Lhe ph-se transition rrrct Lhese fluctuatiens are restricted precisely
by The interdction of atoms, i.e. by the prezencc of correlation energy.

Indeed, it the ternm 81 (grad P) 2 =A, then aftiur the intogration of (3.25)
FkT

we will find for fluctuatio';- a quanity Z= -- 2M which becomes in-

finite whi d.-+S.

As we sea, taking nonunif-rrmity into aacounr leads to the result

that • re.mains a finite quaztrity also when T.-e with &P- near rhe
transition point being ren smaller the higher the quantity 8l---d'8d

i.e, the larger the radius of interiaolecular interaction &d-(1-08 to 10-7)
cIr.
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Fluctuation corrections into enpressions for c(p), cp(T) and com-
pressibility k(T) were determined in [17].

4. Critical Indices in Thermodynamic Theory

Thermodynamic theory as well as model calculations; for example
Ising model, etc., predicts that the basic physical quantities character-

izing a phase transition are proportional to the quantity (T -))+ YJ
when T-0e. The numbers Y, are called critical indices. Thes, indices
predicted by thermodynamic theory for different physical quantities are
given in Table 5.

Table 5
Values of Critical Indices Predicted by Landau
Thermodynamic Theory of Phase Transitions of the

Second Kind

>0 0 0i:EtT r..*

0 <0rF 0 1

0f 0 0 o ,-o.0

C--OI9P4uT- >0 0 .' "- V*
m e'fn <0 0 -j' 0.I/,

f >0 0 - AR1 ?+ B, 4-0
P 1 <0 0 -- A,'"+S, .- 0

Key: (I) Pt: ..al quantity (4) Behavior of the quantity
(2) Coherent length (5) Value of critical index
(3) Electric field

Except thermodynamic theory and two-dimensional Ising model (see
chapter 5, part 3) none of the theories could formerly predict the exact
values of crýiial parameters L, Ot', t , 1 , y', S , V, V' and
(critical indices are not to be confused with physical quantities which
are indicated by the same letters,.

A supposition (substantiated by model considerations) was expressed
in a series of works [lI•-23] and in some of the others that the following
relationships exist between critical indices:

, -Td
--. -- .--- �'- - + -V + 20l -+ --- P (9 + 1) (3.37)
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and, this, .tine critical indices are expressed in terms of two fundamen-
tal quantities characterizing a transition (for example, V and 14). Here
d is dimensionality of space for the model selected.

The relationships (3.37) are called similarity relationships.

It may be seen from Table 5 that the relationships (3.37) are sat-
isfied for thermodynamic theory. Speaking in advance, we will note that
they are also rigorously satisfied for the two-dimensional and approxi-
mately satisfied for the three-dirdensional Ising model (see chapter 4,
par. 3).

Similarity relationships are of great importance since it turns )ut
L12] that they can provide certain information concerning the behiv~or of
a system in "critical region", i.e. in the region of wavelengLhs of Fourier
fluctuation components smaller than coherent length, i.e. iF, >I. It
should be noted that since 4-tO when T4-8, this critical region eztends
u2 to the longest waves: i.e. up to q--40.

It is, therefore, understandable that experimental verification of
the relationships is of a special interest. However, up to the present
time, only the index y, i.e. Curie-Weiss law (see subparagraph 3 of this
paragraph) has been measured with sufficient accuracy. For the remaining
physical quantities characterizing ferroelectrics there has not as yet been
made a study of thc'r temperature behavior with sufficient accuracy near
the transition point an~d, therefore, such a study remains to be one of im-
portant tasks for the future.

One of the latest achievements in the field of theoretiLal substan-
tiation of similarity relationships is a work by Migdal [24]. The results
he obtained will apparently make it possible to calculate in the future che
critical indices for sone ol the microscopic models.

Par. 2. Ferroelectri& Transition and Symmetry of Crystals

Preceding paragiaph investigated a unid;mensional ferroelec-
tric, i.e. it was assumed that spontaneous polarization is characterized
by one component Ps and, accordingly, the crystal has only one ferroelec-
tric axis.

Inasmuch as the basis of Landau theory is representation of phase
transition con.-ected with a change in the syrmnetry of the crystal for a
three-dimensional case, it is necessary to find such a general form of
notatiou tor the thermodynamic potential d which by itself would con-
tain the possibility of different changes in the synmmetry of a crystal
in phase transitions. It is obvious that as before, a measure of this
change must be the order factor q and both phases (more or le5. sym-
metrical) must satisfy the condition of minimum •.

The approach to the description of phase transition from the posi-
tions of syammetry theory consiats in that the thermodynamic potential of
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of each pha3e must be invariant in relation to those symmetry operationr
the aggregAte of which forms a symmetry group of this phase. In doing so,
transition into a less symmetrical phase is connected with a disappearance
of one or several symmetry elements, i.e. with a transition of the group
into its subgroup. Therefore, order factor must be connected with symmetry
operations irn such a manner that its changes would lead to corresponding
change. in the number of symmetry elements in the group. This method of
describing the phase transitions was developed by Landau and Lifshits
for phase trLnsitions of the second kind [25, 26] and was used later by
Indenbom [27, 28] for the analysis of possible realizations of ferroelec-
tric phase transitions in crystals belonging to different classe: of sym-
metry. In addition to this, it is possible to determine different changes
in the symmetry of a crystal in the case of a ferroelectric transition on
the basis of Curie principle which connects a change in the symmetry of a
syste during an external action upon it with the symmetry of this action.

Both of these approaches are based on group theory the basic prin-
ciples of which are given in chapter 6. A bibliographic reference on lit-
erature devoted to the application of group theory in physics is also giventhere.

1. Change in the Symmetry of Crystals in
Phase Transitions of the Second Kind

In a phase transition of the second kind the order factor (for
example, spontaneous polarization) continuously tends to zero during the
approach to Curie point and vanis'.-s at the transition point. Howeay ,
the symmetry of a crystal changcs at the transition point discontinuously
since : is possible to show at every moment to which one of the two phases
the body is related. At the transition point the states of both phases
coincide and, therefore, symmetry must contain symmetry elements of both
phases.

In the case of phase transitions of the first kind the order para-
meter changes discontinuously. Two different phases are in a state of
equilibrium at the transition point. Therefore, on the basis of considera-
tions similar to those set forth .auve no restrictions can be imposed on
the change in symmetry in the .ase of a phase transition of the first kind.
Of course, it is possible to attempt to extend such an examination to the
phase transitions of the first kind that are clote to the critical point
but it should be ramemb;.red that such attempts have no rigorous substan-
tiation.

A method, less general but one quickly leading to the accomplishment
of the aim, is usually employed in the examination of phase transitions
of the first kind. This method consists in that in the expression for
only those combinations of coefficients at A are kept which leave
invariant in relation to the operations of pre-set symmetry of the respective
phases. In practice this was precisely what was done by the authors of
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1a,,tr of the works devoted to thermodynamic theory, for example in the deter-
'i-. :ion of 4, for the cubic, tetragonal, orthorhombic and rhombohedral

pzases of BaTiO3. This method can be connected wizh Curie princinle (see
subparagraph 3).

Two important inferences may be drawn from the foregoing for phase
transitions of' the second kind, stating them for convenience in terms of
group theory (these inferences will be laid down as a basis for she further
exposition):

i) symmetry group G of one of the phases is a subgroup of symmetry
group Go of the other phase;

2) changes in the symmetry of a crystal correspond to one of the
irreducible representations of a highly symmetrical phase.

We will explain the sense of the proposition 2. Suppose ro(x, y, z)
is a density function defining the distribution of prnbabilities of differ-
ent positions of atcms in a crystal. The symmetry of a crystal lattice is
an assemblage (group) of transformations of coordinates in relation tc
which *o(xl y, z) is invariant. If a phase transition of the second
kind takes place and, consequently, the state of the crystal changes con-
tinuously, then function p(x, y, z) of the new phase may be represented
in the following form:

The function Sf0  may be expandtd with respect to the base func-
tions of irreducible representations of the group r0: 1)

Ito. (3.38'

Here u indicates the number of irreducible representation and i
-- me number of the line of the n-th irreducible representation.

The term connected with that base function which is invariant in
relation to all transformations of the GO group and ccn!eiuently realizes
a unit irreducible representacion, can be simply included in fC by re-
writing the expansion (3.38) in the following form:

(3,39)

The prime shows here that the term corresponding to the unit re-
presentation is omitted.

1) The proof that base functions of irreducible representations
form a complete set of functions Zs contained Jn any one of the uourses
on group theory listed in chapter 6.
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[ Proposition 2 means that two different and two independent phase
transitions :aay correspond to two different irreducible representations.

In accordance with this, we will henceforth omit the index n
R bearing in mind that the irreducible representation which is connected

with the phase transition under consideration was left in (3.39).

I a phase transition of the second kind is examired, then -0
when T-.Q and, consequently, all values of ci must also tend to zero when
T-*6 Therefore, we can expand thermodynamic pot2ntial 4ý(p, T, ci) with
respect to the powers of ci near Curie point.

We will introduce the following notation:

S44-- V4. 2 ,1- 1. (3.40)

It followS from (3.40) that:

PI-V.(3.41)

Taking (3.40) and (3.41) into account, we can write the expansion
for thermodynamic potential in the following form:

0-0#(P, 7)+1fA (p. r,+t5p 0~~ z)'.J i.rf~1 ~ (.42)

Here f ) io an invariart of the k-th order made up of quantities
S(7). In the sum over 4 there a.n as many terms as there are fourth-order
invariants. In writing (3.42) it was taken into account that there exists only

Sone second-order invariant equal in accordance with (3.41) to

unity. Also taken into account was theorem proven in [29] according to ich
there cannot be more than one third-order invariant for irroducible re-
pres%?ntations of the space groups.

This proposition which was put forth earlier as a hypthesis in the
Smonograph [4] is very essential for thermodyna-mis theory. Indeed if
third-order terms are abseat in tie e:•ansion (3.42), then condition for
the transition has the form A(pD)--O a-d a uhole line of phase transition3
exists in the pT plane. Uf a third-order term is present (see [4], p 526),
conditions 3(po0--O are addea and, consequently, if one third-order In-
variant exists, then therc are isolated phase transition points in the
pT plane, which have not ben observad up to the present time. If more
than o-4 third-or,.4er invariant existed, then worte than two equations would
result for th* determInatIon of two quantities p and Q, which has no
pbyoical sense, Tberetorea we will limit ourselves to the case when a
lin* of phase transitiors exists in the pT plane and third-order terms are
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absent owing to symmetry. In this case the expansion (3.42) may be re-
written in the following form:

*--c+ A (p. F)II,+P4 C.(p. T) l."' oo. (3.43)

Inasmuch as the second-order term does not Lontain the quantities Yi'
these quantities are determined from the condition ýf minimalnesý of the
fourth-order terms, i.e. of the coefficient with ' in (3.43) 1). If

the minimal value of this coefficient is indicated by c(p, T), we will ob-
tain the expansion (3.7). Then the parameter A can be determined from
the condition of minimum 4 (as in 3.8 and 3.9) and, consequently,

-- .(3.44)

The functions Yi found in this manner wiLl define the change in
symmetry during a phase transition.

Up to the present time we lxmited ourselves to a case of a homoge-
neous crystal. in order to examine a heterogeneous, for example strat-
ified crystal, itigi necessary to taken into account that 4P depends not

only on c.n) but uaso on their derivatives with respect to coordinates.

Therefore, near the Lransition point, it is necessay to take into ac-
count in the expansion of thermodynamic potential the units of vol-
ume not only of the power of ci but also their derivativ7es with respect
to x, y and z. in order that 4) be minimal without stratification into

regions characterized by different values of q var-ing with the coor-
dinate (as this occurs, for example, during fluctuations), it is neces-

sary to require that terms containing space derivatives -a or deriva-
tires ck•-T be identically equal to zero in f. In doing so, the thermo-

dynamic potential ofthe entire crystal outbe minimal, i~e. dv
v

(minimum 4 related to a unit of volume is determined in the case of a
homogeneous ,crystal). It is, therefore, clear that after integration the

quantity a'ci, i.e. total derivatives, leads to the appearance of a con-
atant in the expression for •,which is not essential in the Ieter-

minimum The same also applies to symmetrical com-

fortio oft ztrhe minmu in te.hroc3mbinations

and, consequently, the following antisymmetrical combinations are essen-

1) Ouf course, in practice it is not possible to determine the
quantities Vi from the condition of minimalness of the fourth-order
term in (3.43) since knowledge of the coefficients C,(p, T) for differ-
ent irreducible representations is necessary for such a procedure.
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tial

Quantities proportional to (4x)2, i.e. those which 14ad to the

appearance of correlation energy 3 1 (grad 02, must be essentially posi-

tive. However, this does not impose any limitations on ci and, conse-

quently on yjq[, since similar quadratic forms exist for cj, which art
transfoized in accordance with any one of irreducible representations
(see [4, 30]). Therefore, henceft.eth we will be concerned first of all

with the presence in 1 of invariants which contain the following anti-

symmetrical combinations of derivatives

Thus, if a case is examined when we have a homogeneous crystal it

is necessary to require an absence of invariants corresponding Lo expres-
sions of the following type

At', 03.45)

It follows from the foregoing that the range of possible changes
in symmetry in phase transitions of zhe second kind may be limited by

two requirements, namel7: irreducible representation with which a phase
transition is connected: a) must not allow the existence of a third-order
invariant, b) must not allow invariants made up of quantities of the form
(3.45). Irreducible representations which satisfy the conditions a) and
b) are called active representations.

It can be shown that out of an infinite number of irreducible re-

presentations of every space g-oup only a few prove to be active, and
that they can be found by making use of the condition; a) and b) [26, 30].

Investigations in this direction have been carried out for ferro-

electrics in the works [27, 28, 313 and in other works.

It is of interest to note that in a number of cace* a conclusion

coucerning the character of a phase transttion can be drawn on the basis

of theory set forth above. Indeed, if a phase transition is connected

with an active irreducible represertatioa, it can be both of the first

and second kind but if a transition is connected with an "inactive" ir-

reducible representation, it must be only a trensition of the first kind.

Making use of the condition a) and b) LAdau [4] proved a theorem

acvording to which phase transition of the second kind can exist 'or

every change in the structure connected with a dzcrease in the nw~ber of

symretry elements by one half, and exprpssed a supposition (as yet un-

proven) according to which phase transitions of the second kind cannot
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exist for changes in the structure, connected with a decrease in the num-
ber of symmetry transformations by 3 times.

An example of phase transitions with which the number of syvmetry
elements changes byhalf maybe provided by KH2 PO4, triglycine sulfate,
Seignette's salt, etc.

But in a ferroelectric (NH3 CH3 )Al(S04), for example, t'e number of
symmetry elements in a space group of low-symmetrical phase is not equal
to one half of the elements in a space group of paraelectric (highly
synuetrical) phase (a group of paraelectric phase T4 (p231 of ferroelectric
phase C2 (p2)). Transition is connected winh a three-dimensional irreduc-
ible representation of F. It can be shown that one thrrd-order invarrant
exists foz this irreducible tepresentation and, consequently, ferroelectric
transition in this crystal is unquestionably of the first kind.

2. Ferroele~tric Transitions in
Crystals of Different Symmetry

Concrete expressions for t(P) as applied to crystals belonging
to different symmetry classes can be examined with the aid of formula
(3.42). As before, we will assume an n=jPsj. Now is absolute
value of the three-dimensional vector Ps. Unlike this equality, a dimen-
sionless normalized quantity A is in (.42). However, this should not

cause difficulties since the normalizing factor can be intro-
(\ sl ma

duced into (3.42), i.e. into the respective coefficients A, B and C4
(IPsimax is maximum value of polarization in the least symnetrical phase

and n is exponent of the corresponding term in cý). On the basis of
Lhe foregoing we will rewrite (3.42) in the following form:

C(TP,, P.. PIa) -) o (T) +-,IP.,P.* + -,J.P.'P • + (3.46)
"P" aa•e'..•,/P', + ",..P,.P.jPPjp- + T41•...,P,,P,.P.

Summing is done ever twice-repeating indices. In this expression
the quantities Psi are transformed in accordance with irreducible repre-
sentations of the point group during the action of symmetry operations of
the crystal class in question.

Thus, for cubic crystals (class T and 0) Px Py and PsZ are
transformed in accordance with a three-dimensional irreducible representa-
tion, and in the case of the so-called uniaxial crystals, for example for
the cla3s C4h, Psx and Psy they lie in the symmetry plane and are trans-
fo•med in accordance with two-dimensional representation. Only one com-
ponent of spontaneous polarization exists in biaxial crystals (for example,
Seisnette's salt, class D2). In transitions of the second kind the fifth-
and sixth-order terms do not have to be taken into account in (3.46). In

addition to this, it is necosiary to require absence of third-order invar-
tants since otherwise ( has no minimum when T=$ (isolated transition

.• - 55 -



points are not examined). Next, inasmuch as a homogeneous single-domain
crystal without stratification is examined an absence of terms of the

b i••P 81 - bpsi
type Ps M - P sj--xk should be assumed regardless of the character

of the transition.

The possibility of existence in the expansion of <(Ps) of third-
order invariants and of invariants which contain derivatives with respect
to coordinates was determined for crystals of differe.1 t symmetry classes
in [27, 28]. It was found that in principle the classes D2(222), D2d,

S4 (4) and T(23) allow the invariant PsxPsvPsz. In the class D2 (a biaxial
crystal) the third-crder term is not forbldden in 0 by symmetry; however,
it does not play any role anyway since the transition is determined by only
one component of the vector Ps (for example, tile transition D2h_C2 v in
SbSI and D2d4C2v in KH2PO4).

In the class-D24 crystals, upon the appearance of polarization in
the base plane, crystal symmetry also requires the appearance of secondary
polarization al;ng the second-order principal axis. Similar effects should
be observed in the class-S4 crystals (i.e. those having an axis of rotary-
reflection of the fourth order) in which invariants of the type PsxPsyPsz
and Psz(p~x - p2 ) are allowed in principle.

s SY

Invariant PsyPsyPsz iU possible in the classes T and Td (cubic
crystals having no center of symmetry), and therefore phase transitions
of the first kind may take place in these crystals. In principle, crys-
tals of the class D3' D3 h and Cph allow third-order invariants of the type
Ps(3P. 2  - p2 x) or Psy(3P2x - P ). Therefore, if ferroelectrics of this
type esst, a phase transition of the second kind is possible in them
only if spontaneous polarization appears along the third-order principal
axis, i.e. when Psx=P~y=O.

SInvariants requiing a stratification of the crystal may have the
following form: a) - s and b) Ps rot P. (a more general

case). In principle the invariant Psxz - is allowed by the

classes D3 , D4 and D6 and, therefore, phase transitions of the second kind
are possible in them only when Pax=Pa =0; Psz=A=O, i.e. in the case of
polarization oriented along the princ pal axis. The invariant PS rot Ps
is allowed by the classes T and 0 (noncentrosymmetrical cubic crystals)
and, therefore, ferroelectric transitions of the second kind are forbidden
in these crystals. Thus, all crystals having a horizonta' symmetry plane,
i.e. crystals of the class C4h, D4hr D3h, C3h, D6h, T6 and Oh do not con-

tain in (PP) odd-order invariants and invariants with antisynmmetrical

combinations o In all of the remaining cases, phase transitions of

the first kind having a number of special characteristics owing to the
presence of odd-order invariants may be observed in uniaxial and cubic
crystals.
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On the basis of knowledge of crystal symmetry in the region Ps=0,
the results obtained make it possible to "design" thermodynamic potential

*(P) for different ferroelectrics. In doing so, it should be born in
mind that the expression 4(P) in ferroetectric phases, which results
on the basis of expansion of 4W() of the crystal in the initiai para-
electric phase is sufficiently correct on the condition that electrostric-
tive distortions of the lattice, i.e. spontaneous deform~ations when P*OW
are small. Strictly speaking this approximation is not altcays valid and,
therefore, in a number of cases (for examplep in the region of low-temper-
ature transitions in BaTi03) it rather bears the character of an illustra-
tion since the form of phase transition and even the very condition for
its realization may considerably depend on that portion of ( which is
brought about by electroelastic effects. (Effect of deformations, mechan-
ical stresses and electrostriction is examined in paragrph 3 of this
chapter). Analysis of expressions for 4 without taking electromechanical
properties of ferroelectrics into account is, nevertheless, not only a
necessary stage in the 'movement' toward a more complete and exact thermo-
dynamical description of a ferroelectric transition but it also makes it
possible to obtain formulas for a direct comparison of results of differ-
ent microscopic theories of ferroelectrics, in which electromechanical
effects are not, as a rule, taken into consideration.

Wv will examine the expansion of 4(P) for some of the crystals-

Seinette's Salt

The region of existence of spontaneous polarization is bounded by
two Curie points: -18 and +24oC. Iithin this region the crystal belongs
to the monoclinic symmetry class C2- In nonferroelectric region the crys-
tal belongs to the rhombic class D2 and is a piezoelectric (the center of
symmetry is absent). In accordance with the foregoing the thermodynamic
potential has the tollowing form:

.+,*P!* + P+T + (3.47)

Apparently Seignette's salt undergoes phase transition of the sec-
ond kind at both Curie points [32]. It does not appear possible to ex-
plain within the framework of the expression (3.31) the existence of a

second, i.e. low-temperature Curie pdint, in other words a twofold rxansition
% through zero. According to representations of a number of authors the

second Curie point is brought about by stt jng piezoeffect and electro-

striction [33, 34] which are not taken into account iii (3.47). Another

explanation of anomalous behavior of P. is based on microscopic represen-

tations concerning the nature of spontaneous polarization in Seignette's

salt (see [5, 33-35] and par. 3, chapter 4).

Triglycine Sulfate (TGS)

In nonferroeleutric region TGS belongs to centrosyrmctrical class

C2h (symmetry elements -- second-order rotary axis C2 and horizontal sym-

- 57 -



metry plane eh). Belo-r Curic poiot (400r,) the crystal hat a lower sym-
metry group C2 . Secrnd-order mon"'c:inlc axis is rhe terroelqctric axis.

ConsequeT.tlyy third-order invariants and terms of tne type rmust be
al k

absent in the expansion. Thu:, pha',• transitLicn ir triglycine sulfate,
as well as in ferroelectrics Lsomorphous to it -- triglycine selenate and
triglyr.ine fluozob~kinate -- is des•.ibed by thermodynamic potential of
the type (3.47) which does nut forbid phase trans'tion oi the second kind.
According to experimental dats [36, 371. ail of these crystal modifica-
tions irdeed urderge pnase transiPi Or of tha second kind.

Potaiuzu Dihydrogen Phosphate M72PO4

KA2PO4 and cwpounds isumorphous to it, for example KD2 PO4 and

KH2As04, belong in nonferroelectric phase to the point group D2 *. After
the transition of the second kind approaching critical point (0=1230 K)

E2?O4 has s~-muetry C2 v. Inasmuch as polar.zation appears along the prin-
cipal axis ý2, the expansion oi 4 is descriL.ed by a formitla onalogous to
(3,47) (notation of spontanetous polarization changes to Psz).

Alum (a fa&ily of dotble halts vith a general forrula +MM+ (RO4 )

12 120 4here 141+ is a rmonovalent metal. M3+ -- a trivalent metal R--S,

Se or Te

Some of the altms, i, particular =mnsiium or methyl ammonium alum,
belong in nonferroelectric ohase to the poi•t group T(23). According to
other data they belong to aonpolar phase C3v L371. If cubic sy.mmetry T
exists, then, ss noted earlier, existence of the third- and, consequently,
fiftb-order invariants is poesible in the expansion of 4, with the
phaze transitionis of the second kind being excluded:

+ -1, + + j'., + h, (I %P'. + P.~P., + PU9)+

L .1 + P141 + Ps)+ x~P.l+

+ k.+ I,,4 +BJ+ +,~~ I.,r (Ph.P AL-

(3.48)

According to tce experiment, spintaneuus polarization of aluminum
methyl asmonium alum in the phase transition region- (OIc177°K changes
dincontinuourly clearly &xhib4.ting the chav'aceristics of phase transi-
tinm of the first ktnd. If hove-er, a less symmetrical configuration C3.
is realized above the trý-nsttion point, then an expansion with respect
to even powers, that is of the type (3.47), takes plUce. As it has
already been found, with r- certain :elationship between ltw coefficients
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(PO) this configuration also leeds to L phase transition of the first h-Ind.

Barium Titanate

At a Curie temperature of 120 0C above the transition point the crys-
tals of BaTiO3 and in general the entire group of perovpkitc.s, belong t4,
the cubic centrosymmqtrical class Oh. Below e.~1200C, the crystal of
BaTiO3 loses the horizontal plane and the center of symmetry aE a result
of phase transition of the first kind and changes to polar *hase which bN
tetragcnal symmetry C4v. At T<50C the ý-_ystal har orthorhombic symmetry
C2v and at TK-900 C -- rhombohedral symmetry C3 v.

Thus, taking the conclusions of the preceding section into accoint,
we have an expansion in which odd-order invariants and the term P., rc•t Ps
are absent:

(o)+a " " ")+ + 41+ h jP".1, ,P, -•:Pj•; + P'1,el, + -L is G" + J",, -4. P,ý,)-

e, e,,+ •.)1+ .,,/•,e..(3.49)

Conditions of the minimum thermodynamic potential A =0, - _0
FSX psy

and A& =0 give the following solutions for all four phases.bpsz

1. Cubic phase Oh PsxWPs•P s z=0;

2. Tecragcmal phase C4v Ps.Psy-• Ps40;

3. Orthorhombic phase C2v Psx-1O Psy=Psz 4 O= 0;

4. Rhombohedrai phase C3 v ?sie=Ps7r=Psz40.

Stability conditions for each phase will be found as a result of sat-
isfying the require.ents in regard to the determinants made up of the sec-
ond derivatives of * (see [38, 391), i.e.

*29 X# t~E

I • •

= If these inequalities are analyzed with account taken of the values
of in the respertive phases, then relationships can be cbeained which
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Fi~cr 3.3 Rela~i~nship of ý?2 to T

Pigre 3...

(in relative units).v2
"Z-si 1p14*10 microcoulombs/cm2;

t__~~ T =18C 1=1280C.

make it possible to determine whicli one of the phases is advantageous from
the standpoint of energy in different temperature ranges. The relationship
p2 (T) expressed 'n relative units aod calculated by Devonshire [3] is
s~own in Figure 3.3. In particular, $-, follows from this figure that in
the transition from phase C4v !o C".. the value of PsZ decreases approxi-i 1
mately as : and in the transition from phase C2v to C3 v -- as i.e.

turns, as it wcre, of the vector Ps(Ps(000)-4Ps(tlO.Ps(1ll) take place.

All transitions in BaTiO3 art transitions of the first kind. How-
ever, a big difference exists between the character of the transitiuns
Oh-fC4v on one hand, and transitions C4v-+C2v and C2v-*C3v -- on the other.

Tn the former case, symwaetry space group Oh passes into its subgroup in the
transition region as a result of disappearance of the center ; symmetry
and horixontal refleczion plane. As is known, in doing so, a phase transi-
tion approaching the critical point takes place and, consequently, even if

the a(vficlents c(n) in the expansion (3.29) do not vanish near the transi-
tion, they may be very small. In the case of low-temperature phase transi-
tions none of the less symaetrical point groups C3v, C2 v and C4v Of the two
neighbo-£ng phases is a subgroup of a more symmetrical phase although each
one of them is a subgroup of the highly symmetrizal point groap 0 h,. In
this case, phase transitions of the first kind take place and the coeffi-
•lents c(l) -pay z comparatively large,

3. Curie Principle Qnd Tables of Possible

Verroelectric Vra-.itions

As already noted jibove, theory of phase transitions of the second
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kind •raposca only certain restrictions o~i the~ claas of pogsible .zhingcs iii
symm-ýtzy withowi predIcting exzctly precis'~ly what charge in ayrmmetry from
this class will take place with a phase transition. But strictly speaking.
-hermodynaxaic theory dors nut impasc in general any restrictions on changes
in symmetry in the case of phase transitio~ns of the first. kind,

However. possible changes in sywimetry can be predicted fcr ferra-
electrics in a larga number of case3 important ftom prictical standpoint

common with the zam~et~ry of the action.

The following rul~e for L.he detrxmina..ion of Fussible fer-:oelectric
transnit-tons rollows from~ Curie princi~p1.e Gyczuetry grouzp of a Cr-rrot-lec-
tr'c phase must cortair al syrmmetry elements comon for the synmmetry
group ot po~aria.-t-!on vector (or, which is the 3ame, of any other vect(,r).
An additional rertrictior. is imposed on this rile: it- is :-ons~dered that
ina the case of iuccessive fecroeiectric phase tran~titions in a cry,'atal the
symmetry of each ferroclectric phase is conrnQted not with thc. syammetry of
the nieighboring phase but WiLh the syrmmetry of paraelectric phase [42, 43]
In other words, it 17' assumed that the structures of all ferroelectric
phas~es represent a dibstorted structure of the init4 .al paratliectric phaec
and that a cha~nge in the syammetry for each one~ of them t~akes plsce inde-
p;vndently of tL~e other. In addition to possibl.e syumetry of feraroelectriz
stri-ctures such an &pproach makes it possible to also shou the numb~er of
equivalant direc~tions of spontaneous polarization N:

M- N. 3.51)~

where in anid Nc are the orders of the groiaps i~f paraelectric and ferro-
electric phases respectively.

The numbers and possible changes in equivalent dira.ctiona of P in
forroelectris transiriois nbtained with the Aid of Curie pr-,nciph.L are
given In Table 6.

We will examine some of the concrete examplds.

For RaTiO3 tlhe point Broup of paraelectric phase !s Oh (m3m)f the
point geoup of tctragor.3l phase -- C4,, (4az), the Point proup of rhrmbic,
phase -- C,,, (rmm2), the poiriL group of triclinic (rhosabohedral) phas,-i --

C3v (3r-' "he numbers N of the equivalient possible directions zf polar-
izatio', art e-7i to 6, 8 and 12 rcipectivelY. FOC K42PO4 4he point group
of psrizie, i.*- ase is D~2d (T2m) Anid of the feisroelectric phase --
0 2h (rm.2'ý &b abr W-2. For triglycirnc suifate the g~oup -3f paraelec-
tric, phase A (2/rn) and of the farxoelectric phase 4~C (2. N

1) Spontaneous polarization is not the on~y transitior. parameter,
for exumple in boracite 114?], and $'.n general is not a transition pai~a-
meter in the formation of superstruciure. YHewater, in thýý former cae s& he
method set forth below -%y be us d after also t&kirag the %)he transition
parameters int~t account (see r171 for isorst dctallsý.
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Table 6

Possible Changes in Syzmietry in Ferroelectric
Transitinns
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Table 6 (continued)

Wi (i2) Czuaeiplm uscp"e~~xc~ 4sm
FMMa K I --- I I __ _ _ __ _ _ __ _ _

WWWMN rprjL.3.uWAMIPW 8 WCM OOM~m~UZAM1 U&SO&OWat P

b) 6 ) xEaI(AO vpurouaxzuol laurOUNK
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(1010) 2C) 1(5 2(. 1 I (ETs IV(T
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N-.~1 N 6 NMB N- N.-
<Mh1 FS I(5 (if) I(5 L(E

SN2 12 N T6 N-6 5,C N3
1 IS)5) 1(T)
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Table 6 (contrfnued)

(i) (2) a.ecs

Am me to I (.A (.. CS

U" Isif~baU~L DW pMupS5I P

(7)
d) r) Kzacciu powexiecuo, mouscanuaxoA a ?pUmnexxoI

iw~i( -Z -I N-- Nm2
<rA'A> ~~mC. a,(Cbr). 2(C)

N<J~) 2~C~ rn(C 1  2 (CS) NWO N-1 N1.2

tiZ :r). ;L 15_ N- I N- N-2 -in

2% 1Ll T I IE) 12

Key: (1) Miller indices or the (4) Classes of cubic syngony
direction of P (5) Classes of trigonal syngony

(2) SMilnetry of paraeleci (6) Classes of tetragonal syngony

tric phase (7) Classes of rhombic, monoclinic
(3) Point groups of ferrc- and triclinic syngony

etectrics and the num-
bers of possible direc-
tions of P

It is easy to see that these ferroelectric transitions (as well as an over-
whelming majority of other transitions) are indeed predicted in Table 6.

All possibilities following from Curie principle are e'--ined in
rhis table but nothing is said as to precisely what transitions .ill be
actually realized. Nevertbhtess, the results given there may prove to be
useful, for example, in searching for new ferroelectrics. A major success
of this "symmetry" method is, in particular, the prediction of ferroelec-
tric properties in the crystals of NaNO 2 [44].

Par. 3. Electroelastic Effects in Ferroelectrics

Rearra.gement of crystal lattice taking place in the region of a
ferroelectric transition leads to a substantial increase of the sensitiv-
ity cf a crystal to a change in external conditions, in par: icular tG the
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application of external electric fields and mechanical stresses. The "pI,-
antness" of a ferroelectric in regard to the action of an electric field
is described by the relationship Ei=ZEi which was examined ip paragraph 2.
However, this examination bore a one-sided character.

It may be expected that "pliantness" in regard to mechanical actions,
i.e. to the relationship dk=CktUi (where 6 k is mechanical stress and ut
is defori~tion) and also the "cross" effects, for example, the relationships

Pi=dik0 k will also exhibit marked anomalies in the transition region. Th-t

vill be reflec.ed in appropriate manner on the behavior of elastic constant

ck&(T) and the piezomodulus dik(T). At the same time, it is clear that
electrical and mechanical properties of a ferroelectric must ba Intercon-
nected.

Thus, it is necessary to examine ferroelectric traa:ition with the
electromechanical properties of the crystals taken in acc)unt. It is ex-
pedient to divide this examination into two parts:

9) axamination of electroeiastic effects appearing near the phase
transitiot, points in a free ferroelectric in the absence if external fields
and mechanical forces, in other words, determination of the properties of
a ferroelectric with spontaneou deformation taken into account;

2) investigation of electromechanical properties of a ferroelectric
in the presence of various electrical and mechanical external actions.

1. Spontaneous Deformation

In the preceding paragraphs it was assumed that the state of a fcr.,o-
electric is determined by temperature, pressure and behavior of the order
factor q appearing in a less symmetrical phase. The quantity -q is di-

rectly connected with the components of spontaneous-polarization vector
(Psi--.i) the aggregate of which forms the basis of irreducible represen-
tation of the crystal's symetry group in nonferroelectric phase. However,

the state of the system may be determined not only by the aggregate of the
variables nYci but also by the set of other variables (usk^-J.;,') with
the quantity 4 appearing like 'A, in a less symetrical phase. Such a sit-
uation occurs iii a free (nonfixed) ferroelectrlc crystal in which, in addi-
to spontaneous polarization Psi, spontaneous deformation usk also appears
in ordered state. Strictly speaking, now it is necessary to define anew
the thermodynamic functicns which describe transition when there are two

parameters appearing in nonsymmetrical phase. It is also obvious that the
complexity of this definition in the presence of even two parameters greatly

increases, especially if tk is a tensor. Irdeed) if 1 is represented

in the form of a series for the entire aggregate of the parameters *qci
and •k2 then it is necessary ro take into account not only terms of the

type (.ci)n and (1Vk)m but also the cross terms (nci)n (tk)m (n and m

are integers). If these new terms are sufficiently large wi~h rispect to

the order oi magnitude, theu conclusions drawn earlier concerning zhe strxic-

ture of 4) (for example, concerning the effect of odd-power invariants on
the character of the transition) should be substantiated anew.
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In the exawi1nation o" a "unidimensional" approximation of phase tran-
sitions in the prescrvce of several quantities appearing in *idered phase it
was assumed in the work [17] that their role is dissimilar, namely, some
are transition parareters while, the others are of a secondary significance.
For exa.zple, in a ferrnelectric transition the quantity -r 5-Ps is a trans!-
t'on parameter since iL is the cause of it whercas the quantity l.%uk can-
not be a transition parameter isasmuch as it is a result of the existence
of . Another case is also possible when "gLPs is no longer a tran-
sition parameter, for example, if transitikn is connected with a change in the
number cf atoms in. a unit cell, i.e. upon the appearance of a superstructure.
An example 'Z such a crystal is amnonium fluoroberyllate [37, 45] in which
parameters of !he cell are equal to aT<oC 2a; bTf<rcb and cTce=c. The
appearance of this superstructure is accompanied by the appearance of spon-
taneous polarization. Another" ei-'mple is a-t transition in quartz. Here
'charac:terizes the magnitude of displacement of several sublarrices rel-
ative to each other without the appearanc, of spontaneous polarization.

According to [17], in ferroelectrics the parameter, i.e. the cause
of transition, is spontaneous polarizatioa Ps-rstY whereas spontaneous de-
fon-ation merely accompanies polarization. The authors substantiate this
statem•n=t by the following considerations! if a cubic crystal, fo. example
BaTiO3, is polarized, then under certain conditions a displacement deforma-
tion may be obtained whereas the displacement deformation itaelf is unable
tc lead in any manner to the appearance of polarization in a cubic crystal.
The proof shown can hardly be considered exhaustive and, in our opinion,
the question of whether spontanecus deforcation may be a second transition
parameter remains open. Indeed, interconnection between displacement de-
formation and polarization in phase transition in BaTiO3 may be regarded
as applied to Lhe phases corresponding to the symmetry C4,VC2V and
C2vZ-C3v. In this case, displacement in the respective pl.aes leads to
the appearance of new polarization components. As regards the symmetry
region Oh-4C4v, not too far from the transition point the respective
elongatien and compression deformations (see subparagraph 3) displace
the transition into the region of higher temperatures and, consequently,
the state with Ps=O becomes unstable.

Division of parameters characterizing the internal steady state of
the system into cause and effect is apparently conditional. When discus-
sion concerns the action on the system from without this division is quite
obvious: application of external fie' ' and external forces is undoubtedly
the cause of the appearance of induc. • polarization and deformation. How-
ever, relationships between different internal parameters, for example
spontaneous polarization and spontaneous deformationare not so clear.
It may be considered that the aggregate of the variables Psi .•1Vci and
Usk • K forns a mulridimensional space the points of which determine
the thermodynamic state of the system. In this case, phase transition of
the second ktnd will appear if the coordinates pass through zero at some
of the quadratic terms of the expansion of (b. However, if the multidi-
mensionality of the parameters Ps and Usk is taken into account, transi-
tions of this type have a complex character and have not as yet been in-
vestigated in detail. Therefore, henceforth it is postulated but not
stated ",at Ps is the only transition parameter and spontaneous deforma-
tion appears as a result of polarization of the crystal.
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Inasmuch as the system must now be minimal in regard to Psi and usk,

the conclusions drawn in the preceding paragraph regarding the structure of

thermodyn&tic functions describing a transition may be retained only on the

condition that electromechanical effects produce little change in the sym-
metry of the crystal.

We will define now the expression for thermodynamic potential with

spontaneous deformation taken into account. Suppose transition parameter

is a three-dimensional spontaneous-polarizution vector Psi-5 %ci (i=l, 2, 3).

Spontaneous deformation whose components are represented by a row matrix
Usk q*k (k=-l, 2, ... , 6) appears in the ordered phase. In addition to

invarlants containing different powers of ftci), powers of (1k) and

cross terms of the type v(ct~k); fl 2 j(cicJ'k); jkj( iVOJ; ft 4(cick A),)
etc. appear now in the expansion of thermodynamic potential.

We will dwell on these terms in a greater detail. The quantities

and Ne2 are allowed if the substance in disordered phase has no cen-

ter of symmetry and, consequently, 2 has piezoelectric properties (for example,
Seignette's salt). Invariants %;k exist for any crystal symmetry with
the parameter 1Ck being transformed as cicj if it is a second-rank tensor.
It follows f-om this that invariants evni are transformed as a third-rank

tensor and invariants ~t•2 -- as a fourth-rank tensor. We will note that

the terms gn.122 and • 2 •2 have a higher order than the remaining quanti-
ties and taking tHem into account is necessary only when determining non-

linear dependence of deformation on the field (see par. 3, subparagraph 4).

Takinb the foregoing into account and passing on from the variables
cltl4 and -Via to Psi and Usk we will find the following expression for
free energy Ap:

A1 (r. P.g. s*)-- A (F) + ( jT) piPej + -vjPaP.jPa + Pq,.P•P.jP.aP.. +

+ 1j1WP1P jP'1PMP• + 7#j..,P.4PjP.P.P..P., + Ca,•,u., +

+ ksdv,,,k + q&,P.;k + .... (3. 32)

where i, j, t, m, n, p=ls 2, 3; k, r=l, 2, ... , 6.

As usually, summation is carried out over twice-repeated indices.

Determination of the structure of coefficients of the expansion (3.52) as

applied to the symmetry of a ferioelectric in disordered phase is based

on the following considerations. It is assumed that spontaneous deform-

tion Usk brings about a slight distortion of the crystal structure af

transition .- to ferroelectric phase and may be regarded as a small dis-

turbance Ap(Ps). Properly speaking, this assumption is already contained

in (3.52) inasmuch as in writing it, terms of higher order than U2  and

usP2i were neglected. If this assumption is sufficiently correct (in the

end its validity can b- verified experimentally), then the rules for the

selection of coefficients examined in paragraph 2, subparagraph 2 may be

retained for Apl(Ps5 =CijPsiPsj + i Ps P P +.,,., and consequently it
ij i. si
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remains tc determine the structure of

At, (PA90h) - ~~ + ha~pff"k + kjPph

Coefficients Ckr have dimensionality 4nd physical sense of elastic
constants of the crystal and their aggregate is represented by a matrix
whose structur:e is dete-mined by crystal symmetry in nonferroelectric
phase. The quantities hik have the sense of piezoelectric constants, and
qijk -- the sense of coefficients of electrostriction. The aggregates of
these const.nts are also defined by the respective matrices [46, 47] for
a highly sy-mmetrical phase.

We will ex.-mine expressions for Ap(Ps, Usk) as applied to barium
titauate and Seignette's salt.

Barium Titanate

The matrix of elastic constants for a cubic crystal Oh (m3m) has
the following form '46]:

/ 1 e: •0 0 0
C•l 0 0 0

0o 0 0 0" 0 0

0 0 41 €• 0
0 0 9• 0 0

'it this pha.5e the crystal has nc Piezoerfect and, consequently,
h.k-Oý The taatrix of coefficiezits of eiectrostriction for crystals of
the clasý Oh is anAlagous to 6:

j94 9- P U 0

fir, 911 d~s 0 o Is

0 0 r. 0

ae a 0 ~

and. ronsequently the zxprassion for Ap(P,, usk) will be written in the
toliLowing menner (for graphicalness the indices i=i, 2, 3 are replaced
by xt yj z and the indices k~l, 2, 3, 4, 5, 6 by xx, yy, zzv yz. xz, xy):

" P. P' )" - AO, T) +"., (p, + ", "• P,) + 4- + - ,) +

47 F4 3 (P 4..4

4- P*, (PL - P•ep " .J1 + , pt er + 4 + . , + -,; +

+ q1.., +4~ ~,4u~ ~,

+ (P** + P~1 )I + t (d,,P,,iP4 7 + +,8 P, + 4.J,.i.,.

(3.53)
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The qantities Psi and Usk are determined as a result of solving

a system of equations resulting from the equilibrium condition of the

crystal: eA,_ |

#A ". 3.54)
dP

.utior:s of these equations obtained for the first time fDrall ferro-
electric phases of BaTiO3 by Devonshire [3] are reduced to the following
form.

1. Cubice phase

P.. - 0.,

as, - - " ,.u -.. - 0.

2. Tetragonal phase

P., - P., - 0. P., * 0.

2qI 2c 1,-q- I (CI, + CIS) -
(c11 -- c,, (C11 + Zc,. ('= a i

(C-i)Cz+cj "fi - n(~

(C 1 -- citj (C3 + 2CW) (I"Ah -& i (PWL)j

I&", - us's - 0'.

3. Orthorhombic phase
(3.55)

, - - •-fua. --q2  (c,, - 2e.") "

(C,1 -- C,) (•I + ZCs) ( £,17.

-2 (qj,5c - q,•1 • 3 )

sea-' - CW (C,+ell+ " 1 17T

4. Rhombohedral phase

P.. - P.,, P., I 0.
- (qt - 2q.),

,. -- s.,=. - - (P*,).,.

It follows from (3.55) that temperature dependence of spontaneou's

deformation or, as it is also called, -po:=taneous electrestriction is de-
termined in the main by the behavior of P2si (T). Theoretical relation-
ships P2sz (T) calculated in [3] for the Phases 2, 3 and 4 and defining
usik (T) are shown in Figure 3.3.

It should be noted that spontaneous electrostriction "displaces"
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the character of transition in the direction of phase transitions of the
first kind. In particular, for peroiskites (if transition of the second
kind takes place) in tetragonal phase the expression (3.9a) is replaced
by [48, 49]:

"(3.56)

q 2 c + c ) + 2 q 2 c - 4where c q 1 1 +c 12  + 2 c 11 - 4q11 q12c 11 >0

heeq 31  3 + 2q 1 2 i 3 1) (c--- c,-s' + 2c- (c- Cl2"trl +212)

since volume electrostriftion u + 2usxx>0.

This inference is also confirmed by the increase of the jump of the
thermal capacity Acp determined with the effect of spontaneous deforma-

tion of the crystal taken into accoun [49].

Seignette's Salt

For ferroelectric phase [rhombic symmetry D2 (222)] we have the
following matrices defining the structure of Ap(Psiusk).

Matrix of elastic constants:

f C "'C c (0 0 00

0 0C" 0 0 0

0 0 0 u0 Ci 0

Matrix of piezoelectric constants:

A-.(00 0 0 0 An 0
0 0 0 0 0 "A-1

Matrix of electrostsriction coefficiencs:
Pq,9 q9, 9 0 0 0)

Sqz q• q,• 0 0 0" Vq q q:, 0 0 0

0 0 0 q" 0 0
00 0 0 . oj

0 0 0 0 ye

In view of the relativel;- low symnmetry of Seignette's salt the ex-
pression for Ap is considerably more complex than in the case of BaTiO3.
However, a number of simplifications are possible. Inasmuch as it is as-
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sumed that phase transition of the second kind takes place iti Seignette's
salt we may limit ourselves only to the terms p4. And next, since a free
crystal is examined (external mechanical stresses and electr field are
absent), we may limit ourselves to taking into account only one' component
Psx# precisely the one which appears in a less symmnetrical phase:

A. (r. Pm..3 )- Aftr) + s.P,. + 's*., + 7 (e-u,'. + enfl'r + ca.1.) +

+ euuao. + O.".ss*, + Cflb,., + - C40Uj1" + -T C€•SUL + COULY +

+ hzP..u., + q.1Pu 1 ,. + q12P#Xt. + asPLU. + . (3.5 7)

Further sirrmlifications are possible if we limit ourselves to the
examination cf the displacement deformation uszy which has an anomalously
"large magnitude ( h') (3.58)

4: C44 (3.58)
J,:h.- ) 4  _t.. /Cq f _ 2a--A,41C4

The expression (3.58) considerably differs from a similar relation-
ship Cor BaTiO3 owing to the influence of linear piezoeffe~t. We will

also note that the condition Psx-O is satisfied when 2z - - =0 and ins c44

addition to this, Psx becomes complex when

9 (h,,q,,!C4,)2 <{2.- •JA;41

This cr, ,es creates a formal possibility of explaining the existence of
a second Curie point owing to the influence of strong piezoeffect and elec-
trostriction.

2. Thermodynamic 1-ucentials and
Elastic Electric Constants

in Ferreelectrics

In the examination of the properties of a ferroelectric crystal,
in particular in the determination of behavior of such of its internal
parameters as Psi (T) and usk (T), the differences between a thermrodynamic
potential and free energy were not determinie. These differences become
all the more important when describing the behavior of a crystal which is
under the effect of external forces and electric fields. Thus, a question
arises concerning the selection of a chermodynamic function (i.e. a thermo-

dynarii, potential in the broad sense of this word) for describing the proc-

esses taking place in a ferroelectric upon a change in temperature and

during the action ef extcrnal electric and mechanical fields.

According to the definition (see, for example, [4, 7!), free energy

-71 -



(it is also called Helmholtz free energy) is equal to

A`Z-- s. (3.59)

where U Is the energy of the svstem. Passing on to differential relation-
ships we have

(3.60)

(3.61)

and consequently

*4•-S-Tr--o. (3.62)

i.e. the charge in free energy is equal to work done on the systcm in the
case of a reversible isothermal process, or to the change in the amount of
heat with a zonstant volume. When other parameters X, and .A- defining
the state of tha system (for example, components of electric polarization
Pi and external electric fields Ei) are present, elementary uork J.s~idAi

defining the corresponding change in the system's energy must be added in
(3.60). Here A idAi has the dimensionalty of energy or, if A is re-
lated to a unit of volume -- the dimensionality of energy densiti:

dA`---Tr-- i + X •,,. (3.63)
4

From this we have the following relationships:

(indices indicate which quantities are. considered constant in differentia-
tion).

If all Ai--O, then (3.64) !s equilibriua condition of zhe system
with constant volumc and temperature.

We will note that determination of the relationship Pis(T) and f(T)

was based on the condition !EL-

If independent variables in the initial function are T and p, then
the thermodynamic function resulting in this case is called thermodynamic
potential $ (in the narrow sense of this word). It is also called freo
energy or Gibbs function (for gas and liquids).

Connectim between 4 and A follows from the definition

V_-rs +pv--A +P- (3.63)
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The total differential of is equal to:

d.O* 1A+ (pv;4. -. sdr + vdp. (3.66)

Conseq.uently, the increment of C is numerically equal to work
done by the system at a constant temperature, or to the change in the
amount of heat at a constant pressure.

If in addition to the variables S, T, p and v the state of the sys-
tem is also defined by a set of other variables A i and Xi, then inas-
much as the differential transformation of dA to d4 does not affect the
variables Xi and Ai

dO dA + i(p) - sa + vdp + A~dl, (3.67)

and consequently

A,-:Lt) " _P),.,, " (3.68)

As long as a change in the volume (i.e. dimensions of the system)
and pressure plays no role, the differences between P and A are un-

essential. Therefore, in setting up the equations defining the state of
a ferroelectric the question of precisely which thermodynamic function
is involved arose for the first time in taking spontaneous deformation
in..o account. With the action of external forces it is necessary to
sLcictly differentiate precisely which function is meant and, consequently,
pressure or volume should be considered constant in defining the equilib-
rium condition of the system.

Unlike a gas or liquid for which formulas (3.59)-(3.68) are valid,
a complex state )f stress described by tensors of mechanical stresses 4 k
and deformation uk appears in the crystal during the action of external
forces. Therefore, the quantity pv in the expression for § must be

substituted by a sum of the type Yku:,kuk (work done during the deforna-

tion of the crystal). Differential relationships must be changed in ac-
cordance with this, i.e.

, (r. P,. 4k. - -UST - ,. (3.69)

(3.70)

The function defincd by formulas (3.69) and (3.70) is called elas-
tic thermodynamic potential or elastic Gibbs function (for crystals).

Upon passing to the new variables Uk, T and Pi, free energy is
expressed as

A, (r, P,-- U-- TS3 (3.71)i,,, -•, '" + ,.(3. 2
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We find the following important raletionships from (1 71 .. a ,3.72):

(Ar) % (3.743)

(3.75)

tf it is assumed that connection between 6k and uk is linear, i.e.

Uk= Ls••,then we have th• olw.• o p

e

a P let; a

-a //_r_(.74

wtere Sk=• -I---")PT is matrix of moduli of elasticity at a constant

polarization• (induction).

In a similar manner a group of reines represented by the sum

are components of the matrix of elastic ccistanrs of the crystal, measuredat constant polarization and with ce(sP)w n

Forming second derivatives of •.hermedynamic functions with respect
to poEarization we whell find:

where u and •i are tensors of iaverse die~lectric susceptibility,

dete~rmined respectively with a constant deformation or a constant mechan-

•-~ stress. We will note that dielectric..susceptibility tensor is equal

to -- ( ' and, consequently, components of diele~tri'z-susceptibility

tensor, determined from (3.78) will be writter• as

If T, #' and E are selected as indepen~dent variables, then we will obtain

a function which is called thermodynamic potential or Gibbs function (for
crystals) :

* 3 T , )9pfCISXaoa-l.(3.80)

(3.81)
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If independent variables are T, E and Uk, then we have electric
thermodynamic potential (electric Gibbs function)"

00 (r, N,,) A., •- Pjz -- U -- rS-- piss. (3.82)
#sa(T. ~(3.82).* ,z dA- .dIfl) --- Si? -- P• E,4,+ • ,d, ( . 3)

After differentiating •IE and C2E with respect to S'% and
uk we will fine(

"J' ~ it Cki., T• 0 •••], '.84)

To obtain fundamental equations describing the state or a piezo-
electric crystal, use should be made of the fact that expressions for
cotal differentials of the respective thermodynamic potentials are given
in (3.72), (3.81 and (3.83).

Making use of thermodynamic potentials Ap, •p, •1E and 2E

represented in the form of polynomials with addends of the order of PiPj;
EjEj; kk: - k ; u kPiP'; ukEiEj, etc. we wail obtain canonical equa-

tions (written in matrix form) defining elastic elentric effects in a
crystal:

1 R~-a+~~ P-E+i'E(3.85)

) J -- +,a -+ as

Equations (3.85) define physical sense of piezoeie-:tric constants
hik, gik, e,* and dik (the constants dik are usually called piezomoduli).
The following relationships exist between these constants:

V..j - Alp: a il- i
Making use of these relationships and the equations (3.85) it is

possible to find connection between elastic constants determined for a cry±'-
tal with short-circuited and open electrodes (sEk. clk and sPk' c~k), for

example:

For componenti o' the tensor of inverse dielectric susceptibility
of a "clamped" ( 1k) and "free" ( ik) crystal we have:

A special characteristic of a ferroelectric is that the free energy
Ap, which is & component of thermodynamic potentials 1P` *1E and

2 - represent.- an expansiop containing terms of a higher order than PiP ;
EiEj; 6i('k; ikPiPJ' etc. with some of the coefficients of the expan-
sion being highly depwdent on temperature. Therefore, some of the elastic
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VI
aad eiastic-electrir constants must undergo appreciable temperature anom-
alles in the phase transition ~g.g!on.

Rela•ionshlips being sought may be found on che basis of Ehrenfest

equations connecting the discontinuities of various physical quantities

in a pliase transition (see [4]). However, Ehrenfest equations are Inap-
plicable in the case of phase transitions "Vproaching critical point when
thi cuantities mentioned tend to infinit-.

To establish connection between these quantities for ferroelectric
transitions, Janovec [50] recently made use of Pippard's [511 and a r-
land's [52] genecalized equations and procedure used for a thermodynamic
description of trdnsition in liquid helium by Buckingham and Fairbank
[53]. We will cite the basic results obtained in the work [50]:

"thra , ii " E are •(3.86)

+ i%,, + lf

Here c1, E is specific heal, CA 0 E are the coefficients of•-pen To , T E k• a/e yro

S ki are moduli of elasticity, (pi)=e pyro-

electric coefficients, and dik are piezoelectric moduli.

Quantities with the indei "0" have a "normal", i.n. weak tempera-

quantity 2- f is weakly dependent on tem-
'-%~ k) R•F

perature according to the definition. As Pn example, the relationshios
(3.8b) were used to describe a ferroelectric transition in triglycine
surlfate [ n]. 2n doinS so, it was found that experimental data for TGS
agree wel; with the equalities (3.86). Thus, there relationships repre-
sent a converient method of checking the consisteitcy of experimnental data
describing a ferroelectric ttansition of A-typeý

Coming back to the question of selection of this or other thermo-
dynamic potential when describing the properties of a ferroelectric, we
will note the following. In thc abseice of electric field (Ej=O), we have:

for a free crystal (6ýk--O) if spontaneous deformations (usk=O) Ap=

=4 = 42are neglected, and for a free crystal locatcd in an external

when electrostriction and piezoeffect art neglected.

The variables T, usk and Pi were nmade use of in paragraph 3, sub-
paragraph 3 in the examination of special features appearing when taking
account of spontaneous deformations in a free ferroelectric and, conse-
qt:ently, %he expression (3.52) is free energy Ap (Ts Pi, "sk), The
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sante results could have been obtained by using elastic Gibbs function
4ýp (T, Pit dk) if a representation fer spoitaneous mechanical stresses

leading to the formation of :pontar.nous deformations, i.e. usk=--s kdS.
were introduced.Iini describing the properties of a fixed ferroelectric it is pref-
erable to "work" with the variables PS, us, i.e. to, make use of the free
energy Ap (T, Pi, Uk). Conversely, in the examiration of behavior of a
free crystal and of a crystal to which (ternal forces are applied it -'s
more conven i ent to use elastic thermodyt~amic potenLial 4p (P, d) since
the equ;'• .ns resulting with its differentiation are simpler and accom-
plish tie aim faster. It should be noted that both approaches have been
used sufficiently often in the studies of ferroelectrics. For example,
elasti: thermodynamic potential lp (T, Pi, ek) was used in tht works
[2, 38, 39] in the determi.ation of effect of mechanical stresses on the
properties, and free energy Ap (T, Pi, uk) was useu in .3.49) with the
results of these studies agreeing with each other.

3. Ferroelectrics in the Case of Weak
External Influences

According to Curie principle, during the action of external forces
crystal symezry contains unly elements common uith the symmetry group of
the external influence, Therefore, in satisfying the equilibrium condi-
tion the expresfion for thermodynamic potential of the crysta' (most often
Ap (T, uk, Pi) or 4p (T, d, Pi)) must cotitrin only the invariants de-
zermined by this symrmetry. finding of the values of variables with which
e(qiilibrium is provided is reduced co finding the minimum of •t with the
specified external forces, i.e. to the bolution of a set of equa~ions of
the following type 1)

a•,. (3.87)
a.-.-dC& -= k-fI .... 6.I

In ordeo. that the solutions of (3.87) indeed correspond to the min-
imum of •p in accordance with the rules for finding the minimu:at of a func-
tion of many vriables, it is necessary to require the satisfaction cf
stability condit")ns, i.e. of a series of inequalities for determinants
made up of the second derivatives of lp with respect to independent
variables [see, for example, (3.50)1.

In -hose cases when a phase transition of the first kind iu : es
place and two different phases coexist at a specified temperature and
stresses, cbe absolute values of 4p of each phase are compared and
ir this manr.er it is determined which one of theic is metastable.

When solving the equations (3.87) simultaneously with stability
conditions (3.50) Curie principle is satisfied automatically and, conse-

1) For the other thz-rmodynz-': .rcrc'als Ap, Cr and ?
equilibrium conditions are written in L simiiar muanner; phys!-ca 1ense
of independent variables changes.
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quently, when constructing the function 4p there ii no need to be con-
cerned with its resultant synmetry. In other words, the expression for

may contain all invariants of the highly symmetrical Phase similarly

to the way t.lis was done in the determination of the components Psi and
Usk (3.53), (3..7). Anothe: approach is permit::ed, which in a number of
cases substantially simplifies the investigations, when terms the exis.ence
of which in a set o;' final solutions clearly contradicts the properties of
symmftry of the external f- ces are excluded from •p in advance (for
example, in the •p of , cubic crystal there is no need to take into

account the displaceicint cmdonents durin& the action of mechanical forces
and fields along the major symmetry axes).

We will note that ecuations for plezoeffect (3.85), which are noth-
ing else but a generalized n..tLix form of :iting the solution of linear-

izcd equations (3.87). also satisfy the requirements of Curie arinciple
if matrices whose structures sa- sfy the requiremen~ts of symmetry of the
phase with which we are concernec in a ferroelectric appear in them. How-
ever, thz equationb \33o4) do not contain by themselves the information
on temperature dependences of parameters of a ferroelectric and on stability
of its phases under different conditions inasmuch as they have no tpecific

fe,!tures characterizing the crystal near a ptiase transition.

In the case of weak external influences when the effects brought
about by them are sufficiently small in comparison with some of the para-
meters characteristic of a system (ior example, when polurization P and
deformatioi, uuk inducea by :he field and mechanical stresses are smail in
comparison with Psk and usk) the system (3.87) may be reduced to c-iations
linear with respect to Pui and uuk. Of course, in direct proximity to the
transition point the assumption concerning the rt.lative smalla ss of Pui
and uui is conditional.

We will examine solution of the equations (3.87) as applied to
ferroelectrics having syrnmetry Oh above Cur' point and to ferroelectrics
whi.-h exhibit piezoelectric propertie3 in tite "tighly symmetrical phase.

Barium Titanate Group

Thermodynamic theory of electromechanical properties of barium

titanate was drelop.!d in the works of V. L. GinzLurg [L,21, Devonshire

[3], L. P. Kholode-ko L38, 39, 54: 551 and other authors F48, 49]. In
the works [1, 2, 38, 391 the authors examine conditions for the minimum
of elasti= thermodynamic po-ential 4 p (T, Pi, dk), and the miimum of

free energy Ap (T, Pi, Uk) is determined in [3, 48, 4q'. As already

pointed out, this difference does no '-ad ro contradictions, However,

in the determination ci electrostri-'.,n corrections to the coefficients
of the expansion it is preferable to Ise the sicond method. This was

done in aubparagraph I of this paragraph. When mechanical stresses

brought about by external forces are present in -he crystal the first

method proves to be more effective.
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The expression for 4p(T, Pi, 6'k) will now be written in the
following form: 1)

Or (r. P4. ,e.?--0 Mr +, (P.,1 + F" + P.2) + A(PI + P'+ P,) 4-

I • 4 * V4z..g•

+ 0. (P. + Pl) + 1 (P. + P)I + 73 (PIPpP) (Q.,P + . ,,Pl + ,,PI)
-z- I".. (P, + PD + ,, (Pl + P) + 0. (PI, + P;)j - 2.,, * +

+ e,.,P. + @..,P,) - 2 Opi(A:a + 0:, + 'L) - *u (,.,,, + a.s. + ,,.,) _

0('.88)

"rimparing this expression with formula (3.53) we nee that their
structure completely coincides [if, of course, in (3.53) Psi is substi-
tuted by Pi and Usk by Uk]. The difference in signs before the mechanical
and mixed terms is e:plained by that a system oi signs different from [3,
48, 49] is used in [38, 39] and, consequently, in (3.88). Namely, it is
assumed in [33, 39] that elon~ation deformations andstresses are positive
whereas in the works [3, 48, 49] and other works elongation deformations
and compression stress are positive. In the cxaminaticn •f spontaneous
deformation this was of no significance. However, henreforth, when com-
paring the results we will use the more natural system ef signs used in
the works [38, 39], i.e. uelong>0, 'elong>O

in additin' to this, in Ap (T, P, uk) the coefficients d P
12, etc, should be provided with the symbol "u" in conformity with Je
fact that they are taken with a constant deformation whereas in 4p (T,
Pi, Ck) these coefficients are taken with a ctrnsta-it mechanical stress
in the crystal.

It can be shown that, for example, AI= . - It is also
obvious that elastic constants cp enter (3.53). 1The matrix of electro-

ikstriction constants Oik has the same torm as qik in (3.53)

) Notation ofp (Ti, P k ) from 38, 391 differs from (3.86)
4 6 n 4in that terms of the form, P and '1 P5  instead of -P +

+ P4 + Psz) and *. (P6x + p6s + F6) appear in [38, 39]. Both nota-
tions a-d all results are identical if coefficients of the expansion P2t
2and 3 are sutstituted respectively by #2 fl, 1 2 - •I and

173 - 21y from (3.88). The advantages of formula (3.88) consist in 2 that
is does not contain superfluous invariants of the type p2p? and P.Pi. In

addition to this, comparison with the results of the other works, for
example [3, 4o, 491, and of the preceding sections of this chapter [com-
pare with formulas (3.46, (3.48), (j.49), (3.52, (3.53) is made easier.
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The main results of solution of the set of equations (3.87) ac..ord-
ing to L38] and [39] are given below.

1) Spontaneous Polarization. Solutions of the equations d=0

with the additiunal conditions (3.50) are sought. ki

Solutions have the following form (see also 3.49).

1. Cubic phase

2. Tetragonal phase
P. - P -- 0.

3. Orthorhombic phase (3.89)

e'.- ~ 1 0,1 -f -p- + Y 0 + P0 ,- 42 (itz :.
PLP, (Tz --37.) (P+

P.. 0;

4. Rhorbohedral phase

2' ( -+ 6:, + Fi) [-(P1 + N +

+ V(Ps + &P-4-6 (7T1+ 6S T".3)).

Stability conditions (3.50) give the following inequalitie, for all
of the four phases: I)

I Ja>0;
i! t) ,.z+2bP,,>o; 2J PPj--a-,- 2(i,--z)P(,>O;

3) P + P -- 2 (-. + 51,) P;., > 0;
IV 1) Pt + (1 + 2,1) i"_ > C; 2) - P. + (731-,T:) Pk. < 0;

3) @3 - P) + 2 11 + 6 y2 + 7)P2, > 0.

A very interesting cu.,clusion follows from (3.90): when Y'= 12=
-=Y3=0, phase 3 is unstable since the first two -nditions in (3390) for 3

are incontsistent, In other words, the terms /%-Ps6 have to be taken into
account to explain the low-temperature transions.

2. Spontaneous Deformation. Components of spontaneous-deformation

tenser wete defined in s'ibpark.graph 1, paragraph 3 (see (3.,5) on the basis
of conditions of minimum for the free energy Ap CT, Pis, us).

For p4P4 7, Pit dk expressions for Usk will bc found from the

equatons k----Usk upon substituting in them the solul ions (3.89). For

1) The relationship Pi (T) calculated by Devonshire [31 :.s shown
in Figure 3.3.
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example, for phase 2 we have:
a*,P,-.-uu,-. } (3.91)

Comparing these equalities with the formulas from (3.55), the elec-
trostrictive constant-. ik may be expressed in terms of coefficients of
electrstriction qik and elastic co.!stznts C4k (%33=-9'3, %,)J1: from
(3.55)

3) Dielecr:tic-Constant Tensor. To find the component tik of the

dielectric-constant tensor in the absence of mechanical stresses the follow-
ing set of equations is solved

The condition of smallness of the quantity E makes it possible to
linearize these equations. For this purpose, polarizatio, is represented
in the following form:

[p i=Pii ] I.,- P., +- P., (E). (3.92)

where Pii is a small quantity. Making use of (3.92) and neglecting terms
2containing the quantities -P and higher, we will obtain a set of equations

linear with respect to P.i" Next, making use of the definition of

eik "Pii= 4 *X E

we will obtain the following:

Phase 1.

0 4;. 0
0 *t

""h "= I0 -.- • -- Ih To "PI P:. "

Phase 3. Expressions for Eik are ve-y cumbersome and are transverse
co.ponents of the type f . However, after reduction to the major sym-
metry axes they acquire a suff'-iz tly compact form:
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- 211

Phase 4. After reduc-ion to the major axes:

(3.93)

OV--2 + (hi + 2P) P.1

In Figure 3.4 are shown temperature dependences of the values of
calculated for BaTiO3 in [3] and reduced to major axes.

Temperature depenc .nces of dielectric constants of a "clamped" crys-
tal are considerably less rmarked [3, 37, 42].

I I 6t•O0

IV In 
000

7 -- h200

-170 -30 -i,0 .30 tto IPO T, C

Figure 3.4. Temperature dependence of
components of dielectric-constant tensor
for BaTiC 3 [3].

I -- cubic phase; II -- tetragonal phase;
III -- orthogonal phase; IV -- rhombchcdral
phase.

4) Piezomoduli Tensor. To determine piezoehlctric properties it is neces-

sary to solve simultaneously the following set of equations:

- (3.94)

(direct piezoelectric effect Ei=:O; J'CO) or

0,_,

-- , --j -0 (3.95)

(Ei#O; fk=•O; inverse piezoelectric effect). When using formulas (3.95)
for regton II the inverse piezoelectric effect is expressed as:

S- a, Il kW W2+ ,. . , - (3.96)
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In other words, inverse piezoelectric effect in BaT103 and in ferro-
electrics isophormous to it is in essence linearized electrostriction. It
is obvious that the results of both methods of determining the dik must
coincide.

Calculated components of piezomoduli are given below (for phases 3
and 4 the values of dik are reduced to major axes).

Phase 2.

(f) . ; u 0 dl , 0
3 0 03 d'0;

31 ,h, d33 0 U 0)
d , P.. 2111",p-t

dPo_ di.,ý,P.,

-t I| tlIx *

Phasa 3.

+(1 + ." 2%.4) P,. ,"- -2 1:ý I•+(p.B + ?)e. l' d ,.--,€ | +(-.h)P I
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Relationships of piezomoduli to T (not in the major axes) calcu-
lated in [3] are shown in Figure 3.5.

It can be shown [3(] that components of piezomoduli and dielectric
constant are connected by the general relationships:

"1. (3.97) (3.97)

where all quantities are taken relative to the major axes. Thu relation-
ship (3.97) follows from tae obvious fact that upon tne application ý.f the
field both Pok and U-k are brought about by the displacement of tne
charge.
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'S ~ 1

Figure .3.5. Temperature dependence of
the components of piezomodu'i for BaTiO3

[3].

II -- tetragonai phase; III -- orthorhombic
phase; IV -- rhombohedral phase. 1 -- 15=

=d16; 2 -- dl 5 =d2 4 ; 3 -- dll=d1 2=d 3 3 ; 4 --

d2 2=d3 3 ; 5 -- d 3 3; 6 -- d15 =d 1 6 ='d2 4=d 2 6 =
=d3 4=d3 5 ; 7 -- d2 4=-d3 4; 8 -- dl4=d2 5 =d3 6 ;

9 -- d•l=d 3 1; 10 -- d31=d3 2 ; II --

-- 13---d2--d23--•2; 12 -- d 2 3 =d 3 2.

5) Moduli of Elasticity sfP) and s(E)ik iv. Analysis of the equations

(3.85) simultaneously with (3.86) shows that behavior of the constants

c ik and s k and of the constants c ) and s (E)k which appear in thermody-

namic potentials CiE aud C2E is very dissimilar.

Whereas the former are continuous and relatively weak temperature

functions, the latter, i.e. the quantiLies c(E) a (E)• either undergo
ik ar.d s.ik

a discontinuity or experience a sharp change in the phase transition re-
gion (Figure 3.6).

6) Displacument of Cur - Point. I,- toillws from (3.88) that in
the presence of mechanical stresses the rerm _#p2 may bL cc•n'ined with
invariants of the type XinP2  a i ikK

condition for phase transition changes in accordance with this. Fir
example, in the region of tetragonal symetry the conditien O. =0 leads
to the following formulas [39]: -n
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Figure 3.6. Moduli of elasticity with a
pernanent field for BaTiO3 in relation to
temperature L-I.

I -- cubic phase; II -- tetragonal phase;
III -- orthorhombic phase; 1V -- rhoinbo-
bedral phase.

On the basis of these relationships the appearance of additional
polarization may he represented as a .hange in spontaneous polarization
Ps%, brought about by a "displacement" of the entire Lurve Psz (T) to the
right or to the left of some point T. Fcnm this, a conclusion may be drawn
that dppearance of piezopolarization and displacement of the transition
point 8 are essentially equivalent effects brought about by a change [49]
of the state of the ferroelectric as a result of application of externa.
forces.

Seignette's Sale

Elastic thcr-etvnamic potent-al for Seignette's salt may be easily
obtained from '3.57) after appropriate substitution of variables and coef-
ficients of expansion, 4.e. C -#e s kUs-0- :; hk- k

6 1k ik' sfk s kýk i'gk
- ) -- . Owing to the presence of a linear piezoelectric term

in 4 solutions of thi equations (3.87) are expressed by very cumbersome
formulas that lend themselves with difficult to analysis. If we limit
ourselves to a unldimersional approximation '1, 2], i.e. if lp is rep-
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resented in the following form

, , -r _, o,'). _ t4p2 + (3.98)

then a connection may be established between certain parameters in (3.98)
and (3.57), in particular

4 
2

Above Curie point, when the terms Pxv , CL - and con-sequently, -44

44 -il-Z

4. Some Corments on Thermodynamic Descrip-
tion of Nonlinear Properties in Ferrc-
electrics

At the first glance the attempt at a theoretical description of non-
linear effects on the basis of thermodynamic theory of phase transitions
appears very natural and substantiated by its extrapolation. It may be
assumed that the problem is reduced merely to the calculation of high poir-
ers ef thn fiel and mechanical stresses in the equations of stace

It would seem that solution of these equations in the following form

Pi (T, Ei, Sk) and Uk(T, E, Ck)

would make it possible to calculate the relationships of dielectric and
piezoelectric constants to tne field and meclanical stresses. Actually,
physical statement of the problem must be considerably more complex.

The fact is that .n the case of int-nse external influences non-
linear change in polarization (the main physical substance of nonlinear
effects in ferroelectrics amounts precisely to this change) is accompanied
by an extensive trrnsformati'on of mechanical and electric energy into heat.
In other words, the process becomes irreversible and must be examined
using the methods of irreversible thermodynamics. There is no doubt that
energy d.ssipation takes place in :he case of weak excitations also, i.e.
in -he region of linear dependence P (T, Ei, dk0- However, here, owi.,g
precisely to nonlinearity the reversible and irreversible components of
the process can be separated and examined. For example, the relationship
•(T) can be examined within the framework of reversible thermodynamics,
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and tgS(T) -- by means of solving differential equations describing the
stabilization of the procezs in time. In rhe case of large exciting fields.

such a separation proves ta b. *nnssible owing to nonlinearities -- hys-

teresys loop is brought about both by the reversible change in -.olariza-
tion during the cycle of the change in the field and by irreverslile
transformation of electric energy into heat.

A rigorcus application of irreversible thermodynamics for describ-

ing these processeq encounters great difficulties inasm'ich as irreversibl-ý

thermodynamics of electromuagnetic process is applicable only to linear
systems [56, 57J. Some of the basic theorems underlying irreversible
thermodynamics, the so-called Onsager reciprocity relationships which
establish the connection between thermodynamic forces and flows in cross
events, are valid only in the case when these flows (for example, currents
and deformations) are linear functions of thermodynamic forces (the field,
mechanical stresses, etc.). However, precisely these connections, both the
direct and cross connections, are assumed to be nonlinear. Thus, in the
attempt to create a rigorous thermodynamic theory of hysteresis loop with
energy dissipation taken into account, we encounter a series of basic dif-
ficulties which increase still more for polydomain structures inasmuch as
a sufficiently correct theory, even within the framework of reversible

thermodynamics, has not been created for their description. It should
also be noted that according to experimenrtal observation of behavior of
a single-domain crystal in a strong field, repolarizition always occurs
by mears of appearance and growth of the nuclei of polarization -P, inn
verse in ralttion to PS, and not ac a result of a sim:iltaneous ).epolariza-
tion of the entire crystal. The growth of these nuclei is a complex stati-
stical process in which, in addition, the effect of their interaction also
plays a role (see chapter 7).

In considering all of the foregoing, no surprise should be caused
by the fact that coercive field calculated on the basis of representations

concerning reversLble thermodynamic process in single-domain ferroelectrics
exceeds approximately by 20 times the vilue of Ed observed experimentally.

At the same time, the application of "conventional" thermodynamic

representations by no means proves to be in vain if attention is focused
on the explanation of qualitative characteristics of ferroelectrics.

For a number of cases this approximation amounts to the following:

a comparison is made of the theoretical (obtained using the methods of re-

versible thermodynamics) and experimental cyclic relationships Pi(Ei, ek' T)l

i.e. hysteresis loopi, plotted in a quasi-static state. Next, theoretical

loop is recorded in dimunsionless coordinates and identitied with the exper-

imental loop. After this, all relationships of the parameters can be de-

termined on the basis of reversible theory in terms of the parameters of

the theoretical loop recorded in the scale of experimental hysteresis loop.

This method used in [9, 58-601 cannot be used for a quantitative descrip-

tion of parameters whic! Tharacte-ize energy dissipation. Effects observed

in "aging the test samples in a s cong field" and the so-called aging ef-

fect also drop out from the con~ideratizn. However, this method gives
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quite sat-sfactury results in the explanation and even quantitative eval-
uatior of nonlinear dependences of dielectric and piezoelectric constants
determined after the completion of these transient processes.

We will illustrate the foregoing by examining the behavior of di-
electrlc constant L and piezomoduli d3 3 and d3 1  for tetragonal phase
oi BaTJ03. We have: *. (r. P.. h) - 0, (T) + #Pl + -.7 PI, + _y , - ( . + - (4 --

- - 'I (-., + 2.)- + I .,' ,. .

Here if~ =A~ =~3 2.7 *10- 2 bar- ; % 2'~=-1.2 * 10-i2

bar-i. The cir-umstance that in the expression for 4p we limited our-
selves only to the terms -^d2 is connected with the fact that according
to measurements moduli of elasticity are practically constant in a wide

range of values of dk" As regards electromechanical "cross" terms of

the type dkP4 and k , neglecting of higher powers when excitations

are sufficiently intense indeed does not always pro-e to be correct.

Next, as usuall e urite the equations of state (4 k=C) with an

additional condition i-i>O, i.e.

2P, (a 4- ,P1 + iP;} - .,. (3.99a)
0.0111 ..... (3. 4b)
0!,P3 - V,..

.+ 3ýP + 5:P" > 0. (3.99c)
(3.100)

Inasmuch as the r-.ion of tetragonal symmetrv is being examined,
the sub,.cript z will henceforth be omitted for the sake of brevity.

The equation (3.99a) and inequality (3.100) were investigated by
L. P. Kholodenko [58, 60] who found the relationship P(E) and the mag-
nitude of coercive force Ec, i.e. those values of the field for which
(3.99a) and (3.100) ara incompatible and the system is unstable. The
expressions (3.99a) and (3.100) prove to be compatible upon changing the
sign in front of P to the opposite sign, i.e. upon turning the polariza-
tion vector by 18C0 . The relationship P(E) obtained in this manner proves
to be ambiguous and has a characteristic shape of a hysteresis loop
(Figure 3.7). However, the value of Ec found from (3.99a) and (3.100)
proves to be considerably higher than the measured values. As already
mentioned above, it is possible to surmount this difficulty to a ,'ertain
extent since the Lelationships #(E) and dik (E) with which we are con-

cerned are determined in the final analysis by tl-e relationship K

E
wnere P" is induced polarization. Consequently, if E Is measured in

the values of Ec, and P -- in the values of Ps, then the shape of the
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-f -0.5, 0.5 f

Figure 3.7. Theoretical [60] and experi-
mental '62] hysteresis loops for BaTiO3
(in relative units).

1 -- theoretical curve for o--80°C; 2 --
theoretical curve for T=-20°C; 3 -- exper-
imental curve for T-=20 0C.

loop, and not the absolute valve, becomes the determinant as a result of
such an iden~tification of the scale. If in doing so, a satisfactory co-
incidence of the shapes of the experimental and theoretical hysteresis
loop takes plac-, then an agreement between the calculated and measured

relationships EL and dik' may be expected. With this aim, the fol-

lowing dimensionless quantities are introduLed into (3,99) and (3.100):

P. + P,V -% (3.101',

F.

(3.102)

After this, (3.99) and (3.100) are solved graphically in these relative
units (Figure (3.7).

We will now investigate P (e) in the range of values je1 <0.5,
i.e. with fields whose amplitudes do not exceed the magnitude of coercive
field. P (e) is soughtin the form of an expansion with respect to the
powers of e up to the terms e 5 :

P. - V (7"),
•(. 103)

After the substitution of (3.103) into (3.99) and equating the coef-
ficients placed at the same powers of e on the right and or the lelt, we
obtain a set ,f equations by solving which we define an as a function of
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Ps and , i.e. in the final ana!ysis, as a function of temperature.

i)
Suppose e=e0 siniat . Then, after a series of rkansformations

[9] we will obtain PH(e) in the form of an expansion with respect to
harmonics:

£

P. (C. T) . P V) (a., r) sin (,t - ,).(3 0
.. 0 (3.104)

where the ampliti.des of P. are the known field-amplitude functions e 0

and an(T).

The expression (3.104) i.akes it possible to calculate both the total

dielectric coi;stanL and that portion of it ;!n) which is determined as a

result of iaeasuring a Lertain harmonic of the displacement current P n)

flowing through a nonlinear capacitor:

Am A -A-4 top)(E*) 
(3.105)

4% A 4- 4w• -

A .

0.4

90)

Figure 3.8. Relationship of g" tre 3.9. For the explanation of
to field amplitude. M )(1) - ()

the relationship g

Next we will introduce the quantity g(n)(e 0 )= Lo where

(n) Thus, g(n)(eO) defines the weight of the respective "harmonic"
e , i.e. its value in relation to the normal value of EO measured
in small fields in the case of which nonlinear effects may be neglected.
The amplitudes of (in) (e 0 ) calculated for Th--20 0 C are shown in Figure 3.8

the X-axis of which his a second ýcale expressed in units of- , This
makes it possible tc. ,nnect g(n) with the concrete values oJCthe fields

1) Of course, the question concerns very low frequencies, i.e. #C

w0 where c.o) is resonance frequency of the crystal sample.
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and apply the curves shown in Figure 3.8 to ferroelectrics having differ-
ent Ec. As may be seen from Figure 3.8, the ampli:udes of all harmonics
grod, wlrh the rate of their growth arpreciably inceasing as the field
amplitude approaches Ec.

Nonlinear growth of the first harmonic which is of the greatest in-
terest ittasvuch as this is the harmonic that is usually determined in meas-
urenents, and the growth of high harmonic% and direct component of the cur-
rent wiy be fexplained physically on the basis oi the following (Figure 3.9).
During the action of a variable field E<Ec on a ferroelectric the induced
polacization PM (and, cuasequently, the current also) will vary as shown in
Figure 3.9, i.e. ft will be assuming values defined by the upper branch of
J•e loop (the secrtion .b of the lhop), with a positive half-wave of the
field P increasing gradually and with a negative half-wave -- more dharply.
It is easy to see tha• s•uch a relationship of PW(t) leads to a nonlinear
gro-:h of the flrat hermonic and to the appearance of higher harmonics and
a negative (in reltion to 7s) direcc component of the current. This di-
rect component oý the current is aqulvaleut Lo a certain negative incre-
ment &•P of residual polariLatien:

9 ) (3.106)

(0)
Actually PO, does not change the relationships L(E). However, as we
shall see, it appreciably affects the shape of the curve dik (E). With
the fields EO>Ec (eo>0.5), expressions for g(n) become invalid in view
of incompatibility of (3.99a) and (3.100).

Thus, we have arrived at a :ather obvious conclusion which aplarenly
may be taken into account in explaining a considerable portion of nonlinear
effects observed in ferroelectrics.

The relatlonship 4(E), i.e. in the final analysis P•(E), is marked
the more strc <ly the sharper the slope of the ascending branch of the
hysteresis loop changes, the smaller the coercive field Ec and the closer
the "quiescent point" relative to which the field changes the state of the
ferroelectric, adjoins the region of che maximum change in the slope of
the loop.

We -. ill now determine the relationship of the piezomoduli d3 3 and
d31 to the amplitude of electric field. Subatituting pclarization P-

=Ps + P$ and separating that portion of the deformation which is brought
about by the electric field applied, we will obtain

Us* oi, 12PP. (E) + Pi (E)I. (3. 107)

Simultaneous examination of this relationsiip exprezsed in terms of
dimensionless quantities P., P, and e and hysteresis loop leads to the
well known relationship u k (E) of the "butterfly" type (see [62]).
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Substituting then the P,(e) from (3.104) into the relationships
obtained, we have

.- , a -' o .(3.108)

and introducIng then e--sO sinit, we will obtain (3.108) in the form of an

expansion with respect to harmonics.

We will examine behavior of the first harmonic of the deformation
U~k and will i:Atroduce the value of Piezomodulus d( 1 )_ _uik

ik EO
A

In general the matrix d "splits" intu the harmonics

,,-1 (3.1--9)

If we limit ourselve-s to such fields (actually not very small, in
comparison with Ec) with which, according to Figure 3.9, P,, is small in
comparison with Ps, then tle second terms in formula (3.107) could be
neglected and in that case Uwk=2 ýv psp% (E).

Taking into account that C(n) En, we have

i. r •,. (3.110o)

and, consequently,

If JEj >)Ejj, then the relationshipb obtained are invalid.

It is eas Mto perceive that with an increase in temperature the

relationship . , like the relationship F , becomes more

marked. 
d 0

F

Relationships obtained above in general make it possible to deter-
,nine the trend of the change in diko(E). however, a direct comparison of

d(n)- i(E) nnd L "ndicates a slight quantitative lack of coinciderce

-f these relationships, which is explained by the fact that in formula

(3.108) the direct 6 component does not appear in explicit form and the
terms EO(P 0 + P.) also do not appear. This was already discussed earlier.

The effect of permanent electric field E may be analyzed using
similar methods.

The relationship L(T, E=,) was determined in a number of works [36,
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Figure 3.10, Temperatvre dependence of
polarization in the presence and in the
absencs of displacing field E [63].

a -- phase transition of the second kind;
b -- phase tran.,ition of the first kind.

39, 63] and it was found that near the phase transition of the first kind

4•P. %#(T.E -= u. . " E.

In the case of phase transition of the second kind the relationship
is more complex:

where 2 4,1

The curve of total polarization, i.e. Ps + PHt(F=) shown in Figure 3.10
indicates that with the growth of F_ the phase transition becomes "blurred".

Attempt to explain the observed relationships ti (4k) and dik (ek)
in an analogous manner encounters great difficulties. As an illustra-
tion we will examine .:anges taking place in tetragonal BaTi03 during the
action of mechanical stresses applied along and perpendicularly to Ps.

Expanding P..,1 from (3.99) (6 ki-O) i.nto a series and substituting into
the expression for tCz and dik, we wilL obtain:

P., (@,.) - P.., + ,(.. P., (..I ) PO. + v..•3 ,:

in (0..) (..)+ 4$.441.i4 + $ -

is (o.,) -- Z (I + dsjj.*jP,.) I + "t (ts, - 2&*431. ,.1...:
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in these formulas, quantities having the subscript "0" were taken
with a 4,4. These expressions accurately convey t'e m~ain trends (d',-
crease, increase) of the relationships Psz ('k), J, (4'K) and dik (410
observed in single crystals and even in piezoceramics.

Nowever, quantitative evaluatlons lead to considerable divergences
even with small stresses (6 -50-100 kilograms/cm2 ). Taking into account
of the terms containing higger pot:ers of ek in (3.88) and in abovi formulas
does not change the situation. The essence of the matter consists in that
solution of (3.88), i.e. Psz (4k) has to be examined together with the
stability conditions (3.80) which change substantially ever, when dk are
small. As it was shown in [39], for a single crystal of BaTiO3, with a
40 the most advantageous of the solutions will be that with which Ps
will be oriented along the highest of the elongating stresses or along
the smallest of the campressing stresses. For example, compression stress
rzz leais not only to the appearance of piezopolarization inverse to Ps

but also to its turning by 900. In accordance with this, Li (4k) and
dik(fk) change more than this follows from the foi--las cited above. A
certain set of minimal stresses which can change the direction of Ps of
the suiparate domains must exist in dn actual crystal. In other words, a
quantitative. description of the relationships Li (4) and dij. &1k) is
possible only as a result of examination of "mechanical hysteresLs" with
the behavior characteristics of the domains taken into account.

Par. 4. Thermodynamic Theory of Antiferroelectricity

Some cystals (often isomorphous or close in structure to ferro-
electric crystals) undergo with a change in temperature a phase transition
into a state with a lower symmetry. As a rule, twinning (analogue of the
domain structure of ferroelectrics) takes place in this process but unlike
the ferroelectric transitions no resulLant dipole moment appears. If
the structure of the low-symmetry phase is broken up into two sublattices
having an equal but opposite dipole moment, then the crystal undergoing
such a phase transition is called antiferroelectric. The principles of
thermodynamic theory of antiferroelectrics were laid down by Kittel [64].

Following Kittel, we will examine a crystal lattice consisting of
two identical interpenetrating sublattices with the polarization Pa and

Pb corresponding to these sublattices. In the case of a phase transition,
expansion of free energy Ap with respect to the powers of Pa and Pb may
be written in the following form (compare with 3.7):

A,(P.. P, T)--A+/(P+ +PD)+ ,+A(P+P. (3.111)

The coefficients t, g and h in (3.111) are functions of tempera-
ture. From (3.111) we find:

#A4 •- *-ki'.•-+€ +•-(3.112)
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And thus, s~ontaneous polarization of one sublattice Psa= "Psb is
equal to:

S-44--- (3.113)

Polarization AP=Pa + Pb'Pa in a weak electric field t1E may also
be determined from (1.112):

26E - 21iP + CAP + 1•P2.AP. (3. 114)

4hence we find dielectric susceptibility:

ap I___X i . (3.115)

At Curie point P2 =0 and, consequently (see 3.113), f=28 . There-
fore we find the following from (3.115):

I+ 2 (3.116)
9

in approaching Curie point from antiferroelectric modification. In un-
polarized state, fourth-order terras in (3.114) should be neglected. After
this, we will find:

, 2-+4i- f - .-"--T (3.117)

When T=0, (3.117) is reduced to the equality (3.116). Thus, di-
electric constant is continuous at the transition point. In doing so, it
does not necessarily reach large values. If it is assumed that the value
of f near 0 changes in accordance with the formula (compare with 3.3)

2-f= j +r0 (3. 118)

we will obtain: the following from formulas cited above (when (At,>O):

, (0-7) (3.119)
24

4Z (3.120)
4,:
4r-. 

(3.121)

With >00 the low-temperature phase will be antiferroelectric and
dielectric constant has a maximrum at T=-(. With )6<0 the high-temperature
modification will be antiferroelectric and dielectric constant has a mini-
mum at the transition point.

If it is assumed that the coefficients g and h weakly depend
on temperature, then the Jump in entropy AS and thermal capacity at a
constant pressure &c may be found from (3.111) in the case of anti-
ferroelectric transition:
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a•- -( 0, + P'. -~r 1, (3. 122)

We will examine now phase transitions of tke first kind. For this
purpose, as well as also for the case of ferroe.ectrtcs, it is necessary
to take into account the sixth-order terms ir the expansion of free energy
with respect to the powers of polarization;

A, - A, + I (P +-I P) + CP.P•, +hk (P' . P) j (p: 4 P':). (3.124)

We And the following from (3.124):

_ ýA, 21.+9#+O!+61s (3.125)
dAF7

Thus, spontaneous polarization of one sublattice in antiferroelec-
tri. phase (P-a= -Psb) will be defined by the equation:

61p',. + 4hpi. + (.-1 - f) 0. (3. 125a)

At Curie point the thermodynamic potential with Pas= -Psb--O and
P =Psb=0 must have one. and the same value.

Taking (3.124) into account, we find the following from that con-
dition:

(21- ) + M.. + 21-P. -- 0. (3.126)

Solution of the equations (3.125) and (3.126) gives:

9=- lt-=, (3.127)

From (3.127), we find:

1(?-:1--•)--t'; TS. (3.128)

The reLationship (3.128) is a condition defining the transition
point and, therefore, it is natural to assume thc temperature dependence
of the quantity f near ( to be in the following form:

2 , 4

In the approach from the antiferroelectric and unpolarized phases
the dielectric constants " and £+ at the transition point prove to
be equal respectively to: +

• -- i +"r�-�+� 41-g ' (
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And thus, iin*the *ase transition of the first kind the dielectric
cornstant experiences a ij;,p at T=•.

It should be novad that the character of a transitiona is determined
by the sign of the coefficient h. An investigation similar to that car-
ried out in subparagraph 2, paragraph 1 of this chapter for ferroelectrics
indicates that transition of the first kind occurs when h<0.

Kittel theory set forth above was later supplemented by Tessmann
[65] who examined the behavior of an antiferroelectric in an external elec-
tric field, and by Mason [66] who took electromechanical effects into
account using antiferroelectrics of the type NH4H2PO4 as an example.

In the iork [67] in which Kittel theory was generalited for a three-
dimensional case, a study was made not only of the transition from anti-
ferroelectric state into a paraelectric state, but also a study of phase
transition from antiferroelectric state into ferroelectric state. In
doing so, transition of the first kind was examined with anisotropy and
deformations taken into account. Behavior of an antiferroelectric in an
external electric field was also examined in the work [67].

In the investigation of phase transition from antiferroelectric
state into paraelectric state the free energy Ap was written in the
form of a series with respect to the powers of components of polarization
of sublattices Fa and Pb and of the deformation tensor with accuracy
to the fourth-order tetms. After this, solutions were found from the
following set of equations: A

d~r -, (3.130)
dAp

where Ck are components of elastic-stress tensor. A study of the set of
equations (3.130) leads to the folloving results (which coincide with the
results of the work [64]).

PiezoelectriL effect must be absent in an antiferroelectric; lat-
tice symmetry decreases during the transition owing to the presence of
spontaneous deformations. In the approximation used, Curie point of an
antiferroelectric does not depend on pretsure. In addition to this, spon-
taneous polarizations Pas (Pbs), thermal-capactty jump and dielectric con-
stant near Curie point were determined in the work [67] more rigorously
than in [64].

More complex cases are examined in [67] only for unidimensional
model. Analysis of phase transitions of the first kind differs from that
carried out in the work [64] by takingInto account all possible invariants
(for example, invariants of the ty pe PaP omitted in writing the (3.124)).
In doing so, the qualitative conclusions remain the saze.

To investigate transitiovhs in crystals in which anttferroelectric,
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ferroe ,ctric and paraelectric states are possible in the absence of an
externL.. field, Ap is written in the fotm of (3.111). The values of Pas

and Pbs are founc from the following equations:
,A, ý,4r (3-131)

Stability -onditions (i.e. conditions for the minimumn of thermody-
nymic potential (3.111)) have the followinhg form:

- .0; -, 0; (3.132)

ce j*Md h. O~.717-6•Z' -P-l I>

We find the fcllowing from (3.131), (3.132) and (3.133).

1. Paraelectric state (Pas=Pbs=O) is achieved if f O, -f<g/2<f.

2. Ferroelectric state (Pas Pbs) is achieved if f-g/2<0, f+g<O.

In this case
p2 = + +..2f

as 4h

3. Antiferroe~ectr*c state is achieved when

.f>0; g -f>.2

2 9- 2f
as 4h

Figure 3.11. Relationship of Pas and Psb
to g.

a -- f<O; b -- f>O.

With a change of temperature, relationships between the coefficients
f and g may change and accordingly phase transitions will take place.
Relation of spontaneouw polarization of sublattices Paa, Pbs to the paras
meter g with different signi; of the parameter for the case of phase tran-
sition of the second kind (i.e. h>O) is shown in Figure 3.11.
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Fi-re 3.12. Hysteresis loop for an
anrifer,'oelectric.

kc,,ult, of *nvestigation csrcied ou- in 67] on the behavior of an

A erri, tecX an ext.-nal electric fieei are reduced in the main to
& iolvti 1 u. :cansitiin fr-a ferroelectric into antiferroelectric

_r- (iUr tF ,_ of a phase transition of the second kind), dielectric
conscant dec es by four times. In a reverse transition it also under-Ioeir disccntintity but becomes infinite at the transition point. In
strong electric fields the crystal changes from antiferroelectric into
ferroc" ,':'tric state with r.n unusual hysteresis loop forming in this process

(Figure .. 12). Critical field strength Ecr corresponding to transition
into ferroelectric state was calculated in [67]:

E.,_P - •I U - 0(3.134)

A later attempt to generalize thermodynamic thecty of antiferroelec-
trics for a three-dimensional case was undertaken by Cross [681. Cross ex-
a-ir,,i a pseudocubic crystal consisting of two interpenetrating sublatt::ces
with tbn polarization -i and P2. Cross represents free energy in the firm

of a series according to the even powars of the quantities:

P,-Pg,+PU:p-n 2 P,
- 0 , .. ;-z, e a U

writing it in a form analogous to Devonshret , exprecsion (3.49). Making

use of such a free-energy functton it is possible to describe dielectric
properties of NaNbO3 in zli phases.

:r should be noted that as in the case 0 ferroelectric transiti•n,

to construct a consistent thermodynamic theory-of antiferroelectricity it
is necessary to determine the transformation properties of parameter which

characterizes antiferroelectric transition [69]. This question is exsmined

in detail in the work [69] using antiferroelectric transition in (N114) 2 P04
as an £rnmple and employing the general group method.
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CHAPTER 4. MICROSCOPIC (MODEL) THEORY OF FERROELECTRICITY

The first attempts to explain the appearance of spontaneous polari-
zati~n by means of some atomic mechanism date back to the time when the
only known ferroelectric was Seignette's salt.

According to hypothesis stated by 1. V. Kurchatov and P. P. Kobeko
the reason for the anomaly of the properties of Seignette's salt is the

appearance within a certain temperature range of preferred orientation of
rotating dipole groups, whli' disappears at a certain temperature similarly

to the way this takes place in Lang.vin theory. The interest in micro-

scopic theory of spontaneovs polarization considerably increased immedi-
ately after the discovery of ferroelectric properties of BaTiO3 .

Most of theoretical investigations were based un the assumption
that spontaneous polarization is a result of displacement of these or other
ions (TV or 0 icis in BaTiO3 , protons in Seignette's salt or KH,). This
state is maintained by a self-consistent field (i.e. by the fieTd defined
by the displacements of these ions). Phase transition, i.e. the disappear-
ance of Psp is brought About by the preponderance of disordering action of
thermal movements of iu:os over the action of effective field which holds
the ions in displaced positions or provides a certain preferred direction

of statistical distriLution of elementary dipole moments.

Two types of models have appeared in the process of forming these

representations which are considered valid even at the present time in

spite of these or other refinements.

1) Model of 7rder-disorder type in wnich it is assumed that "active"

ions may be in one of the minima (displaced reative to the center of the

cell) of potential function describing its state (Figure 4 .1a). In this

case* spontaneous polarization is a result of preponderance of the numler
of ions located, for example, in the potantial well 1. This model was

used to explain the nature of ferroeiectricity in Baj'o3 I], Seignette's

salt [2], KH2 PO4 [3], etc., and Is also known under the nane of '"model of

M2) fodel of "displacement" type. Above Curfe pointr activ-, ions

are on the average in the center of potential well which as a result of

the action of self-censistent field becomes asymmetrical when T 'Zf., i.e.
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Figure 4.1. Potential function wjith two
minima (a) and with one min-
imum (b).

its minimum is displaced along one of the directions allowed by the lat-
Lice symmnuetry (Figure 4.1b). Thus, the average position of an ion proves
to be displaced and this leads to the appearance of Ps. This model which
is also called a model of anharmonic oscillators, was succesafully used
ii. a whole series of works devoted to theory of BaTiO3 [4, 3] and other
ferroelectrics.

Phase transitions of the "order-disorder" type and transitions of
the "displacement" type are differentiated in accordance with these two
models. Of course, in actual cases these models do not "countervail",
each other and transitions of mixed type, for example in K112PO14 appar-
ently exist (see also chapter 5, paragraph 4, subparagraph 3).

It should be noted that the entire process of formation of micro-
scopic theory of ferroelectriciry may be characterized by two main direc-
tions of their develornent, which by no means exclude each other.

1) Model theories of the above-mentioned type, constructed on the
basis of these or other assumptions concerning the form of potential relief
along which Active ions are displaced. The movement c.f these ions takes
place in a time-averaged self-consistent. field. The question of the re-
gion of existence of Ps4=O is reduced to a determi.|ation of conditions
under which nonzero displacements of ions averaged over the ensemble (or
time) are allowed.

2). Dynamic theories, developed somewhi.t later, in which the field
is considered to be deoendent on instantaneous positions of all ions which
perform related vibrations relative to the equilibrium positions in the
lattice. Phase transition points are defined as points of a loss of dynamic
stability of the lattice relative L-' one of its normal vibrations. An
adva-.nz' of this approach is tha_ it makes it possib..e to connect the
characterist.Lcs ;)f thv vibv.. :P Cn it~e la,!tce Wi, .n~fai.
in, the trinsition region.
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'Dynamic theory to which chapter 5 is devoted, has very many c,'maori
points of contact with model theories examined in the present chapter.

Jaynes and Wigner [6] theory in which spontaneous polarization is
viewed as a result of spont3neous change in the symmetry of functions de-
fining the state of lattice electrons appeared in the beginning of the
1950s. These representations give rise to certain objections on points
of principle. However, at the present time, marked trends toward the
further development and refinement of the so-called electron theory of
ferroelectricity exist.

It should be noted that perfection of theories based on represen-
tations concerning displacements of ions is possible not only by means of
using the apparatus of dynamics of crystal lattices. Considerable refine-
ments can also be achieved within the framework of statistical methods if
rough model representations are abandoned and if the short range of icns
is taken into account on the bas!s of more accurate representations, in
particular those involving the use of Bogolyubov method, as this was done
in the works [7, 8].

Interest in tla models of local minima has also resumed at the
present time. Examination of phase transitions of the order-disorder
%ype in terms of Ising model with lattice vibrations aud quantum effects
taken into account [9] opens new possibilities of expiaining and classi-
fying the characteristics of ferroelectric transitions in different crys-
tals.

Big progress has been recently achieved in theory of phase transi-
tions in hydrogen-contaiting ferroelectrics. The latest works by Blinc,
et al. [10, l1J and a number of works [12-16] on two-dimensional models
of such crystals qualitatively explain many important features of phenom-
ena taking place in them.

Par. 1. Free EnerRy in Self-Consistent-Field mathhod

Generai relationsbips which are used in various model theories
based on representations on the displacements of ions are derived in
this paragraph. Expressions obtained on the basis of self-consistent-
field method are not connected with any concrete form of potential re-
lief and can be made use of it, the analysis of models of local minima
and anhamorm ic oscillators,,

1. Free Energy

Displacements of ions bring about the appearance of strong effective
fields who%,e action is conducive to fixing c' ions in their displt'ed
Spoatfcq. S,'•itantous polarization developing tn thir process is eas,

nected with the Action of !ffective fields on the electrozn sLells of lons.
Interaction of ions is taken into account in two ways: inte;raction ('f the
nearest neighbors is defined by a certain function of coordinaces Uk (x,
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y, z) which reproduces the energy relief along which ions belonging to
the k-th sublattice "move"; interactio.k forces, i.e. electrostatic force,
are introduced by an addition to Uk (x, Y, z) of the term z'k (Fkrk) which
is equal to potential energy of the ion with a charge zi, displaced in the
effective field Fk by the quantity, rk. Effective field depends not on the
instantaneous but on the average coordinates of all of the xemaining ions,
and consequently, on statistical properties of the entire crystal lattice
as a whole.

In accordance with these representations the investigation is re-
duced to the solution of two problems, independent in a certain sense:

11 calculation of effective fields acting on different ions, and
also calculation of total polarization as functions of applied field and
average displacementz of ions;

2) writing and so.ving equations defining the electric and thermal
state of the crystal under the conditions of thermodynamic equilibrium;
these equations make it possible to determine the phase transition points,
temperature lependence af spontaneous polarization and dielectric constant,
entropy jump, etc.

Lorenz method or Ewald method (see par. 2) is. used in the calcula-
tion of effective fields acting on different lattice ions. The calcula-
tion in the process of which the crystal lattice is divided into m simple
monatomic cubic subiattices (for BaTiO3 nm5), leads to the following for-
mulas for cubic and tetragonal crystals [3, 17]:

F•,, - ,,L., + 0 h,, P.,,,.( ,I

"-. - .P". + FkPP"''. (4.2)
1t 1

Px is here component of total polarization of the crystal, Pgk'x is

electric moment of a unit of volume, forming as a result of displacement
of ions of the k-th sublattice from the symmetric position (P k,x==NzkSk,

where N is the number of cells in a unit of volume and xk -- componenLs of
the average ion displacement), E is component of the applied field, Ykf
v11 Akk, and Fk are coefficients dependent on the polarizabilities and
charges of ions and on the lattice structure.

It is essential to underscore that all of these coefficients were
calculated on the assumption that the ions are point ions. Therefore, an
exact coincidence ,f theory and experiment can hardly be expected, ar-a it

is expedient to tocut attention on obtaining the most important qualita-
tive characteristics o fr-rraelectrics. •t should also be rembered that
(4.1) is a linear approximation of the relationqhip Fkx: (Ei, Pi).

If it is assum--. that appearance of spontaneous polarization is
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brought about by ions belonging to one sublattice (for e~ample, titanium
ions), then the sums in (4.1) and (4.2) will contain only one term:

+ KP~k.,(4.3)

(4.4)

Equation of state for a crystal lattice are determined by means of
free energy of the following system:

A -- Nk InZ. (4.5)

where Z is a statistical integral.

In most cases the calculation of Z is carried out without taking
the quantum-mechanical effects into account and is based on the following
assumptions:

I) potential energy of the ion is defined by the function Uk (x,
y, Z) - zk(Fkrk), and integrals describing the state of the separate ions
are multiplicative, which is equivalent to neglecting t e correlations
between instantaneous positions of these ions;

2) appearance of spontaneous polarization is brought about by ions
called henceforth ferroactive, which belong to one sublattice (for example,

Ti+4 ions il BaTiO3 ). Because of this, statistical distribution of these
ions alone is taken into account and temperature effects connected with the
vibrations of the structural elements of a crystal lattice are ignored.

In accordance with these represeitations, statistical integral Z
is written in the following form:

I 1(2 Tm,. z. ' . I . It

-A, j3 14I kj i-J Idv (4.6)

where mk is ion mass and h -- Planck constant.

Substituting (4.6) into (4.5) and differentiLting with respect to
Fkx, we will find the following relation:

Ps$-22." (4.7)

Expressing the Fkx in this formula according to (4.1) and (4.2)
ill terms of Pgkx and E, we will obtain in equation the solution of which
gives temperature dependence of spuntaneeus polarization (with Ex=O) and
dielectric constant.

Such is the .chsme and t-a I- . of theories of ionic
dispLacements developed at the present time. They differ from each other
by the form and methods of defining the function Uk (x, y, z). Thus, in
Mason and Mattias [F1 theory, Uk (x, y, z) for BrTiO3 is given in the form
of siN local minima displaced relative to the center of the cell. Devon-
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shire [4] and Slater [5j write Uk (x, y, z) in a form characteristic of an
anharmonic oscillator.

We will examine a more general case based on the assumption [17]
that oscillations of all ions of a crystal lattice take place. In doing
so, we keep the assumptions made earlier as being valid.

In accordance with the foregoing, we will now write the statistical
integral in the following manner:

fl yrl a j h I Oj[(L " (S. (4.8)

where m is the number of sublattices.

In a particular case (for example, the model of local minima in
Mason's and Mattias' interpretation), when Uk (x, y, z) can assume only
discrete values, the integral in (4.8) should be written in the form of
the following sum:

Sexp [ * -- 3; (Fk,)] j(4.9)

where n is the number of discrete states with energy Ujk, vj is volume

determined by statistical weight of the state Ujk, in the case in question
rk is the average coordinate of an ion which is in this state.

We will limit ourselves to the assumption that Uk has reflection
symmetry and that the integrand decreases so rapidly wizh the increase of
rk that without impairing accuracy, integraticn with iespect to the volume
of unit cell may be replaced by integration with infinite limits.

For this case, free energy is t.-ual to:

•Lal P(----f--'J• (4.10)

Next, we have:

e•--~i,- r *-- ,( •.i,) l _ -- ••"(4.11)
L- kr "'O 4

Differentiating (4.10) with respect to all F.:, ve 'i!- obtain

system of 3a, eq'.atiot.,; the Iollowing totm:

PO--,(Tr, I,. C : so .... P-.....- P--. (4.12)

where-
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Assuming all E4=0, we will obtain an ecuation of state for a ferro-
electric, which defines the .emperature dependence of spontaneous polariza-
t ion:

P;tion:.-- (r P OO. P...)--o. (4.13)

We will examine first a particular case important for the further
examination. We will assume that all ions make purely harmonic oscilla-
tions, i.e. all

In this case, integration of (4.6) can be easily carried out and,

therefore, (4.12) will be written in the follow; ,g form:

P."S (4.14)

where Nak is polarizability of ionic displacements.
k2 i

Substituting (4,14) into the preceding expression (0.13), we will
obtain a system of linear equations of the following form:

• + 8,4.) P4,

where
1 when k'=k

kk' I=0 when ic I*k.

Generally speaking such a system has only zero solutions, i.e. the

crystal is paraelectric. However, in a particular case when the determi-

nant of the system with the elements O(ik kk, + 6 kk' vanishes, nonzero

solutions of the following form are possible

gkx

where Ak is an alg-eraic complewe..t of the k-th line and 'r is some arbi-
trary constant. However, these ..ilutions are unstable. This can be easily
shown if we calculated directi'. the free energy which in this case is a
function of the squares of VPkx which is inf.iitely decreasing with the
increase of Psx"

A st- 1e frrrc_..ectric cgntiguration can exist only when the ex-
pression for free energy of the crystal contains terms that are propor-

tional at least to (P ) and the aggregate of which forms a quantity

smaller than zero, and the higher powers of P gkx making up together a
positive quantity. g
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Terms containing high powers of P S provide the saturation effect
F__ gkx

of spontaneous polarization and may appear in the expresston for free
energy if the ions of at least one sublattice move under the conditions
when nonlinear forces are in operation; in other words, if at least 2ne
of the functions Uk (x, y, z) contains terms of higher powers than x 0 y 2
z 2 . It is precisely these terms that account for the temperature and
nonlinear effects characteristic of ferroelectrics.

As regards the first condition -- the requirement that terms pro-
s 2

portional to (Pkx)2 make up a negative quantity, it is necessary in
order that the freg energy A(Ps) have a minimum when Xk1 IPs=/= 0. This
condition is realized owing to a stropg long-range action -- effective
Oe'd Fk (Ps) which "breaks" the symmetry of the function Uk (xyz).

Ions performing harmonic oscillations indirectly affect the tem-
perature characteristics of a ferroelectric; taking them into account
when calculating the effective fields and polarization will introduce
corrections into the expressions for the coefficients in (L.3) and (4.4).

2. Conditions for a Ferroelectric Transition

According to the theorem on implicit functions [18] the existence
of a unique and finite nontrivial system of solutions cf equations of the
type (4.12) is possible with those values of PS with which the functional

gks
determinant

dT;. T.

-. . . .-. .

is not equal to zero.

The equality of the determi.iant to zero indicates a loss of "sLabil-
ity" by the system (4.12). It is obvious that the 'emperature of transi-
tion into paraelectric state will be found by substituting into (4.15) the
trivial solutions of th' system (4.12):

pS . s .. S .

I g grnz

A study of the condition of equality of the determinant (4.15) to
zero together with the equations (4.12) makes it possible to draw a num-
ber of conclusions concerning permissible types of solutions of these
equations.

1) With a phase transition of the first kind (4.15) may vanish or
become a complex quantity when PSi,=:s 0.
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1) The system (4.12) is satisfied with the solutions of the follow-
ing f*,.-a:

P,'ms M0. so g oý - ... M0; P, I0 . pot0. (4.16)

In other words, low-temperature transitions similar to those which
take place in BaTiO3 are allowed in principla when several active lattices
are present.

2) Solutions of the following form

PP. s. a, A If; ar P .. .... Pa.

are not allowed, i.e. for each specified component Psi, one and only one
transition is possible with which all spontaneous displacements of several
active sublattices disappear at once.

3) Solutions of the following form

P' 0 .... il A# .... )" *U

do not satisfy the system (4.12). In other words, antiftrroelectric con-
figuration can appear only as a result of "opposing" displacements of ions
belonging to one and the same sublattice. From the standpoint of micro-
scopic theories examined here this assumption is reduced to a formal division
of statistical integral pertaining to a given sublattice, itto two multi-
plicative groups

and to a doubling of the number of equations of state. However, with such
an approach the question of the causes of appearance of antiferroelectric-
ity does not gain a more thorough (r-omistic) interpretaLion in comparison
with the application of Kittel therridynamic theory (s.e paragraph 4 in
chapter 3).

We will return to the equations (4.12). It dizi not appear possible
to find a qtot,'tio.. o? Ll.ese systems of equations in a general form with
arbitrary Uk (x, y, z). It is, therefore, expedient to search for approxi-

mate methods of solving these equations for each concrete form of Uk (x, y,
z), i.e. separately for each model theory proposed.

For all methods of defining Uk (x, y, z), when determining Curie
point it is necessary to ute the condition of the functional determinant
becoming zero or appearance of complex solutions.

As an illustration we will examine this rule as applied to the
existing model theories in which the presence of one ferroactive lattice
is assumed. Equations of state are written in the following form:
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-P-M-4(. Ps P.; P'w 0.

Pd'
--'Y (T. Ps. P..

P p ...) O.

Inasmush as FsX-- P5  and ,-sx= PPsx it becomes easy to express
hera the equations in terms of the components of total spontaneous polari-
zation. These equations must coincide with respect to the sense with the
equations of state obtained as a result of differentiation of free energy
A (T, Psx, Pv, i? ) formed according to thermodynamic rheoLy of fer:o-
electricity L19,. Therefore, the following may be written.

F. O (r.P..P,,. .)

where 'r is a dimensionless multiplier.

Next, we have the following for the determinants:

1 & II•t &A (4.17)Opal I - I dpl l-

It follows from this that in transitions of the second kind the
vanishing of the functional determinant takes place when the right member
of (4.17) is equal to zero. According to thermodynamic theory of ferro-
electricity this inoicates a loss of stability, i.e. a.. absence of the
minimum of free energy. In the case of transitions of the first kind it
may be expected that (4.17) will vanish when T-6 (T>().

In the region of tetragonal symmetry and above Curie point the de-
terminant has only diagonal terms:

- a 0

0 0

Therefora, one of the conditions for the determinant becoming Lero
will be:

-0.
p -VP.,

Making us'i of (4.12) and (4.!0) we will find:

ki - Q'Y .- (4.18)

or if x=O at Curie point, then k6-?. .

(4.19)
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Inasmuch as 8 Nz'x is effective field upon displacement of all
ions by a quantity x, the relationship obtained defines the magnitude of
its average potential energy as of the entire field upon the disi.lacement
of the sublattice. This corresonds to the case of the so-called maximum
oscillations (q=O) which play the main role in dynamic theory of ferro-
electricity (see chapter 5).

Formulas (4.18) ard (4.19) are also a condition for phase transi-
tion, expressed in the language of fluctuations in the displacements of
active ions. In the case of a phase transition of the second kind, when
T-T=, x=O, A x2 =x2 and the condition (4.18) exists. In the case of a
phase transition of the first kind, at the transition point x=0O the nuclei
of the new phase appear in the form of fluctuations even before the dis-
appearance of spontaneous polarizz.tion and, consequently, the condition
must be more complex. We will note that fluctuations in transition region
are finite owing to the "self-consistency" of the field F, which does not
allow the appearance of large values of Pi in (4.11).

Formula (4.18) makes it possible to determine the order of fluctua-
tions of polarization:

Ap = is#'U1T= 0 A CV'CE.

which agrees well with the results of thermodynamic theory (see chapter 3,
paragraph 1, subparagraph 3).

Par. Calculation of Internal Electric Fields

I. Determinat:ion of Internal
(Effective) Yield

Internal field F acting orn an atom in a crystal lattice may be
represented in the following form:

F,=F•+ E3. (4.20)

Here E0 is an evternal alectric field and E1 is a field acting on

the atom in question from the side cf the other atoms of a unit cell. the

field El is defiT.ed as follows;
Sd' ( .

where Pi is dipole -.i-.ment and ri -- the radius of the vector of the i-th

atom of the lattice.

We will examine first the simplest case of a diatomic cubic crystal

(for example, of NaCI type). In this case, to calculate the field El it

is convenient to separate mentally from the entire volume of the crystal a

sphere surrounding the atom in question and having a radius of several
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lattice constant. (the so-called Lorentz sphere). Taking of the micro-
scopic structure of the crystal into account, i.e. making use of the
expression (4.21) for the calculation of internal field, and the cal-
culation of the lattice sums are necessary only inside the Lorentz
sphere. However, for diatomic cubic crystals the corresponding contribu-
tion of E' into the field E1  is identically equal to zero. This follows

from the considerations of symmetry. Outside the Lorentz sphere one may
!xamine the crystal approximately as a homogeneous continuous medium with
polariz.ition P on the surface of the specimen. Calculation of the field
El in t e center of spherical plane in such a medium is a classical prob-
lem in dectrostatics. The resilt of the solution of this problem has the
following form:

- . (4.22)

Finally, charges which had appeared owing to polarization on the
surface of the specimen (depolarizing field El) will make a contribut1on
to the fieLd E1 . In the simplest case when t~e cry.-tal is an ellipsoid
(or a shape which is an extreme case of an ellipsoLd) and the external
field E0 is oriented along one of its principal axes, the depolarizing
field is connected with the polarization of the specimen by the simple
relationship:

(4.23)

Figure 4.2. Relation of depolarizing
factor h to the c/a ratio of the prin-
cipal axes of ellipsoid.

The quantity M is called depolarizing factor. Its values for
different shapes of the specimens have been calculated in the works [20,
21] (see also approximate calculations for the other shapes of the crys-
tal [22, 23)). In Figure 4.2 is shown the relation of M to the ratio
of the sxe. - ellipsoids of revolution [241. We will also note an inz-
portant proper.y of depolarizing factors: Ma + Mb + 'I-4 1C where Ma, Nb
and Mc are depolarizing factors in the direction of three principal axes
of the ellipsoid.
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We will now examine an internal field acting on an atom in a cubic
crystal placed between capacitcr plates:

P-4+4wP-4iP+Lr (4.24)

Here E0  is the field between capacitor plates in the absence of a
dielectric. Upon insertion of a dielectric the field in the gap between
the surface of the dielectric and capacitor plate becomes equal to E+4%.P,
the thirdaddendin (4.24) corresponds to a depolarizing field, the fourth
-- to the field of Lorentz cavity. In a noncubic crystal, one more addend
corresponding to the field created by atoms inside Lorentz sphere would
appear in (4.24). We L.ave che following from (4.24):

V-Fe+7 P. (4.25)

It may be seen from (4.25) tiat macroacopic (i.e. averaged over a volume
which is large in compariaon with the unit cell) field in the crystal in
the case -nde.r consideration is simply equal to the field EO.

Considetations given above bear first of all an illustrative char-
acter. Ewald transform [25, 26j which gives a systematic basis for the
examinat.ion of the internal and macroscopic field in an arbitrary dipole
lattice should be made use of in more complex cases.

2. Macroscopie Field in Dipole Lattice
anO Ewald Method

We will examine the dipoleb

p (h) -. pev•b. (4.26)

located at the poir-ts of Bravais lattice (x(h)--hla + h2 a 2 + h3 a3 where
a,: a 2 and a3 are base vectors). If qa•I, where "a" is lattice constant,
then such a Bravais lattice may be approximately ex;iraintd as a continuous
polarized medium wirh macroscopic polarization:

p (X) _1 t"P, (4.27a%

(Here -- is the vol.uie of unit cell). Correspondingly, it is possible to
de ermine the macroscop!c (i.e. changing little at distances comparable
wih "a") electric field E with the aid of electrostatics equation:

dlv ;E(x) + 4-4rF)ij.o8 (4.27b)

Only the irrotational component P (x) makes a contribution in
(4.2"/a). It is easy to ascertain that this component is parallel to
q. Therefote, on the basis of (4.27b) we have:

(4.28)
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Taking (4.26) into account we find from (4.28):

F, ()• (4.q2;)

The relationship of macroscopic electric field to the dfr.,ctijn
q->0 has the same physical sense as the depolarizing factcr M in the calcu-
lation of internal field by Lorentz method: it takes account of the de-
pendence of depolarizing field on the shape of the specimen.

Effective field F naturally differs from the macroscopic field E.
An ev-act expression for the field F(x) has the form:

k -/, -xI • (4.30)

Using Ewald transform it is possible to reduce the expression for
F(x) to the sum jk(x) and to the rapidly converging series not dependent
on the direction a-40, i.e. Ewald method makes it possible to separate a
macroscopic field from a Coulomb field and ensures rapid convergence of
lattice sum.,*.

Follcwing iwald, we will make use of the integral relationrsnfp"

VS- (4.31)

Making use of (4.31), (4.30) may be written in the following form:

~PC 71 "r-lb)-£1I qxhx)}P. (4.32)

It is easy to verify that the expression in braces is a function
x with the periodicity of the lattice. Consequently, it may be repre-
septed in the form of an expansion into Fourier series whose coefficients
t:7ti be. equal to [21]:

In & "trite = 101-12-3)~. .=.*I~4())): (4.33)
--with respect ,

to the celll

[The summing in (4.33) is don'- over all vectors of reciprocal lattice].

The sum in (6.33) is equivalent to integration by space with the
c-.mputation of the integral giving

- •it I jr•)+RP1.•{1 V "• '-FfP[- 4f4 (4.34)

Thus, the sum within the braces of the expression (4.32) may be
written in the following for.: UP( -I3((b)-Z-,v'+ (•[x(•)--,l)- f(i)''")'-
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The ejuality (4.35) is callea theta-function transfor.a. The se-
ries in both members of (4.35) converge with large and small values of 0
fespectively. If the integral in (4.'5) is divided into two Pirts and
both expressions are made use of, then by a successful selection of the
partition parameter it is possible to achieve a rapid convergence of the
series. With q--O, effective field (the calculation of which is especially
imperative for ferroelectrics) calculated with the aid of Ewald method
has the following form:

.'-.(4.36)

This result is easily generalized for the case of a complex lat-
tice. We will number different atoms of the base with the symbols gv.

Then we have:

pt + (4.37)

Here Oik and rbik are structurzl coefficientz of internal
Lorent- field, calculated in Ewald method by the following formula:

V (4.38)

04( . (b) G(" 4••- )..p ,q (A) { - .

H-re xJ# and xV are vectors conrecti:rng the origin of coordinates
with zhe atoms ^. and v of the zero unit cell, xh- is a vector drawn
from the point corresponding to atom & of the zero uni: cell to the point
corresponding to atom v of the cell with the number h, and R is parti-
tion parameter of the series.

In addicion to this, the following ncotations have been introduced:

where

A program for the calculation of Lorentz coefficients [28] on the
electronic computer BESM,-2 using formula (4.38) has been drawn up at the
FTI [Physical Engineering Institute] imeni A. F. loffe, The program pro-
vides a quick and accurate (with accuracy to the sixth decimal point) cal-
culation of the coefficients AL for crystals of any structure.

In numerical calculations by Ewald method without the employment of
electr.onic computers it is convenlevt to use tables of special func.;tions
given in the work [29]. These tables, used in the calculations of Lorentz
(:oefficients for the ferroelectrics KH2PO4 r30,31] and NaN12 [32, 33] con-
siderably reduce the iabor consumption of _umerical calculations,
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3. Effective Fields in Complex
Dipole Structures

In the preceding ssibparagraph we examined an internal field acting
in a dipole lattice and considered in doing 3o chat the distribution of
dipoles on the crystal lattice was known to us. However, in the examina-
tion of internal fields in ferroelectrics the electron polarizability and
effective charges of ions are usually considered known. But the dipole
moments are determined by calculation. With such a method (see, for ex-
ample, [34] and the bibtiography given in this work) the calculation of
internal fields is carried out ir the following manner.

The internal field F is written in the following ftz:

F-F3+F,. 
(4.39)

where F3  is an internal field created by the point charges of lors, and
Fg is an internal field created by point dipoles. I.a according with the

foregoing, the internal field F," acting on the atom & is equal to:
g

(4.40)

The field Fj may also be represented it. the following form;

P11 ', - (4.41)

Here are structural coefficients of the internal field,
ikf PV are structural sums for a lattice of point charges w).irh can also be

i
calculated with Ehe aid of Ewald method [3A], and z, is effective charge

of the atom V. The depolarizing field was onitted in (4.40). As may
be seen from :he subparagraph I of the preceding paragraph, this imposes
certain restrictions on the shape of the crystal or its external condi-

tions. If there are s atoms in a unit cell, then defining the polar-

izability of the atom V_ as [34]

PP (4.42)

we will obtain a system of 3s equations f(-r the ca.cuiation of 3s values

"T %" "(4.43)

Here Sk and ý&V are Itronecker symbcls.

We will notc that in writing (4.43) it was assumed for simplicity

that the polarizability t. is a scalar quantity, but it is not difficult
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to generalize (4.43) for a more complex case alo. With a sufficiently
large number s, solution of the system (4.43) may pjrove to be a complex
problem. However, as shown in [34], in a number of cases this problem
can be simplified if the symmetry of the structure is taken into account.

In conclusion we will list some of the works devoted to calcula-
tions of internal fields in ferroeiectrics. Effective fields in crystals
of perovskite stucture are calculated in the works [35, 36]. The work
[37] is devoted to the calculation of internal fields in PbTiO3 . Inter-
nal fields acting in ferroelectric and antiferroelectric crystals of
perovskite type ore comparad in the works [38, 39]. The work [40] gives
a comparison of theory of polarization of ionic arystals based on a
representation of internal field, with the respectll:e theories based on
dynamic models. A more detailed bibliography and references to previous
investigations in this direction may be found in the works listed above.

Par. Model Theories for Transitions of Order-Disorder Type

Representations and methods ser forth in paragraphs 1 and 2 in
these or other modifications were used to explain atomic nature of phase
transitions observ•.d in some crystals of the perovskite groip and other
crystals, in particular in hydrogen-containing ferroelectrics. In the
last case the complexity of crystal structure and interaction forces led
to the necessity of a number of refinements of the initial model, for
example, taking into account the piezoelectric effect in Seignette's salt
and tunneling of active ions in KH2P04.

A model of local minima, i.e. representation of potential relief,
along which an ion moves, in the form of deep "rectangular" wells was
proposed at the earliest ;tage of development of microscopic theory of
ferroelectricity.

In spite of the fatt that after a sufficiently long discussion a
quite definite opinion fo:nned concerning its inapplicability to barium
titartate, this model has a wide field of application for e;Cplaining tran-
sitions of the order-diso:.der type and, possibly, some of the cases of
phase transitions of the [rst kind in ferroelectrics with a structure of
perovskite type.

1. Hodel of Local Min:ma

Suppose potential energy U from (4.8) has n deep minima removed
to a distance of 2s from each other. We will limit ourselves to an exami-
nation of these crystals where these minima are located in pairs on these
or other symmerry axes. The position of a minimum is characterized by the
subscripts j and k where j is the number of displacement axis and
k -- the nutaber of minimum on this axis tj=t..., n/2, and k=l, 2). In

the absence of an externrl field and with a uniform statistical distribuj-

tion of active ions i•i a cell U k ==Lk, and, consequently, the numbers of

ions N. k.•' k, with ar.y values of the subscripts. For couvenience we will
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use a U =U =O. Assuming that only ions of one kind can be displaced

Jk J'k'
and making use of (4.9) and (4.10) we will obtain the following expression
for free energy:

A -A# (r)- NkflIn 1Y' ~ _+Sp[ AF-1. (4.43a)

If all axes j are orthogonal (the case of nonorthogonal axes was

examined in [41]), then after the differentiation of 3 the equation

of state (4.12) will be written in the following form: J

A,r,'

P,j--.' --. (4.44)

in the absence of an external field it is convenient to write the
equation of state (4.44) in the following form;

S' I (4.45)q/-'• -0.

where and for the :ase when there is mnly one axis J,

has the sense of the order factor

P 0 N(zs)
2

j kT

where pi is the coefficient of internal field from (4.3). 1he equation

(4,45) corresponds to the equation (4.12) normalized for the maximum dipole
polarization (Psg)max=Nsz', Formulas from the theory suggested by Mason

and Mattias for BaTiO3 ace also reduced to this equation if certain inac-
curacies permitted in [ a] are eliminated. It is assumed in [i] hat minima
are situated on the principal axes of cubic cell between the Ti and o2-
ions (j=I, 2, 3) and that owing to a small radius and large space inside
the oxygen octahedron the "Ti ions can be displaced (Figure 4.3).

With account taken of stability conditions (4.15), for the case
shown in Figure 4.3 the system of equations (4.45) has nonzero solutions
when a 4.3, i.e. N(zs)2

i~e. 3k

We will compare the results following from the application of the
model of local minima to BaTIC 3 , with the main experimental data.

We will examine different possible solutions of the system (4.45).

- 121 -



I. The region of cubic symmetry:

(4.46)

II. The region of tetragonal symmetry:

• . *0; ',4-, %.•-,0; (4.47)
sb _•,

iIl, The region of orthorhombic symmetry:

In,h o•,(4.48)

IV. The region of rhombohedral symmetry:

0 , - ,(4.49)

On the basis of (4.46)-(4.49) and (4.15) it may be stated that
tetragonal phase proves to be stable in a temperature range of from 00
to 8. The orthorhombic and rhombohedral phases prove to be unstable
in the temperature range with which we are concerned from the stand-
point of the experiment. In addition to this, the following has to be
noted. If the regions of fulfillment of conditions for the stability of
solutions for the orthorhonbic and rhombehedral phases would correspond
to experimental eata, there woutd nevertheless exist a considerable
contradiction between the theory under consideration and the experiment.

According to calculations, below transition point and in direct
III IV1

proximity to it 'n% ,'.,cor.t--A, and NJ: =const= 3. However, measure-

ments show that spontaneous polarization aiong the axis decreases by fV2
times after the emergence from the tetragonal into orthorhombi: phase
[42]. This experimental fact indicates that a turning of iLoni(. displace-
ment axis by 4 5r takes place with the average magnitude of the displace-
ment of ions remaining constant, and not a redistribution of ions in po-
tential wells in two mutually perpendicular directions the way this fol-
lows from the examination of the model theory in question. In precisely

the same way the experirmental value of W\IV,---L indicates a turning of
3

ionic displacemznt axis along the volume diagonal of the cube without a
change in the magnitude of displacement, and not a redistribution of the
displacements of ions in three mutually perpendicular directions.

Thus, as a result of examination of low-temperature phase transi-
tions a conclusion has to be drawn concerning the inconsistency of the

application of a model of local minima in the entire temperature range

to explain the properties of barium titanate.
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1f *z 03 00

Figure 4.3. Unit cell of BaTiO3 .

1 -- Ba; 2 -- Ti; 3 -- 0; 4 --

local minima

We will determine now with the aid of (4.4, 4.43, 4,45) an expres-
sion for free energy A (ST) for a tetrAgonal region in the form of an
expansioa with respect to Ps:

A(P. T)-AS(T)+-- 3+_ O'(kr). (4.50)

Comparing with (3.12), we see that

"-'--; P .

and, consequently, a model with local minima situated in pairs on three
mutually perpendicular axes leads to a phase transition of 1-type (crit-
ical Curie point).

Making use of (4.50), we will obtain the following relationships
characteristic of critical Curie point:

'E. -10.-r's (:k)or % (4.51)
a T.

(4.53)

Upon a substitution of numerical values, Curie constant in (4.53)
proves to be lower than the experimental value by more than one order.
It is necessary to undericore that attempts at this or other improvement
of agreement of theoretical results witO experimental restOlts encounter
the following difficult'! in the case of the model of local minima.

According to :he definition the magnitude of entropy jump in a
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transition will amount to:

AS Na• (in Wr, - 14 wr<*). (4.54)

where W is thermodynamic probability

AS - Nk On6-tn1)- 4. 7gAN.

whereas the experimental value of ASZ(0.02 to 0.1) kN (see chapter 12,
paragraph 1). Such a wide divergence makes the attempts at "adjusting"
the model of local minima for describing BaTi0 3 by means of crrection and
refinement of its separate components impractical.

We will note one importart feature of this model. If it is assumed
that there is only one axis J, i.e. active ions may be only in two wells,
then the self-adjoint equation (4.45) has the followir-; form:

I) - 1-o. (4.55)

whence v0=0 when a,>1 and, consequently, free energy will be expressed
2

in terms of Ps as

S. .... + - __ _(_r) -" .

i.e. T
-2 - (kT)3 (c.3.12).

In other words, in this case the order-disorder transition contains
characteristic signs of a phase transition of the second kind. However,
the change in entropy is also big in this case:

AS -Nkin2.+Q. 69Nk.

The large value of AS is accounted for by the fact that coor-
dinate space of active ions has a discrete character determined by the
model selected. If it is assumed that active ions occupy both above and
considerably below the transition point a large portion of the "phaseal
space" of the cell, i.e. the potential relief is less sharp, then the
change i-. entropy should materially decrease.

The fact that the depth of the minima cann'n be too great is indi-
cated by the contradiction which arises upon a comparison of Curie constants
and of the quantity ch;.racterizing the change in spontaneous polarization
at low temperatures in the case of applying theory to BaTiO3. It is na:u-
ral that assumption concerning sloping wells raquires a passing-on from
(4.9) to continuous integration when calculating free energy, i.e. to for-
mula (4.10).
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2. Potential Relief for Ions in Ba.TiO3 Crystals

Selection of the shape of poteaitial relief for Ti ions in [1] was
based to a considerable degree on the assumption that the bonds between
BaTiO3 ions have to a high degree a covalent character. In addition to
this, naturally, the overlapping of electron shells must not be too big
so that ion charges would not be :ory small since otherwise it does not
appear possible to explain the large value of spontaneous polarization
in BaTiO3 . Therefore, it is obvious that the bonds in this crystal must
have nevertheless a sufficientlv well marked ionic character.

Because of the foregoing, a question arises: what may the shape of
potential relief be like for different ions and, in particular, is the
assumption concerning covalent character of the bonds absolutely necessary

for using local minima in the model?

Works by Hagedorn [43], Devonshire [4], Syrkin [44] and by other
authors were devoted to the calculation of potential energy of ions of a
unit *oell. In carrying cut the calculations the authors of [4, 4 4J pro-
ceeded from Born treatment of the forces acting between ions in tlie crys-
tals, i.e. they wrote the expression for potential energy of the ions in
the following form:

1. , . (Z' r -- (4.56)
4k 4k

All ions in this formula are assumed to be unpolarizable ai.J the
subscripts i and k indicate respectively the number of the ion in the
sublattice and the number of the sublattice. According to [44], in
takir.g polarizability intoaccount, additional energy Up of an ior having
the polarizability at with a ss.all displacement is introduced i. 6to the
formula (4.56), i.e. Up= - -k.oE2(x, y, z) where Eo(x, y, z) is the field
acting on the displaced ion.

In [4] it is assumed that the ion is in a spherically synmmetric
field. I11 [44] the formulas are determined more precisely with anisot-
ropy taken into account.

As a result of calculations it was found that the only stable posi-

tion for Ba 2+and Ti4+ ions (in the absence of effective field brought

about by spontaneous polarization) is the center of a cubic cell. In

other words, for the Ti4+ and Ba2+ ions there a no potential minima

displaced relative to the center of the cell. In doing so, anharmoni-

calness for the Ba 2+ ions is less marked than for the Ti4+ ions, i.e.

the position of the Ba2+ ions is the most stable. It was also found

that the deviation of the field acting on the O2- ion3 being displsced,
from the spherical symnmetry is marked considerably more strongly. The
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pcttential energy of 02- has two minima of UO- 0 .5 electron-volts situated
4+

on a line connecting it with two Ti ions at a distance of 0.33 X from

the normal undisplaced position of the 0 ion. We will note that accord-
ing to experimental data the displacement of ions amounts to S 4+I-A006 1;

00 Ti&0 2-"'0.17A; ý Ba 2+ -"0.00

The results obtained in [44] indicate that the minima of Uk(x, Y* z)

displaced from the center of the cell may appear also in purely ionic
crystals. Of course, it should be remembered that taking the short-range
covalent forces into account may materially affect the restv1 ts of
these calculations and, in particular, it may be found that the potential

4energy of Ti+ ions also has minima. It should be noted that Hagedorn's

calculations carried out on the basis of using Madelung method lead to sim-
2-

ilar conclusions regarding che potential energy of 0 . However, the use
of results contained in [43] leads to a big divergence of the magnitudes
of the calculated and experimental polarizations at low temperatures. The
author of [43] attempts to decrease the value of theoretical polarization
by introducing decreased effectice charges and polarizability into calcula-
tions. In other words, it is assumed that the crystal is not a purely
ionic crystal. In this case it is possible to achieve agreement wit)
experimental data. However, in doing so, the values of the chargcs prove
to be very small and the contribution made by the displacement of ions
into total polarization amounts to about 6 percent.

Abandonment of a static modcL and taking the oscillations of ions
into account would have made it possible to introduce more accuracy into
the calculations of potential energy.

Coming back to the question of applicability of the model of locil
minima to barium titanate we will note that although the use of active 0
ions within the framework of the Mason and Mattias theory would have led
to a certain improvement of it, it would leave valid a large portion of
divergerces between the results of theory and experiment. A model of
antiharmonic oscillators leading to transitions of displacement type (see
paragraph 4) proves to be more proper for BaTiO3 . However, the us? of a
model of intermediate type with oxygens aq the active ions moving between
two sloping and shallow potential wells is noL precluded for the other
ferroelectrics having a structure of perovskite type.

A model in which active ions have two stable equilibrium positiors
along some of selective directions of displacement is used to exnlain the
properties of some hydrogen-containing fWrroelectrics (see below). How-

ever, in this case also physical representations and methods of theoret-
ical investigation greatly differ from [l]. We mesn, in particular,
taking account of correlation, taking accmint of tunneling through the

potential barrier between the minima, failure to use a self-consistent
field, etc.
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3. Phase Transitions of Order-Disorder Type
in Hydrogen•Sontaining Ferrnalectrics

In a whole series of hydrogen-containing ferroele,-trics a typical
example of which may be provided by IKH2PO4, ferroelectric transition is
connected with the ordering of protons. In this case, proton has two
possible equilibrium positions on the hydrogen bond with its presencs
in each one of these equilibrium positions bringing about the appearance
of dipole moment. If the protons are ordered, then tha dipole moments
corresponding to them are combined and the crystals have spontaneous
polarization. Upon a change in temperature, protons on the bonds become
disordered and spontaneous polar!zetion disappears.

Th3 circumstance that a ferroelectric transition in KH2PO4 is
acccmpanied by a disordering of protons with a rise of temperature is
confirmed by neutron-diffraction [45] and x-ray data [46], by a high
isotopic effect for Curie temperature upon replacement of hydrogen with
deuterium, and by the measerements of relaxation time of deuterons [47].

Theory of phase transition in KH2PO4 is illuminated in two detailed
surveys [11, 47]. 'Therefore, we will dwell heze only on the basic prem-
ises and results of the theory.

The f'rst theory which described comparitively s3uccessfully the
phase transition iii KHi2PO4 was Slater theory [3]. Slater assumed that
each proton has two syrinetrical positions on the hydrogen bond and that
there is only one proton for each hydrogen bona. and that only two hydro-
gen atoms may be near each P04 group. Only the suort-cange interactions
between protons were taken into account in Slater's calculations which
were later improved by Takagi [49]. Slater theory predicts phase transi-
tion at a. temperature

kI,- (4.57)

where I Is the difference of dipolc energies oriented along and rerpen-
dicularly to the tetragonal axis. Modified by Yomosa and NiiamiSd r50]
Slater theory, which takes piezoeiectric effect into account 5 predicts
anomaly of elastic properties agreeing qualitacively with the experiment,
and the magnitude of 3pantaneous deformation of the crystal which coin-

cides axactly with the experiment. However, Slater theory cannot explain
a high isotopic cffeat .-- a nearly twofuld rise of Curie temperature upon
replacement of hydrogen with deutetrium. An attempt to examine lon -range
forces in Slater's model was made in the work [51]. Theory in [51]1 sat-
isfactorily dencribes most of the erperimental data with two exceptions:
it also predicts too large an entropy of transition (see subparagraph I of

this paragraph) and does not give a clear explanation of isotopic effect.

The last circumstance is explained by t'ic fact that it does not

take *ccount of quantum phenamena (the tunneling of protons) the impor-
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tance of which was pointed out by Blinc [52] and which may satisfactorily
explain the isotopic effect. Blinc and Svetina [10] suggested a new ver-
sion of the theory based on the method of group decompositions. Both the
short-range and long-range forces, and quantum effects are taken into
account in their calculations. Blinc and Svetina theory explains the
isotopic effect and predicts correct value of entropy of transition. In
the c'assical extreme it is reduced to the work model [51].

In 1i6?, de Gennes [53] introduced for the description of transi-
tion .n Kl.-,-!O4 the so-called isospin method which was used in the works [54,
51, 56j for the study of collective excitations of protons (see in [11]
a L*=t-ailed review of results obtained in [54-55]).

In the investigatien of elementary excitations zhe Hamiltonian of

the !,ystem is written in the following form:

a-•+ nL t"(4.58)

Hiere Hrp is the Hamiltonian of proton subsystem in the lattice
whose mction is fixed, HL is the Hamiltonian of lattice vibrations with
the p:-tons at rest, the term HpL describes the interaction of the proton
arn,. lattice subsystems.

Following de Gennes [53], introduction of "isospin" is usually
made use of in writing the Hp. in doing so, each proton is assigned a
fictitious spin equal to (Q) if the proton is in one of the two equilib-

rium positions, and to (-½) if it is in the other equilibrium position.
In this case tae Hamiltonian H p (see [11]) has the following form:

-R, r'-s- M " 0 .,s (4.59)

+ rj's,.sO,) + us (S') + 4, (S').

Here r is proton tunneling frequency [I'1, the second term de-

scribes the tunneling of one proton at the tunneling frequency of the
other, the following terms describe respectively the two-, three- and
four-part interactions, the subscripts f and g number the lattice points,

the subscripts Oc and number the protons at the poinc, the operators
x s

S and f, are described by Pauli ;iatrices:

fs•

and act on the eigenfunctions:
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If the interaction of protons with the lattice, and the terms of
the third (U3 ) and of the fourth (U4) order in (4.59) are neglected, then
the Hamiltonian Hp will acquire a comparatively simple form:

N a 0 a .6I
-il IS/,.+ 2:;4 + ~~;.;,if¶s;.s,) (4.61)

In the approxirtxation of molecular field (4.61 mat, be rewritten in
the following form:

- R.; ý,.% +(ý.62)

where m. - 2r.:- +2n < ý>

N,-21 s;,#>:

<sZ> indicates thermal average Sz.

An examination of the Hamiltonian (4.62) makes it possible to find
the frequencies of quantitative "quasi-spin" proton modes and determine
(in the approximation of chaotic phases) their temperature dependence.
The main result of such an examination amounts to that one of the frequen-
cies of proton modes in KH2 PO4 near Curie point changes with temperature
in accordance with the following law:

1 M) ,- •hr -- 9) + a?. (4.63)

i.e. with T - W0•c'0O when 1-*0. Thus, the behavior of this quasi-spin
mode is similar to the behavior near Curie point of ferroelectric lattice
vibration (soft mode) in ferroelectrics of displacement type.

Taking into account the interaction of proton subsystem with lattice
vibrations, the ifiportance of which was first pointed out by Blinc [571,
changes the results set forth above in the following manner [58]. Onc of
proton modes is highly "interlaced" with the frequency of optical lattice
vibrations, end the frequency of one of the two bound proton-lattice modes
vanishes at the transition point (see in more detail in subparagraph 3,
paragraph 4, chapter 5).

Another new interesting result in theory of phase transition in
KH2 PO4 is an exact solution recently found by a group of authors [12-16]
for a two-dimensional SlaTer model. Tn this case, phase transition proves
to be of the first kind with a reiease of latent heat. As in Slater theory,
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Curie temperature is equal to

k ln 2

Thermal capacity proves t( be above and near • cpr-(T - Q)½
unlike Slater model in which thermal capacity at T=8 remains finite.
Dielectric constant is governed by Curie-Weiss law.

4. Ising Model

Different model theories connected with the use of a self-consistent
field, as well as Landau phenomenological theory of phase transions, are
applicable only in the case if fluctuations do not play a determinant role,
i.e. if the radius of their correlation is small in comparison with the
radius of interaction characteristic of the system in which phase transi-
tion takes place.

As shown in subparagraph 3, paragraph 1, chapter 3, this region is
small for ferroelectric transitions (it amounts to fractions of a degree).
Hcvever, the behavior of physical quantities in direct proximity to Curie
point is of a special interest.

In the region: where fluctuations aie substantial it was possible to
create microscopic theory of phase transitions only for a two-dimensional
Ising model. By Ising model is anant a lattice of dinoles each one of which
occupies only two positions and interacts only with the nearest neighbors.
In a two-dimensional lattice each dipole interacts with four neighbors so
that the energies of the parallel and antiparallel dipoles are dissimilar
(we will indicate their difference by 1). Statistical sum for such a
lattice can be calculated exactly (see [56]), and free energy related to
one dipole proves to be equal to:

"I,-r 11; (Cr'+ .']-*,d *-'.. (4.64)
A (r)m-kTj1 Inmf2+~i V'L'~ CI+O)

#S

The function A (T) has a singularity at a temperature e, detcr-
mined from the following condition:

sht-1_1 . (4.65)

With T<( the lattice is in an ordered state, with T>e it is
in a disordered state, and with T&• a phase transiEion of the second kind
takes, place. Free energy near the transition point has the following
form:

Ark4.66)

where a and b are constants (with b >0) and thus, thermal capacity at

the transition point tecomes infinite in accordance with the following law:
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c.---:In ir--oi. (4.67)

If a phase transition in Ising model is approached from i-he stand-
point of Landau theory, the role of order parameter will be played by the
average dipole moment at the point P ("spontaneous polarization" of theII lattice). With the approach to the transition point P vanishes as

Pr•-r-o)",. (4.68)

Finally, the correlation function f(r , k; r.,-) of dipole moments
at the lattice points with the coordinates rik ank rik, has a singu-
larity at a T=6 . For T#=0 the correlation function decreases exponen-
tially from rjk - rik,. With a T=0 the correlation proves to be very
strong and f decreases slowly:

! -• I r• -- g~,I"

[compare with formimla (3.30)].

Table 7

Beha~ior of Physical QuantitLes Describing
Phase Transition With T4 0 for a Two-Dimen-

sional Ising Model [60]

_c."___l____1_ €1 1K-

< 0 . 1...... <0 0o!

0 30 Etlla2  
"~

A~E1>5 { 0 ol 22.
•P. (r) P. (Y,)- 0 0 1/41-.' '~ l

5 - t 'i r e P o ,l t = . t > > G 0 - - =
,A.'1;UU n <0 0 '" v-=

Key: (1) Physical Quantity (5) Coherant length
(2) Spontaneous polarization (6) 1Eecctric field E

Ps (7) Eenavior of the quantliy
(3) Dielectric constant (8) Value of critical indices
(4) Correlation function

Physical cuantities describing phase :ransltirzis in Ising moodel are
systematized in Table 7 where all "critical" indices (see paragraph 1,
chapter 3) describing their behaviot when T--9 are given. !.tb the aid
of Table 7 it is possible to verify that (as already noted £n subparagraph
3, paragraph 1, chapter 3) sinilaritv relationships mikln i..- possible
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to express critical indices in terms of two fundamental quantities are
satisfieo for a two-dinensional Ising model.

It is of inteiest to compare Table 7 with Table 6 (see chipter 3)
in which similir re.ults obtained witi the aid of Landau theory are given.
This comparison indicates the considerable difference in the results ob-
tained on the basis of Is.ng model and phenomenological Lheory, and thus
underscores tVx. advantage of investigating the microscopic models.

Unfortunately, an analytical solution has not as yet been found for
a three-dimensional Ising model. However, there are numerical computerized
calculaticns r611 che main results of which are reduced to the following.

With the approach to the transition point (rom the side of high tempera-
tures, thermal capacity diverges as al(I - (e)0.2, and with the approach
from the side of low temperatures it diverges logarithmically as 22 ln(O -
- T). In this process, spontaneous polarization Ps -•(ID- T) 5/16 and

dielectric constant behaves as (T)- 5/4 . 1)

Results of numerical calculaLions fcr a three-dimensional model are
of interest in, connection with the results in the work F'62' in which it is

shown that with a certain relationship of lattice constants the character-
istics of thermodynamic quantities in phase transitions of the second kind
in crystals must have the same form with a change in symmetry as in a
three-dimensional Ising model. The available experimental data for ferro-
electrics qualitatively agree with this conclusion (see chapters 8 and 12)
in the sense that .hen thermal capaccry exhibits a A-peak. the shape of
the curve on the side of ferroelectric phase is staeper. A more detailed
comparison with the experiment has not as yet been made. The work [62]
ýlso examines the effect of the oscillations of atoms and quantum effects
and it has been found chat taking the oscillations of the atoms into account
leals tn a necessity of adding terms describing the interaction between
non-nearest neighbors ana also the multi-part interactions, and quantum
effetLs lead to the appearance of a transverse field.

it is shown in [62' that this field may be responsible for the iso-
topic displacement of transition point, .Jhich occurs, for example, in the
ferroelectrics KF')P0 4 and KD2 PO4 . (A similar result was also obtained in
the works [10, 63). Apparently these effects do not change the character
of char'uct-iristics near the transition point.

A qualitatiie argument in favor of the last statement are the re-
suits of an investigation of a two-din-e.sional Ising model with the inter-
acLion of non-nearest neighbors taken into account, Such an investigation
carried out in the work ['64 in which interaction with dipoles following
after the neare.t neighbors was taken into accoun., showed that the shape
of the characteristic and the asymptote of the correlation function remain
the same as, for the usual two-diimensii.nal ising lattice.

An important distinction -. * such a case is only that with a certain
relationship between the constants the systenr undergoes three successive

1) Numerical calculations were carried out for a face-centered
cubic lattice.



phase transitions with a drop of temperature: first from paraelectric state
to ferroelectric state, then from ferroelectric state again to paraelectric
state and, finally, to antiferroelectric state.

A situation when transition to ferroelectric state takes place with
a rise, and not a drop of temperature, occurs. for example, in Seignette's
salt. In the interaction with non-nearest neighbozs, Ising model permits
such transitions only in a very narrow range of numerical values of the
interaction constants. This may correspond to the observed rarity of such
transitions.

In the light of the foregoing the importance of experimental inves-
tigations of characteristics of physical quantities in transition region
should be pointed out once more in order to attempt to understand whether
these characteristics correspond to results obtained for a three-dimen-
sional Ising model both in the qualitative and quantitative respect.

Par. 4. Model Theories for Displacement-Type Transitions

1. Model of Anharmonic Oscillators

An attempt to utilize representations for nonlinear oscillations of
titanium ions to ekplain the nature of ferroelectricity in BaTiC3 was made
for the first time in a work by Ginzburg [19]. Later these representations
were analyzed in detail and developed by Devonshire [4] and Slater [5].
Some problems pertaining to the model of anharmonic oscillators were also
examined in [41, 65-671 and in other works.

The main distinction of this model from the model of local minima
is assumption of a smooth change of the relationship Uk (x: y, z) and
abandonment of assumption concerni'.g the existence of potential minima
"prepared in advance." Owing to the appe.Lrance of a self-consistent field
when T<) the function Uk (xyz), symmetrical for cubic crystals, loses
the center of symmetry and a nonzero average: displacerenL of ions takes
place. This situation can occur only in the case (see subparagraph 1, para-
graph 1) if the oscillations of active ions have a marked anharmonic cnar-
acter, i~e.

U & W, + 0 +2  31 + b , ( e + 4 ) + U, S ( . A+ y.+ * ) . ( 4 . 6 9 )

Instantaneous positions of the point dipoles appearing upon the

displacement of an active ion relative to the center of the cell zre con-

sidered to be independent of each other. The interaction cf th'ý dipoles

is taken into account by the introduction of an averaged field determined

by the action -f all of the rema ting dipoles. For this purpose: a term

V'F is introduced into (4.69). Ir. this terrm z' is effective charge of

the central ion, F is effective field actiag on .he ion, and r is a

radius vector connecting the center of symmetry of the cell with the ion.

Thus, we have here anharmonic oscillations relative to the cetter the
position of which depends on the magnitude of effective field,
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In the integration of (4.8) the anharmonic portion (4.69) is con-
sidered to be a small quantity. rhis make5 tt possible to expand the
exponent under t-he integral sign into a series with respect to
the anharmonic portion. In that: case we have:

AXk 7la[n.ytwTpQ)' - + '~ +2s

+0+ -S p. "+ 4r P-*I.

+ 2bi (PFC4 -4-P FýF +. ikrJ.
(4.70)

Differentiating A w.th respect co the field F we will obtain
a system of equations (4.12). However, inasmuch as free energy is ex-
pressed here not in terms ot exponents but in the form of a power series
it is more convenient, by using (4.12), to represent it as a function of
total polarization. This makes it possible to make an 11mnediate co.,apar-
ison with thermodynamic theory, i.e.

,- kT in [ (%kT)'k f,' +t 5 2.
I Ijl'

+h 21;, "" + P1. + PAIP,) + ..

(4.71)

where $ is determined from tu.e condition or the ccelficie-t at P2 be-
coming zero, i.e.

4 Nr?:

2 k '-"1(4.72)

According to the calcuiaticns in [r51

Ir 0  :TP,- ICA. -.r Y .," •

7 ormula (4.72) has a sufficiently definite physical sens.: naieiy,
I ~~Nz' 2  1

a ferrvelectric transition (0>0) takes place if the constant 1)

which characterizes Coulomb forces rending to displace the ion, is larger
than the constant which chiracterizes elastic force tending to return the
ion into initial pos.tion.tn dynamic theory (see chapter 5, paragraph 4)
this qualitative defiaition of condition for existence of phase transi-
tion acquires an additional sense in Zerms of stability of lattice vibra-
tions. The role of anharmonic terms in a phase transition may be explained
in the Following fruanner: initial equation, defining the relationsbp P (F)
Is easily transformed to toe form:

3.V6F. I2',.; ( : *. r ,
7A L US (4.773
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whence it may be seen thet taking anharmonic terms into account leads to

the appearance in the expression for P of a term dependent on T, and

accordingly to a weak temperature dependence of atomic polarizabilizy.

However, precisely this temperature dependence of the constant leads to
a "ferroelectric catastrophe."

It is easy to perceive from (4.71) that the model of anharmonic
oscillators makes it possible to "design" phase transitions of different

types without coming into contradiction with the experiment, as this takes
place in the case of the model of local minima. It may also be seen that
the model of anharmonic oscillators describes a very "smooth" phase tran-

sition of the second kind with a small change in entropy.

In general, in this model the difficulty is of an opposite charac-
ter in comparison with the case of Mason model. According to Jaynes' [6] com-

ment, in this case the ferroelectric transition is brought about too "eas-

ily.*, In other words, owing to the presence of electron polarizability
in all ions, the effect resulting with a displacement of Ti ions proves to

be very strong and it becomes necessary to assume very small values of

polarizabilities in order to explain why Curie point is at relatively low

temperatures. In acccrdance with this, the "4/3 Z-catascrophe" takes
place here in a very mild form. In the case of displacement-type transi-

tion in question the entropy jump is relatively small. Physically this

is clear from the simple fact that unlike the model of local minima,
phase spaces differ little from each other before and after a transition

(see Figure 4.1).

It should be noted chat for the model of anharmonic oscillators

there are many ways for matching with the experiment, in particular,

introduction of reasonable values of effective cnarges and polarizabi!-

ities makes it possible to reduce the effect from displacement of active

ions: when electrostrictive terms are taken into account the character of

a phase transition shifts in the direction of phase transitions of the

first kind, etc. In our opinion, a substantial improvement in the accu-

racy of the model of displacement-type transitions would be that at least

two sublattices perform anharmnonic oscillations. Indeed, assumption of

the existence of only one active sublattice in the presence af an elastic

bond [17] with -1l of the remaining ions appears to be of small probabil-

ity. Unidoubtedly, the case examined in paragraph i when all ions perform

oscillations that are anharmonic to one or another degree is more prac-

ticable.

2. Anharmonicity and Fluctuatio,;s of
Displacements of Aktive ions

The method of mathematical treatment of t•e model of 2nharmonic

oscillators is n.thlng else but application of thermo&dyiamic perturbation

theory to the calculation of free energy of anharaonicallY oscillating
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ions [41]. The ene r~yof an anharmonically oscillating oscillator with
its kinetic energy p /2m takten into account has the following form.

E ~+ - 01+ VV+') + b, (kl+44+$s4) +2UzS(0, .23 + M's')- sFt.
FR; (4.74)

where p is a pulse. In this case the role of the minor term V isI played by the "anharmonic" portion of potez.tial energy:
V - b, (z4 + r4 + X4) + 2,h (zig' + Ztal + y~t)I According to thermodiynamic perturbation theory [59], free energy

may be represented in the following manner:

N (4.75)
A - A,+ NV -14 (V- -~

Here

tip (4.76)

ti V (4.77)

E4 (4.78)

(4.79)

-In (4.75), Al indicates "unperturbed" free energy calculated with a
V=; V is the av:erage value of the perturbing energy, in thscs the
average value of anharmonic portion of ion energy; V2 -- (V-_V)2 is the
average quadratIc fluctuation of thse quantity V.

In the determination of free energy in [5]1, on1: the first approxi-
mation Aas obtained which is given by thermodynamic perturbation theory,
The average quad-.atic fluctuation of anharm-anic portion of potential energy

of the ion., having terms with b 2 and b 2 is not contained in the expression
for free energy (4.71) obtained in thege works. The situation is different
in regard to polarization. As will be ahown below, in this case fluctua-
tions already a-pear in the first approximation.

Ttaking (4.71) into account, we find in the first approximation the
componew: ,)f polarizatio-n vector along the axis:

NA (4.80)

We will note that

I C~Ph ;~ii ~I f(POvPO) dP.. dP, I (Zip.)x ... ds
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and, therefore, when using the expressions (4.77) and (4.78) the kinetic
portion of the energy E0 does riot have to be taken into account at all.

Henceforth we will mean by E0 only the potential energy of an ion per-

forming harmonic oscillations.

Substituting (0.76) and (4.77) into (4.80) we obtain the following
after simple transformations (see [41])

"P"- iT - ), (4.81)

where
"Z- kC (4.82)

'Fr a,-,'~

~!~~f soul ?-• =.zp(--VI• );JT"P.CT1

2V• SI k "j d lp, -- 3-. -di.

(4.83)

It should be born in mind that in (4.81) the av_'raging is done in

relation to a harmonically oscillating ioa, The first term of this ex-
pression represents the average electric moment of a unit of volume
brought about by a displacement of th1: ceoter of oscillations of the
oscillators. The second term is explained by the perturbing action of

anharmonic oscillations. We will show that it represents a disordering
effect of the fluctuation of ion displacements:

iV -ZP-61f .. b (93;-- 4-t) + 46.j • _zL)

Statistical independence of the coordinates xyz and the fact
that -2 -2 if Fx*0and

Yb =z x Fy=F 2=O were taken into acc'ount in the calcu-
lation.

3 2 , 5 4 - - 4

It easy to see that x - x K=2x(~x)- and x - x x--z(x) EX

+ 4(x) 3 (ý'-&ý) since (Ax 2 rt+l).

In addition to this, y2=(4 5 -2 and (A x)4-3[(4xC% ] . Finally,

P-NS kr-((3, +-.±)It.-rL+ O, (4.84)

"WE find from (4.82) that

4-0

-137 -

k-:) \ T a (4.85)

k; .0 A



- -- -

Substituting the values of x and (&6 ) 2 from (4.85) into (4.84),
we find (4.73).

The difference between Ax 2 from (4.18) and (4.85) ls explained
by the fact that in the former case the averaging vas done relative to the

total and in the latter -- relative to the unperturbed energy of the oscil-

lator. The absence of singularity in the relationship Ax 2 (T)T--4O appar-

ently indicates the "hardness" of the oscillator zystem in a uniform self-
consistent field.

Thus, dependence of polarization from (4.73) and dielectric constant

on temperature and fielo strength, characteristic of ferroelecLrics, is

connected with the fruLuations of ion displacements. With a T-4.O these

fluctuations act as a disordering factor, i.e. they decrease polarization.

Thermodvnamic perturbati.on theory is also applied in the determina-

tion of average values of dispLacements in dynamic theory but with the use

of a Hamiltonian erpressed in terris of normal mode of the acoustic and

optical branches (see subparagraph 2, paragraph 3, chapter 5).

3. Statistical Theory of Ferro- and
Antiferroelectric transitions

In essence, theories for dispiacement-type transitions examined

above have a semiphenomenological character. Assumption concerning a self-

consistent field in (4.8) which "breaks" the laLeice symmetry predetermines

in advance the possibility, in principle, cf the existence of nonzero aver-

age ion displacements. in particular, this explains the inability of this

theory to explain antiferroelectric transitions from the standpoint cf

microscopic representations on interaction forces. Naturally, a desire

arises to obtain conditions for the existence of Ps on the basis of ter-

nal dynamic and statistical characteristics of a system without reso ng

to an a priori introduction of the self-consistent field F.

in oLher woruds, Lde question concerns the construction of a dis-

placement-type model with the correlation of the states taken into account

similarly to the way this was done in Ising model. An attempt to con-

struct such a theory was made by V. I. Klyachkin [7, 8, 68] The distribu-

tion of ion displacements in a crystal is examined in the works mentioned

from the standpoint of Bogolyubov statistical method [69] Transition to

an ordered state is equivolent to the appearance of a nonzero projection

of electric moment Fr <s> is the average displacement of

an ion. Next, a sequence of distribution functions Fl(s), F 2 (sls2)...

... Fk(sl...sk) is set up in the configuration space of Pg. These func-

tions define the probability of the fact that thu ions 1, 2, 3... will be

displaced from their equilibrium positions by the vectors sIo s2..., sk*

To determine si in accordance with general procedure, systems of integro-

differential equations are constructed, which connect a sequence of dis-

tribution function:
DFL,. (4.86)
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where D and L are differential and integral operators.

In the examination of odd-order statistical moments as the func-
tions of components of ionic displacements it was found that they vanish
only in the case if potential energy of a displaced ion, determined from
Bogolyubov equations becomes an even function relative to the correspond-
ing space coordinate.

Ir other :oids, the appearance of nonzero odd momen-s, including
those of the first order, i.e. of the components of average displacements,
is connected with the disappearance of reflection symmetry of potential
energy of an ion relative to the respective plane. Thus, a phase transi-
tion in a ferroelectric crystal is a transition from a state with a
smaller number of the planes of reflection symmetry of potential energy
of an ion to a state with a larger number of these planes. Ways for find-
ing the phafe transition points appear in accordance with the foregoing.

letting up a system of nonlinear integro-differential equations
fez the Nntisymmetric -- with respect to the respective coordinate -- por-
tioni of pjtentiai energy of the ion and application of an approximation of
the form (4.86) makes it possible to reduce the problem of determination
of the phase tran2ition points to a determination of the branching points
of nonlinear integral equations with these points corresponding to those
temperatures below wh.ich a state with a zero antisymmetric portion of poten-
tial niergy of , '.splaced ion becomes unstable.

The respiective criteria have the following form:

for a ferr--lectric

for an antiferroelectric

In these formulas and are elastic moduli of respective

states, defined as structural sums of the second derivatives of effectiv2
potential energy for the respective coordinate. In doing so, it was taken
inte account that in the ferroelectric case spontaneous displacements of
the separate superscructural sublattices are on Lhe average equal and par-
allel, and in an antiferroelectric they are equal and antiparallel. It is
important that <x2k relates to a state lying above the temperature of

transition with the direction x* being the direction in which the sym-
metry of potential energy changes during the transition. These same condi-
tions may also be obtained as a result of requirements of thermodynamn'c
stability of the system for the free-energy functional [compare formulac
(3.50) and (4.15)].
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The simplest case of one lattice undergoing a displacement was ex-

amined in [68]. It was found that by expanding the energy of pair inter-
action with respect to the powers of relative ion displacement3 up to the

fourth-order terms and applying thermodynamic perturbation theory relative

to the anharmonic portion of energy it is possible to obtain an expression
for <x2\. and the temperature of transition to tetragcnai phase (for

perovskite structures). In doing so

k
Here k and k are structural surs, of the second and focrth

derivatives of effecrive potential energy; tik and ikk are the re-

spective sums e.:tended only over a lattice undergoing displacement in a

ferro- and antiferioelectric case.

Dynamic criteria of the appearance of ordered structures have the
following form:

These inequalities are possible with the condition of strong com-
pensation of the positive and negative contributions in the quantity ik

Calculation of the average spontaneous displacements indicates that a phase
transition of the second kind f.x• ". - T< takes place in this case.

Similarly, the values of dielectric susceptibiliLy of each config-
uration determined in the usual way prove to be exactly coinciding with

Ginzburg's [191 and Kittel's [70" thermodynamic expressions:

",--r•-.;~ ~~ r0.;" ,ie-r;<

for a ferroelectric, and

for an antiferroelectric.

A study of thermal capacity jump indicates that the fol'owing

equality is satisfied in the approxit;aaion used*

i.e. it is impassible to identify the ferroelectric or antiferroelectric

comfigurations on the basis of purely caiorimeatric measurements.

The question of relative stability cf the st-tes was also investi-
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gated by means of comparing thermodynamic potentials of the ferroelectrics
and antiferroelectrics. In doing so, it was found that

4j~s> d?, whenr ,>O

4>S<4 a when Os>ea

e is thermodynamic potential), i.e. a state having a higher Curie temper-
ature is more advantageous.

A necessary condition for setting up appropriate structures is con-

siderable mutual compensation in -he coefficient of elasticity of potential
energy of the displaced ion by energy brought about by the attractive and
repulsive .orces in an ionic crystal. This compensation must be consider-

able to such ait extent that elastic coefficient of only one sublattice
undergoing a displacement would turn out to be larger than the total ýlas-
tic coefficient linked with all sublattices of the crystal (compare with
subparagraph I, paragraph -', chapter 4 and paragraph 4, chapter 5).

The inference mentioned relates to the case of one ferroactive sub-
lattice and is similarly valid both for ferroele:cric and antiferroelec-
tric crystals.

In principle, ferroelectric configurations prove to be po~'•
even in the absence of strong Coulomb long-range Forces. A necessa
condition in this case is the existence of strong exchange interac,
which must make negative cont-ibutions to the coefficient of elasti-.
of a displaced ion.

A numerical investigation of the force facto:s of energy of a pair
interacticn of ions carried out for perovskite structure indicates that
conditions for the appearance of ferroactive state cannot be realized for
a B-type lattice in the AB0 3 compouop owing to a high symetry of poten-
tial energy of the B ion. Conversely, for an 0 ion conditions of this
kind can be satisfied with reasonable values of polarizabilities, effec-
tive charga and of the constants of non-electrostatic intcractions (com-
pare with '44j and paragraph 3, subparagraph 2).

In the apprnxiimation of one lattice undergoing displacement it
turns out that an increase in polarizability of a central B ion leads
to difficult conditions for the appearance of ferroactive structures.
It turns mut that in this snte approximaticn thepolarizability of an
A ion has very little affect on the appearance of ferroelectricity.

Like the model theories of Devonshire and Slatar, statistical
theory of phase transition of the second kind based on the representation
of one sublattice undergoing a displacement leads to an insufficiently
rapid fall-off of spontaneous polarization near Curie point and, as a
result of this, to in understatcd value of the thermal capacity jump,
to this connection it may be believed that taking account of ion dis-
placemerts, which becomes necessary in the inves igatlon C.f several sub-
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latticei undergoing a di•placement, will lead to &n increase of the rate
of growth of spontaneous polarization near the transition point, i.e. it
will shift transition of the second kind in the direction of cLitical
Curie point.

Par. 5. Electron Theory

Jaynes-Wigner Theory

Microscopic theiries examined in the preceding paragraphs are
based on the assumption that spontaneous polarization is a result of
displacements of ions in a certain internal field determined by these
same displacements. In dcing so, electron polarization plays an auxil-
iary part (in spite of the fact that its magnitude may even be larger
than ion polarization); electron component of the effective field Fe
grows in proportion to the displacement of ions and thereby increases
the forces that are conducive to the formation of spontaneous polariza-
tion until the disordering thermal factors and a sharper growth of the
restoring forces stops this process. In the case of transitions of the
order-disorder type, electron member in the effective field increases
the preponderance of ions concentrated in one of discrete states.

From the formal point of view this mechanism is described by to.-
equaticns of a self-consistent field, which are given here in a maxiF
simplified form: (E=O)

-p~ (4.F,8)

whence, taking (4.12) into account, we have:

r) P.,- -(. 0'" .

where (f is a nonlinear function. In principle we may imagine a reverse
casej i.ea transpose the cause and effect:

a) F,. -8 , P. + *,.).J 1

S, -- (4.89)

The equation (4.89) leads to a phase transitLon if tlere is a cer-
tain eiec-ron statistical mechanism responsible for the ri,,n•inearity f

We(T, Pse). We will note that this situation does not contradict i
principle the thermodynamic theory inasmuch as the order factor 'q mAy
be expressed in terms of probability of different states ot the particles,
Including elt :rons (see footnote to chapter 3, paregraph 1, subparagraph

1).
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This electron mechanism was suggested for the first time by Wigner
and Jaynes [6]. its essence consists (as applied to BaTi0 3 ) ir the fol-
lowing.

Barium titanate is not a purely ionic compound and the electron
structure is such that the octahedron should be regarded as something
whole, and not as a system consisting of independent parts. At the same
time, inasmuch as the octahedron consists of closely packed highly polar-
izable ions, a good shielding of internal Ti ions from external actions
exists so that in the first approximation each octahedron may be assigned
its own internal electron state not dependent on the stace of the neigh-
boring unit cells. Owing to the presence of central syrmmetry of the cell
in the absence of electric field each state must have a definite parit,.
and in this case the dipole moment does not appear.

However, if two states of opposite parity have close energies, then
the interaction between octahedrons will lead to the result that the crys-
tal as a whole will have a minimum of energy and the internal state of
each octahedron will be represented in the form of a linear combinarion
of symmetric states. This linear combination of states will have a non-
vanishing dipole moment, i.e. spontaneous polarization and an internal
field appear.

Thus, the oxygen octahedron is polarized under the effect of the
internal field with the magnitude of polarization brought about by the
"mining" of electron states being equal to Pe(Fe, T).

Total macroscopic pola-ization P consists of the sum of PC + P
and the term Pip which represent polarization of ionic residues (includ-
ing the jolarizability eo Ba ions and, possibly, of the Ti and 0 ions).
Next, an assumption is made concerning statistical independence of the
neighboring cells. The average dipole mnoent is one and the same in all
cells and this average po.'rization is used for the calculation of local
field acring on the cells. Actually the state of a given cell is affected
by the neighboring cells more strongly than this is believed and a con-
siderably stronger correlation between the dipole moments of the cells
should be expected. This correlation may be taken into account by using
the method employed in Ising model for trausitions (order-disordet). How-
ever, the method of self-consistent field ;s applied in the Aork [61.

PC se
In the absence of internal field Fse5  I + •eV the electron state of

the octahedron is invariant relative to thz symmetry group Oh. The po-
larization of rhe octahedron is brought about by the existence of excited
states connected wit, the fundamental state thro-,gh the interactions de-
termined with the change of the dipole moment. In the work [61 it i&
assumed that the electronic excited state of the octrhedr-)n has the sym-
marry Flu (see chapter 6), i.e. ic is thrice degenerated; it was verified
that the matrix element of the dipole moment between the fundamental and
excited state in this case is not identically equal to zero because of
considerations of symmetry. Then, indicating the difference between the
energies of the fundamental state and excited states with 2E and se-
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lecting the energy zero in the middle between them, we will obtain the
following for an unperturbed Hamiltonian:

#._ C 0 o
0 E 00
0 00Ef 0

o o00

If the field Fse is applied in the direction of X-axis, the per-
turbed Hamiltonian is represented in the following form:

V- E. 00
-E V 0 

o)00 E 0
00 0f

where V= -eFse !0x $ 1dv= pF; v is the volume of unit cell; Ais a
¥

dipole moment appearing due to the overlapping ("mixing") of the funda-
= mental and excited states. The Hamiltonian H is diagonalized by means

of the transformation matrix

00(7 0 0)1
k 0

where

The trani~formation of H with the aid of the matrix S gives

0 E 0 0)

whereb-se21 +!S 4

Therefore, the perturbed cell has the sum of the states:

Z-e +'-~2ichbz+c-j.

where x-- and, consequently, the free energy of the cell will as

usually be:

A= -NkT In Z,
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rI

whence polarization

P h 6--- (4.90)

(4.90) is the unknown nonlinear self-consistent equation (4.89d)
for Pse, which under certain conditions haE nonzero solutions. Curie
point is determined from the condition that b-I. The model examined
makes possibls a qualitative description oj: the basic relationships of
farroelectrics above (for example, Curie-Voiss law) and below (the
growth of spontaneous polarizatfon P0) Curie point. In spite of this,
at the present time electron theory in this version can hatdly be cun-
sidered aE something more than an interesting attempt to prove the
possibility, in principle, of the existence of an electron mechanisit
of the appearance of spontaneous polarizat.ion. The necessity of using
such a mechanism, at least for explaining the properties of B-TiO3 ,
encounters certai,, objections.

Originally, electron theory was based on a serie- of x-ray dif-
fraction studies as a result of which no displacements of BaTiO3 ions
were detected at all. At the present time, the existence of displace-
ments of all BaTIO3 ions leaves no doubts. Jaynes considers that this
fact in itself does not refute electron theory inasmuch as these dis-
placements are from the- standpoint of electron theory a result of the
action of a field initially brought about by electronic processes.

However, while acknowledging the existence of ion displacrments
one must not fail to examine these ions in their statistical intazaction.
This should introduce substantial corrections into the condirions o% the
appearance of spontaneous polarization and into the temperatures char-
acteristics obtained on the basis of electron theory. The question of
which takes place first -- deformation of electron shells or displace-
ment of ions belongs rather to the field of kinetics of appearance of
spontaneous polarization.

According to [71] and [721, ferroelectricity appears in those
crystals which contain positive ions with closed eleccron shells of
noble-gas atoms, surrounded by oygen octahedrcns. Jaynes considers
this as one of the proofs in favor of electron theory. However, this

also indicates that possibly a formation of covalent bonds takes place,
which is conducivc to a mutu-i drawing together of positive ions and
oxygen ions, formirg an octahedron.

Jaynes points out the large value of diffractive index in ferro-

electrics indicating the large magnitude of electron polarizabilities,
which is brought about by the exchange of electrons beLi.een oxygen and

titanium ions. in addition Lo this, in hks opinion the existence of -.

maximum in refractive index near Curie po;nt also indicates a change in

the electron strust-ire of the crystal. However, these facts sre not a

proof of incons!stency of ionic theories. There is no doubt that a

certain rearrangemenL of electron shells near Curie point (evea from
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the ntandpoint of ionic theories) must take place. Hawever, it should
be noted that the maximum of optical refractive index is very insignif-
icant and amounts to -3 percent of its normal value. And the existence
of a frequency relaxation effect with which & decreases approximately by
hundreds of times, indicates Ly itself the enormous role which the dis-
placements of ions play.

Finally, one of the main inferences in [6] -- prediction of absorp-
tion line in the region of 10 mc which corresponds to an initial energy
level of ^14 k1, is not confirmed by the present-day data on infrared
spectra of barium ticanate (see chapter 15).

Modernized versions of electron theory of ferroelectricity are
set forth in the works [73, 74].

With a combining of atoms into a crystal lattice, electron density
considerably changes. A hybrodization of atomic orbitals, for example,
sp- or pd-l.ybridization may take place in this process. Hybridization of
states with the quantum numbers of orbital moment differing by unity leads
to the appearance of dipole moment of the atom. In the work [73] appear-
ance o spontaneous polarization is linked with the hybridization of
electr-.i orbits. In doing so, a system of N identical atoms is examined
in [73] with there being one valent electron for each atom. The Hamll-
tonian of the system is written in the same form as in the work [75] but
terms describing the exchange interaction are omitted (these terms may
prove to be essential in describing the fe':romagnetics). Nest, the di-
electric constant is calculated using the procedure of double-time Green
functions. The main results of the work [73] amount to an explanation of
Curie-Weiss la. and of the law of "dyad" for dielectric constant, and
also to a prediction of existence of resonance absorption of electro-
magnetic field at the fre uency of collective excitation of electron sub-
system (Frenkel enciton) Y-20. At a e8-40OW•K, 3 an absorption of elec-
tromagnetic field with a wavelength %0,3.5 - 10 cm should correspoind
to such a "ferroelectric exciton."

An attempt is made in the work [74] to take into account the cor-
relation effects between electrons in tlw ,-3cant sheaths of the A and B
-.ons in ferroelectric crystals of ABO type.

An inference is draurn that, in principle, correlation effects may
itad to the appearance of spentaneous polarization. Their role depends
4,,n the difference in the energies of the levels of electrons of A and B
atoms and more considerably, for example, for BaTiO3 than for BaZrO3 or
for CaTIO3.

2. Pseudo-Yang-Teller Effect and
Ferroelectric Transitions

Dynamic approach based on the conception of ferroelectric mode the
!rcquency of which d, becomes zero or reache3 anomalously small values
,t the transition point (see paragraph 4, chapter 5), has become a stand-
ird approazih to the description of ferroelectric transitions of dis-
llacctltcn' type.
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'•n P.diabatic approximation (see subparagraph 1, paragraph 1, chap-
ter 5ý u-Jetrlies theory of crystal lattices. The sense of this approxima-
tion ai.;ounts to chat the motion of electron and naclear stubsystems of the
crystal is separated, with the electron term dependent on the coordinates
of nuclei as en paranqeters being a potential function describing their
oscillations. Therefore, an inference h:s to be drawn that wben n--0O
substantial changes also take place in electron terms responsible for

M such anomalous behaviors of cJ.? (see alsc [81]'.

An assumption, illustrated on models, that pseudo-Y3ng-Teller sf-
fect m.y be a cause of the appearance of spontaneous polirization fol
ferroelectrics of displacement type was expressed in a whole aeri,:s ef
theoretical works [76-80].

We will recall at fi:rst -he sense of Yang-Teller theorem [81j.
In molecules or crystals with a sufficiently high symmetry the funda-
mental electron state could prove to be degenerate (degeneracy not con-
nected with spin is meart). In order that the respective configuration
of the system be stable, the energy of electron term as a function of
distances between atoms must have a minimum. It follows from this that
with small displacements of nuclei a cbange in the energy of the term
must not contain terms linear with respect to displacements. Yang-Teller
theorem states that such linecr terns always exist for a degenerate
fundameatal state.

We will expand the Hamiltonian of the electron subsystem X with
respect to the powers of normal vibrations of the lattice:

X.-X +y .- Q,+Q,* 4,.91

If the fundamental state is degenerate, t•.n linear terms in (4.91)
are not equal t. zero oind the splitzing of the electron term may be found
with the aid of theory of perturbations for degenerate levels. We will
examine the simplest case of a twice degenerated level unstable relative
to the normal vibration Y. We will denote the nondiagonal matrLx element

of the linear term in (4.91) with N VY where N is the number of elec-
trons, and the diagonal matrix element -- with E0 . Secular equar1ion of
perturbation theory will have the following form:

I N E- -- ,_-V .92)

The degenerate term will split in this manner into two c.!vcL.Zt with

the magnitude of the split being equal to 2N0VY, as may be seen fr.•a
t4.92).

We will now pass on to a case of two nondeaenerzte but niar" levels.
It turns out that in this case thn. linear terms in (4.911 are also, nnero
until the distance between the levels is le.s than 2NWY (notatio,. -or
nondiagonal matrix element has been retained here).
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The interaction of two near levelg through iattice vibrations,
cnnnected with linear terms in (4.91) has the name of pseudo-Yang-Teller
effect.

Followlx.g t~he work [79], we will show, using the simplest model as
an example, how pseudo-Ying-Teiler effect may lead to the appearance ol
spontaneous polarization. We will examine au ionic crystal with two near
zones. In doing so, we will neglect their dispersion (the distance be-
tween the zones 4). We will assume that these zones are of different
parity. In this case, antisymmetric normal vibration Yu is respon-
sible for rhe pseudo-Yqng-Teller effect. A macroscopic dipole moment
appears when there aee d1storttonc4 counected with it. 1)

In the presence of two near lavels, perturbation theory gives:
A-. (4.93)

With account taken of (4.93) ,e A'll obtain the following for the
portion of crystal energy E dependent on the normal coordinate Y:

StyI.,.•T,---2 -M•--NO+V: . (4.94)

M and w are here the reduccd mass and the frequeziy of zaormal
"vibration.

A

- - (4.95)

An analysis of these expressions showv that if

NUIS (4.97'

the equilibrium position of ions changes by the =mcunt:

1'5w _ _'r__.21.(4.98)

This means that two equivalent !vwer-symuretry configurations exist
"in each one, of wtich zhe crysrt1 hai. a permanent dipole moment. The value
of Y and Accordingly of spottanecus polarization is maximum when r=O
and decreases ,cn aa incieaie ,"' T.

At Curie temperature: ;. r ?,+h-•T,"e-W LM :51-Tg• (4.99)

-i. it ws shown in the works--£78, 821 that near zones of opposite
parity -wist tiext in FaTiO3, If the zones had the sam parity the di%-
tortions of the crystals wouild be connected ulth •-ynuet:ic vibration and
ian mazroscopic dipole moment would appear ;with them. If the zones are
degenerate, the "active" norml vibratin must also be degenerate an.-
a whole serter of low-symmetry configurations is possible.
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the distortion of the lattice disappears and the crystal undergoes a
phase transition of the second kind.

The effect under consideration leads to a high overnormalization
of the frequency of the vibration Y, dependent on temperature. The fre-
quencies of this vibration W), and Wc- prove to be respectively
equal to the following with tKe approach to Curie point from th! side of
high and low temperatures: 2.

- '2 V (4.100)

With a T=P 4)c+ =c -- o0 (compare with paragraph 4, chapter 5).

The expansion (4.100) gives the following near 0 with accuracy
to linear terms:

2. (4.101)

i.e. the law of dyad well known from phenomenological theory (see para-
graph 4, chapter 6).

It may already be seen from the foregoing that "interzone" theory
of ferroelectricity is very promising. Very recently such an approacl
was used to describe spontaneous polarization [83] and successive phase
transitions in BaTiO3 [84] and for the calculation of behavior of ferro-
electric modes in an electric field [85j.

Microscopic model theories examined in this chapter .:oncributed
to a considerable degree to the formation of representations concerning
the nature of ferroelectric transitions. At the same time, there is no
doubt that in their further development miczoscopic theories must be con-
structed on the basis of more improved physical approximations.

In the investigations of ferroelectric.s within thi framework of
statistical ,nethod it is desirable to abandon the use of representationS
concerning self-consistent field; which convey to the theory a semi-
macroscopic character. In other words, the questicn concerns the further
development of an approach in wtaich correlation between the states of
active ions is taken into account. it is also obvious that it ia necessary
to abandon the separation of lattice elements into ferroactive and in-
active elements, and examine the state of a crystal or, the assumption
that all of its elements perform anharmonic oscillations to one or
another degree.

Development of Ising model and of interzone theory of spontaneous
polarization also appears important.

The use of purely statistical methods precludes the possibiiity
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of obtaining information on the special features of vibration spectrum of
ferroelectrics. This gap is filled by dynamic theory which examines lat-
tice vibrations. However, an explanation of temperature dependences of
the parameters of the crystals and in general of the mechanism of ferro-
electric transitions is possible at the present on the basis of representa-
ticns concerning anharmonicity of oscillations and, consequently, with the
condition of examination of interaction of different modes using the means
of perturbation theory. This makes clear the reasons for the consolidation
of dynamic and statistical methods of investigation, taking place at the
present time.
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CHAPTER 5. DYNAMIC THEORY OF FERROELECTRICITY

Owing to thermal agitation the atoms in a crystal perfonn small
oscillations near equilibritum positions. The smallness ot oscillatory
displaccmznts in comparison with lattice constants makes it possible to
regard them (in the first approximi.ion) as an aggregate of so-called
normal osciliations, i.e. independent plane waves to each one of whaich
corresponds its own frequency and wavelength.

Normal oscillations representing displacements of atcm:I sublat-

tices of a crystal as a whole relative to eac.1 other are called limit.
oscillations. Some of the limit oscillations may be connected with a

change of the macroscopic dipole moment of a crystal. Such ocillations
are usually called dipole oscillations.

The equations of motion for e normal coordinate Q cf a limit
dipole oscillation In an electric fieid Eeilt may be written in the
following form without taking damping into account:

The equation (5.1) represents equation of motion of a harmonic
oscillator. Here t0 is the frequency of normal oscillation, z* --

effective dynamic charge of the mode in question (equal for the simplest
model to ionic charge), and m -- reducea mass for a given normal oscil-
lation.

Polarization P connected with the normal coordinate Q is equal

to:
P.,eON. (5.2)

We will substituto (5.2) into (5.1) and will seek solution in the

following form:

(5.3)
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Then we have:
eN S~P'~. (5.4)

It follows from (5.4) that

. PA d (5.5)

where ,g is contribution to the dielectric constant of the crystal
z 2N

owing to the normal oscillation Q, a= .

If the crystal has several limit dipole oscillptiins, the expression
for £ acquires the following form:

,-- (5.6)

Here a. A toe high-freqiiency dielectric constant, i.e. at the
frequencies W ),wk, Wk indicates frequencies %f the limit dipole oscil-

lations, and ak -- the forces of the oscillators.

In the expression (5.6) tne damping of normal oscillations may be
taken into account phenomenologically by assigning to each mode the
damping constant '..

(5.7)

It may be seen from (5.7) that if in a certain temperature range
the dielectric constant , (vith (04W ) sharply increases and damping
is small (i.e. 1kAW)j then one of the frequencies Ok must rharply
decrease at these temperatures. It follows from ti-is that in a ferro-
elactric transition (in any case in a transition of displacement type)
the frequency of one of the limiz dipole oscillations of the lattice uIust
sharply decrease slith the approacih to Curie point.

An oscillation whose frequency sharply decreases when T-4 ( 's

usually celled "ferroelectric oscillation" or "soft mode." The concepc
of "soft model* was put forth by V. L. Ginzburg in 1949 for ferioelectric
transiti ons.

Proceeding from phenomenological theory, iinzburg showed ri- 31
that in the case of a phase transition of the second kizd (or of the
first kind approaching critical pcint) the frequency of tne of normý
oscillations cf *.he crystal lattice W. nrist becoe zero, with the
phase trvnsition being !erroelectric if A k is th'e frequency of the
limit dirole oscillation.
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Later, Anderson [4] obtained the same results on the basis of

microscopic theory. This problem was investigated in a greater detail
lty Cochran [1--7] who examined it using a microscopic model of a diatomic
ionic crystal as an example.

From the standpoint of Ginzburg--Anderson--Cochran theory, inves-
tigation of micromechan.sm of a ferroelectric transition of displacement
type meons, first of all, finding the mode of ferroelectric oscillation
and following up the change in its frequency in phase transition. There-
fore, the special interest shown of late in the dynamic theory and vibra-
tion spectra of ferroelectrics is understandable.

This chapter sets forth in brief form the fundamentals of dynamic
theory, gives results of calculations of vibration spectra of ferroelec-
tric crystals, which may prove to be helpful in the interpretation of
respective experimental results, and makes an attempt to set forth the
basic ideas of a theoretical approach to the problem of dynamics of cr3s-
tat lattices.

Par. 1. Elements of Dynamic Theory of Crystal Latticos

This paragraph sets forth bastc information from dynamic theory
of crystal lattices, necessary for the understanding of dynamic approach
to the problem of. ferroelectricity.

1. Oscillations of a Linear Chain

Many characteristic properties of lattice vibrations show themselves
in the simplest model of a linear chain of alternating atoms of two kirds
(Figure 5.Ia).

Figure 5.1. Osciilations of a linear chain.

a -- line3r chain of alternating atoms of two
V •(black and white circles); b -- oscilla-

"linear chain cf the same items with

a and q= 31r Arrowheads

ind±L,Ži. a- eimc displacements.
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It is also convenient to tracc on this model the basic approxlmatiois
used in lattics vibration theory. One of them is the so-called adiabatic
approximation. In this case, the wave function of a crystal, dependent
on the coordinates of eiectrons and nuclei is reduced to n simple product
of multiplication of the wave function of electronic subsystem with
fixed positions of the nuclei by the wave function of nuclear subsystem,
i.e. variables describing the motion of the electronic and nuclear sub-
systems are separated. The energy in electron tcrm depends on the co-
ordinates of nuclei as on paraanetts. The motion of nuclei is charac-
terized by the potential energy U equal to the energy in electron term.
Such a separation and introduction of potential function U for n,ýelei
proves to be possible owing to the circumstance thaL kinetic energy of
electrons is small in comparison with kinetic energy of nusclei, and the
motion of electrons is much faster. Owing to this, during tLe oscilla-
tions of nuclei, electrons immediately (adiabatically) change their
energy according to nuclear displacements.

We will use the tollowing system of notations, which can be
easily generalized later foc a three-dimensional case: we will indicate
by XI displacements of an attxfi of the kind p, (j-I, g,.rl s) in the
1-th unit cell (I=0; ±1; ±2; ±3;...).

Making use of the smallness of the values of XL in comparison
with lattice constant, potential energy of the system U may be ex-
panded in,-o a series with :espect to the powers of displacements 1)

+

The quantities
. • (5.9)SL .

are called force constants.

It follows from translation symmetry that the vwlues of

depend only on the difference L- L'=h. Therefore, later it will some-

ti•es be more convenient to use for them the notation 4;.
The force constant is numerically equal to the force act-

ing on the *th atom in the t-th unit from the side of atom V in
the unit cell I' if the latter atom is displaced by one unit of
length. The absence of first-ovder terms in (5.8) corresponds to equi-
librium conditions of the chain. Neglecting of ttrms of higher than second
order constitutes the basis of the so..called harmonic apprcximation.

1) Summtng over- repetitive indices is meant in (5.8).
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The equations of motion for atoms ha,,e -.he form;

We will seek solutions in the following form:

p z p. Cx , •(5. a )

i.e. in the form of plane waves propagating over the chain. Here "a" is
lattice constant, q -- a wave vector, and W -- frequency of vibrations.

A substitution of (5.11) into (5.1C) gives:

---'X; + •I1 f) X!-- 0.(5.12)

where SI LI( '0-- " R I .X ( 5 . 1 2 a )

The following relationship exists between the quantities [tv] (q):

Z -, I) ',}-o.. (5. 12b)

which follows from the requrement of an abserce of appearance of internal
foaes acting on the atoms in a parallel translation of the crystal as a
whole.

Thus, a set of an infinite number uf equations for an infinite
chain has been reduced to a set of systems of s order (s is the number
of atoms in unit cell) for each value of q. The possible values of q
may be determined from boundary conditions.

The so-called periodic boundary conditions are usually selected.
In this case, an infinite crystal Is divided into periodically arranged
vclumes and condition of a corresponding periodicity of displacements is
imposed. Periodic boundary conditions are convenient in a mathematical
scheme but, of course, they are artificial. However, rigorous proofs
exist [8, 9] that the lattice vibration spectra calculated with th! use
of periodic and some other more realistic boundary conditions will hardly
differ fromt each otht.r when periodic volume is sufficiently large.

1,,r a linear chain, peric"=zc boundary conditions &re oquivalent to
",ie relationnhips:

-1 P (5.13)

for all ,I _nd S, where N is the number of atoms on ; periodic length.

In order that the expression (5.11) satisfy the requirement of
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perio(licity (5.13) it is necessary that:

2& N PS (5.14)
#- m-%; ±t: ±2. ±2 .-2

In doing so,

7<V C7. (5.15)

since the number of Ns solutio s equal to the number of degrees of free-
dom of the "periodic length" of the chain is already contained in this
range. 1)

The smallest range of the values of r c-orresponding to all pos-
sible physically unequivalent vibrations is called Brillouin zone. We
will explaing by using an example, the circumstance that the range (5.15)
is a Brillouin zone for a linear chain. We will examine oscillations of

a linear monatomic chain with a q- 1 and a q= 3- respectively (Fig-aa

tire 5.lb).

It may be seen from the figure and the expression (5.11) that the
same displacements of the atoms of the chain correspond to these two
waves. These waves assume a different form only at the places where
there are no atoms, i.e. where they have no physical sense.

Thus, the problem on the speetrum of a linear chain has been
reduced to the solution of the sets of equations (5.12) of the s order
for N values of the wave vector q.

We will examine the simplest model of a linear chain with atoms of
two kinds (Figure 5.1) in which the nearest neighbors are coupled by
springs having an elastic constant k. Then we have the following for
the quantities [I&v] (q) (?, V= 1, 2)

A 2k

I12 (q) - 221 (0) - ;7 *- ý2-

here the quantities [11] (0) and [22] (0) were calculated with
the aid of the relationship (5.12b).

Condition of solvability of the set (5.12) (dispertion equation
defining the relationships 6)(q):

li.-!(4 )--T--M. (5.16)

where 4 is Kronecker symbol, acquires the following form:

number. 1) For convenience in writing (5.14), Nis assumed to be . even
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2k * 2

S*--(5.17)2k 2A

From (5.17) we find %he dispersion curves:
•' •_• , ,, .(5. 18)

. -'0- (-, + V."± + M! + kMM Cos r'.

The ratios of the amplitudes of atomic displacements may be found fram
the equations of motion (5.11):

2k 2
- _ -3 ____ (5.19)

M2 -;- -$M~ -2

In Figure 5.2 is sho;n the form of the spectrum 0 (q) and t1-e
density function of the states g(c)5 (g(W )do is equal to the number
of states in a range of from 10 to Q+ do) for a different mass ratio

1 The two branches + and W_. corresponds to two roots of (5.18).

The vibrations 0 - (q) foc which W- 4 O when q--O, are called
acoustic vibrations. This name is connected with the fact that when
q are small these vibrations correspond to sound: in this case the
particles in one unit cell move practically as one whole and a discrete
structure of the lattice is not very essential, i.e. it may be "egarded
simply as an elastic continuum. Conversely, for vibrations (o+(q) when
q a.e small, two sublattices of the crystal as a whole vibrate in anti-
phase with respect to each other. In ionic crystals, precisely such vi-
bratfons (with q"+O) may be coupled uith a large dipole moment and
strongly interact with electromagnetic field. Therefore, branches for
which cA)(q)==0 when a-4O are called optical vibrations. With a = a
only attxas of one kind vibrate (light atoms for optical branch and heavy
for acoust'.cal branch) and the atoms of the other kind are at rest. With
any q, in acoustical branch the displacements of the nearest neighbors
are of the sane signs and in rbe opcical branch -- of the opposite sign.

It is of interest to fellow up the change in vibration spectrum
with a change in the ratio of atomic masses. With 1,--m2 the linear
chain actually has a lattice constant smaller by one half. The curve
c4(q) for a linear chain with the same atoms, with the same force con-
ttant and a lattice constant smaller by one half (Figure 5,15) 's shown
in Figure 5.2 with dashes. in this case the optical branch is absent.
Solutions of 4)+Cq) have been obtained for a linear chain with for-

mally distinctive atoms and with ml-m.2 represent the same curve W(q)

but reduced to a Brillouin zone which is smaller by one half. With _m!
m2
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ra

- 1

J-J
Figure 5.2. Dispersion curves w +(q) and
density of states g(w) for a linear chain
of atoms of two kinds witt' different ratios
of atomic masses.

=4 Lhe spectrum coniiderably changes. A slit appears in it. The d's-
persion of optical branch (i.e. dependence on q) becomes weaker. Finally,

mi
with -- • = 9 the frequencies of the optical branch are confined in a very
narrow range. These vibrations are reduced chiefly to the motion of light
atoms whereas heavy particles remain practically motionless. Inasmuch as
in the approximation of the nearest neighbors the particles affect each
other only through the displacements of heavy particles, their vi. :ations~ml

in the optical branch are to a large degree indepenient when - =9 andm2

vibration frequencies do not difter very perceptibly from the frequency
of vibrations of the light particle between two fixed particles.

2. Generalization for a Three-
Dimensional Case

This generalization is reduced in pi ice to the introduction of
the subscripts i, k--1. 2, 3 corresponding to Cartesian coordinates. Ihe
formulas (5/12) acqul.re the form:

10 +i1 j. (5.220a)

jj~ *q~=~* 2~ 1~4~ 5. 20b)
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"where hl=O; ±1' +2; ±3;...,

and I ia a matrix of the base vectors of translations (equal for example,

for a simple cubic lattice to the unit three-dimensional matrix multiplied

by lattice constant). In a three-dimensional case the components L• (q)

are called components of frequency tensor.

Physical urequivalent values of the wave vector will now be deter-
minted from the condition:

Y'2 
(.

where B is a matrix of the base vectors of reciprocal lattice (see chap-
ter 6).

For a three-dimensional case, Brillouin zone will represent a unit
cell of reciprocal lattice.

With a specified value of the wave vector q, dispersion equation
for the. determination of the vibration frequencies of the crystal now has
a 3s ordert

Out of the 3s branches of the vibration spectrum three branches
will be acoustical (0'4-0 when q-9O) and 3s-3 will be optical branches.
The vfbr'.ticns will now also be differentiated by the direction of dis-
placements with respect to the wave vector.

In some particular cases (for example, if q is oriented along the

symuetry axis) atomic displacements will be purely longltudinal (i.e. ori-

ented along the wave vector) for certain branches, and purely transverse

(perpendicular to the wave vector) for the other branches.

3. Lattice Vibrations
in Ionic Crystals

Ionic crystals should be specially examined for two reasons.
Firstly, in the determination of vibrations it is necessary to take
intn account ele,-ric fields appearing on the surface of a crystal with

the displacement ot sublattices; secondly, for long-range Coulomb forces

it is necessary to take into account the effects of delay, i.e. the cir-

cumstance that electromagnetic field does propagate instaneously.

Both of these factors are important nly in the case of long
waves. Indeed, owing to the multiplier e h the series o. (q)
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(see 5.20b) conver s. in addition to this, at distances of the order of
vibration length Ila --2ýlt/q the constants should be taken into account.
On the other hand, while the wavelength ;. of light corresponding to the
lattice vibration frequency w .. is much larger than ;tlat, the

effects of delay may be neglected. Since the frequencies of optical vi-

bratio-as W~,0 sec -1 21m~'l~ 0-8 cm, i.e. the effects

-6of delay are ronsiderable only in the pottion -mounting to 10 of BrillouinI zone,
Latt~ce vibrations with a q=0 In which crystal sublattices are dis-

placed as one whole are connected with the change in its macroscopic dipole
moment and appear in infrared absorption and reflection spectra. Therefore,
we should dwcll in greater detail ai these vibrations. It is convenient to do
this with the aid of a simple phenomenological model for optical vibrations

of diatomic ionic crystals.

We will first examine the problem without taking the effects of de-
lay into account. The set of equations describing the limit optical (q-IO)
vibrations of such crystals are written in the following form 1) [10, 111:

~~b 2 1 Wb,.E.(5.23a)
P - 1 W + b.nE.

(5.23b)
Mmlm

ml 2  is reduced mass, X is the relative

displacement of sublattices of the positive and negative ions, P is lattice
polarization and E is electric field.

We seek a solu-;on of the set (5.23) in the form:

Wp.W p,, J •
P•'Po

Then we will obtain:
1. w (5.24)

Eliminating W0  from (5.24), we will obtain:

PC + . (5.25)

After .omparlng (5.25) with the definition:

, + 4-2 -P6 r., (5.26)

we will find dispersion formula for dielectric constant:

1) It can be shown [10, ill that it follows from the law '.f con-
conscr,3tion of energy that b 12 =b 21 .
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-W, + +:3 '5. 21)

which it is convenient to write in the following form:

I(M)--. +- " (5.28)

In formula (5.28), 1 VO=• is infrared dispersion frequency,
i.e. natural frequency of the lattice at which f(ta)--too; 0-l + 42tb 2 2 -

b 12 b21 is static (i.e. measured in a field with a frequercy .(C 0)bit

dielectric constant;&,,=1 + 45b 2 2 is optical (measured at W.Qo0 ) dielec-
tric constant.

In order to examine the frequencies of limit optical vibrations

the followinag equation of electrostatics should be added to the set (.23):

dv (F+42P)-0. (5.29)

Substituting P from (5.23b), we will find:

�_ �l . _ (5.30)
I+4"n buV

We will separate the vector W into its potential and solenoidal
narts:

W=-wW, + (5.31)
div w, .- 0.
totW,-O (5.32)

(5.33)

Then, for Wt we have:
*,- h~w,--.' (5.34)

whence it follows that: (5.35)

For W& we have:

iE - -. d(5.36)div E -- " (HV-'--IdNW

and consequently:
+, (5.37)

i~' 1 (.~( .Ws)

(5. 38)

from which it follows that:

45.39)
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with

"_--- -_ _- -=

"(5.40)

We will note that the transverse and longitudinal waves (when q - 0)
are particular cases of solutions of WI and Wt. Therefore, ( and 0t

are usually called the frequencies of longitudinal and transverse vibra-

tions respectively. We will explain the physical sense of the results

obtained by examining vibrations with a small but finite q (•lat=--2 L

where L is the dimensions of the crystal). 1) For transverse waves,
regions of a positive and negative charge alternating with a period I at
will appear on the surface of the crystal. In doing so, :he aggregste
field from these regions will be equal to zexo in the center of .he crystal.
But in the case of longitudinal vibration:s t1le following field appears:

(5.41)

which will be added to the restoring force. If it is taken into account
that P--b2 1W + b 2 2 E (see 5.23a), then (5.37) is immediately obtained
from (5.41).

In nonionic crystals b 2 1-f+0 and the frequencies it and (.t
coincide.

W$

_ - -

Figure 5.3. Charges appearing on the
surface of a crystal with limit dipole
vibrations of the lattice.

a -- transverse vibrations; b -- longi-
tudinal vibrations.

It should be noted that the difference between Wt~ and Wtis of
paramount significance upon the an'pearance of a situation conducive to a
ferroelectric transition. From the microscopic point of view, for ionic
crystals this difference is connected with the c.rcumstance that compo-
nents of effeccive field which coincide with the direction of propagation
of vibrations and are perpendicular to .t differ substantially from each
other. This was already discussed above. This feature becomes even more

"1) If this condition is not satisfied, the frequencies of limit
vibrations will depend on the shape uf the crystal (see below for more
details).
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obvious in the most interesting case of long waves for simple crystals
having high symmetry. The field acting on an ion of a polarized crys-
tal lattice is equal to the sum of the average macroscopic field E and
the field E1  -nich takes account of the action of dipoles situated .,
side Laurentz sphere (see paragraph 2, chapter 4):

F=E + El.

Leaving aside the question of the values of E1  (in the case of
diatomic cubic crystals El=O) we have, according to . I1, when q-*0:

'4 pq
k 4-0 qIq 7JI q-1

where p is dipole moment of a unit cell. It follows from this that

ELq--O and EjIq= -4tp.

Thus, for longitudinal vibrations the crystal lattice is more
rigid and the frequencies (.2 are always higher than jot.

Simila' results may also be obtained for ionic crystals by using

Ewaid method L11, 12] (see also chapter 4, paragraph 2).

It can he shown that the components V (q-*O) for a lattice of

point ions will contain terms 6hich depend on the direction of q--O-O:

4:. ,(5.42)
v' q 0, A

Here z r• d zv are ionic charges; )A., V and v are the volume

of a unit cell. The expression (5.42) depends on the direction of q--*O

and, therefore, for different directions of q--.O, different frequencies
will obtained from the equation (5.22). It c-' be shown that in the

simplest case of diatomic optically isotropic cubic crystals everything
will be reduced to the anpearance of the frequencies Wt and Wt qhich

do not depend on the direction of q-40. The ratio (5.40) is called
Liddan-Saks--Teller ratio. On the basis of this ratio we may also point
out the existence of a soft mode: it may be seen that if L 0  sharply
increnses in some temperature range, the frequency of the transverse di-
pole vibration Ut should decrease in order that the relationship (5.40)

be satisfied.

Cochran [61 generaiized Liddan-Saks-Teller ratio for the case of

cubic crystai; with an arbitrary number of sublattice5:

a (-A i (5,43)
jIM (.-12

Here n is the number of dipole optical vibrations.

Thus, in this case, the frequency of each li-nit dipole vibration
will be split into a longitudin-al and transverse frequency.
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Figure 5.4. The curves WO(q) with q-wO
for rutite.

U is the angle formed by direction with
the tetragonal axis of the crystal. The
letters m, L and t indicate the charac-
ter of the respective vibration (m -- mixed,
V -- longitudinal, t -- transverse). The

upper letter pertains to a case when q
lies int the plane (1!0), and the lower --

when q iies in the plane (100), the middle
letter pertains to an intermediate case.

In noncubic crystals the dspendence on the direction of a-40 will
bear a more ccmplex character. With an arbitrary direction of q-0O the
limit dipole vibrations will not be purely longitudinal or transverse. In

Figure 5.4 are shown the curves W (q--'O) showing the dependence Cmi the
direction of q-O for rutile [13".1) The indices E2u and A2u in the

1) In the wor orresponding calculations were also carried
out for the crystals of MgF2, ZnF2, FeF2 and MnF2. As far as we know,
no such calculations as yet exist for concrete nancubic crystals.
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figure indicate irreducible representations of the point group of rutile
D4h (4/nam), to which the respective normal vibrations are related (see
below for more details concerning this classficiation).

In additicn to dipole limit vibrations, crystals of rutile struc-
ture have limit vibrations not connected with the change in dipole moment.
The calculation naturally confirms the circumstance that their frequencies
do not depend on the direction of q-- 0 .

We will examine now the influence ot the effects of delay. 1) For
this purpose, one should examine the tquation of lattice dynamics simul-
taneously with Maxwell equations. In Figure 5.5 are shown two sets of
sclutions characterizing a lattice in two extreme cases:

R) solution without taking delay into account (electrostatic ap-
proximation)i

b) solutions corresponding to a lattice in which the motion of ions
is fixid and which functions as a normal medium uith a refraction index
n=VT_-, , and also exact solutions which (see in greater detail in [iI],
p l06) represent an interlacing of these two groups of approximate solu-
tion:.

Longitudinal vibrations are not affected by the effects of delay,
-' but when q-0O the.transverse vibrations begin to bear not a purely me-

chanical but a mixed radiation-mechanical character with the percentage
of energy of these excitations falling to the share of electromagnetic
waves increasing with the approach of wave vector to zero (Figure 5.6).

As already mentioned above, electrostatic app-oximazion is not
suitable for transverse vibrations with phase velocities higher than c
(with a wavelengthCiO"2 cm). Of late, the term polaritons started to
be used (see, for example, [143) for excitations connected with the
ascending section of he lower branch of the spectrum shown in Figure
5.5. Experiments in [15] for quartz confirmed the law of dispersion
predicted theoretically for polaritons.

We will note that when Aiat*L , where L is linear dimen-
sions of the crystnl, the spectrum of an ionic crystal begins to depen"
or its shape L[i, 173 and resuics illustrated in Figure 5.5 become in-
valid. In connecti.on 4ith this, we will, point out an important result
(see r[ii, p !44) &:ccording to which the infrared dispersion frequency
•o (see the ,.xpressior .. 28) is equal to the frequency 40t when the

- _27c
thickness of the film is small (in comparison with the wavelength A", W-O)

0
This result makes it possible to investigat-c vibration frequencies of a
crystal from the reflection spectra of thin films.

We will rnow discuss in the tight of the results set forth nbove

-he physical sense of the cnrystal vibration frecuencies calculated with
q-e1O in electrostatic approximation, i.e. without taking the effects of
delay into account, For the limit vibrations Pot connected with a change

1) The effect of delay on lattice vibrations was e....... r tr.e
first time by R. B. Tolpygo.
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2.8

7I,

Figure 5.5. Effect of delay Figure 5.6. Proportion of mechan-
on lattice vibrations. ical energy in transverse lattice

(see nxplanation in the text) vibrations when q--*.

in dipole moment, and for longitudinal limit normal vibrations these re-

sults should be related to sma .1 but finite wave vectors q L where

L is che length of tle crystal. For the transverse (and mixed) limit
dipole vibrations these results are related to the wavelengths of lattice
vibrations a.cr . iO"2 cm. The corresponding values of wave

vectors q are much smaller than the maximum value of the wave vector

qmc%, where "a" is lattice constan:.

Linear terms are absent in the expansion of the relationship wtq),
calculated in electrostatic limit, a.-:cording to the powers of q with
small q for a specified direction of q-*0 (see [18], p 225),. There-
fore, if calculations are carried out for qWO and for q'lO cm-1 , the

result, will coincide with accuracy to "2-10"9 percent. In all

works on the "soft" ferroelectric mode, a wt(q-+O) is meant for qo

-102 cm&2 and Wt (q.4O) is cal.:ulated in electrostatic limit. How-

ever, it may be seen from Figure 5.5 that when 4t-*0, q.p also tends

to zero. Nevertheless, it should be remembered that it is not worthwhile
to examine the values of . p<l1L within tae framework of the diagram

shown in Figure 5.5.

When ct-*O, it is obvious that fundamental changes must also
occur in the spectrum of polaritons. But this question has not as yet
been investigated in detail.

4. Models of "Hard" and Polarizable Ions

It follows from adiabatic approximaticn which underlies theory

of dynamics of crystal latLices (see subparagraph I of this paragraph)
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that to caiculate the vibration spectrum of a crystal, the energy of the
fundamental electronic state •(R) should first be calculated for
different positions of the nuclei R as the parameters, and thenp re-
garding dfR) as potential energy for the motion of nuclei the force
constants and components of The frequency tensor should be calculated
and the equation (5.22) solved for a set of values of q in Brillouin
zone. However, at the present time it is difficult to carry out this
program, especially for crystals of complex atructure. Therefore, ap-
proximate models are usually employed for potential functions describing
the motions of nuclei. In the simplest model, potential function
is considered to be corresponding to a set of "springs" binding only the
nearest atomse Such a model was used, for example, in subpa. -aph I of
this paragraph to describe the vibration spectrum of a linear chain. For
a rigorous description of the spectrum of actual crystals it oftcn proves
to be unsatisfactory ind it is necessary to take into account the inter-
action with the following coordination spheres.

As already noted above, in ionic crystals electrostatic forces
bear a long-range character. Therefore, Coulomb intaractioA forces have
to be taker) into account for all coordination spl,hres using special meth-
ods of surw!ng the lattice sums, for example Ewala method (see paragraph
2, chaoter 4). For an ionic crystal the simplest modal of potential func-
tion, requires an exam!nation of Coulomb forces between the point ions.
The repulsive forces are taken into account only between the nearest
neighbors. A potential with a power or exponential dependence on the
distance between atoms is usually selected for them:

U -- (5.44a)

B".

pit. (5.44b)

An exponent equal to 9 is usually selected. The subscripts pw
and V pertain to the kinds of atoms. The repulsion constant It may
be evaluated in terms of ionic radii using Pauling empirical formula:

-, o.o2' (,- . + ),. (5.45)

Here e is electron charge and rw and r-,, are ionic radii of the
ions p and V (see [11], p 45).

In the simpilst case of a cubic diatomic crystal, lattice energy
in the model under consideration has the following form wlthcut the vi-
brations taken into account:

4-A. •-(5.46)

1) Physical cause cf the appearance of repulsive forces is con-
nacted in essence with Pauli principle which forbids the existence at
one point of two clectrons with the same quantun numbers.

- 171 -



Here "sa" is lattice constant, An and e are dimensionless con-
stants determined by gecm3try of the lattice, 1) e,; is :ornic charpe.
Latice constant "a" may bo. determined from the condition of potential-
energy minimum 'Figure 5.7).

I~I,

Figure 5.7. Curve of potential energy cf
the crystal of lattice constant.

I -- potential energy; 2 -- Coulomb energy;
3-- distance between ions.

In the case of crystals having a high depree of ionicity of the
bond (for example, alkaline-haloid crystals) the model of hard ions
gives results which agree qualitatively with experimental data [19%.
For some crystals with a partial fraction of covalent bond this mciel
should be modified even for a qualitative comparison with the experiment,
by taking into account (in the first approximation) the covalence of
the bonds through the introduction of effective ionic charges which
serve as the adjusting parameters [13, 20].

A modified version of the model of point ions may be used for
complex struc t ures consisting cf ions of alkaline metals and closely
packed atomic groups (for example, such as the ferroelectrics KH2 PO4,
NaNO2, etc.) E21-23]. In doing so, it. calculating che long-range Cculemb
forcesa point negative charge equal to the charge of alkaline-halnid ion
and situated in the center of che ion is assigned to the atomic groups
constituting an anion, and the short-range repulsive forces are intro-
duced with the atomic struczure of the groups taken into account. In
this case rhe internal (high-frequency) vibrations of the anion are
omitted from the examination ind only che relative vibcations of the
sublattices of cations and anions as one whole, that are of the greatest.
interest for ferroelectrics are calculated.

For some of the alkaline-hrloid crystals [2', )l," ,ai SrTiO3 [261
the vibration spectra were calculated with the aid ct the se-call2d model
of deformed ions 2) examined for the first tire ty Tolpygo and 1ashkevich
and then by Dic% and Owerhauser [281.

I) The coaistant q characterizing the contribution of Coulomh
energy to latticu energy is called Madelung constant.

2) It is also called shell model.
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Accord!ng to this model a crystal is considered to be consisting
of cores (nuclei!-internal filled electron shells) located at the lattice
polnts and valence electrons, *.e. the outer shells. The cores and shells
are considered to l e independent subla tices bound with each other both
by the short-range and lor3-range forces. In such a description of the
propertic- of a crys :': account is Laken of the interaction betý.een
different ions, ions and electrons in the outer shee.s and also inter-
actions between outer electrons.

5. Shell Model and Dynamic Stabilityof the Lattice

We will wriee equations of motion for cores and shells.

In a shell model, potential energy depends not only on the dis-

placements of ions XI but also on the displacements of electrons in
I

the outer shells Sr

I ! I' t" •I" !i" l I II 2 II" I It\

- - . .. ,. -; .Y l 'P:,j)+ (5.47)

+ .;()4 + x1.

The following xnotations have been introdured in (5.47) z4 nd Yp

are effective charge; nt ions and outer electrons respectively; wk'

wknd arc firce constant describing short-range forces between

ions and betwaen electrons respectiv'.iy. The term C A i takes

account of the interaction of electrons with their ions, and the last
addend is the total Coulont interaclon of all electrons and ions of the

crystal; c9 is electron polarizability of the ion ; P!,= YS* is dipole

moment appearing with the displacement ef electron :roiative to its core;
I

E iF a field acting on tI.e pt-th ion at the point I.

if electron mass is considered to be negligibly small in com;)ari-

son wich ion mass (thi.s corresponds to the circimstance that at tle
frequencies ur.der consideration, electron fullov% t: field withou. -

lag), th.:n the equations of motion for electrons anG ions wilt acquire
the following form: -- t
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Here mý, is the mass of the ji-th ion.

We will seek solutions for the displacements of ions, electrons
and other quantitis connected with them, in the following fo,-m:

X. I (5.49)

where W, q nd are the frequency, wave vector and wavelength

of the respective normal vibi -ion.

After a substitution o' (5.49) into (5.48) we will obtain the
following sez of equations:

z.r.; ,/l: Ix, + rX To; . ,.c!,Y1s;; (5.50)

o•- V[T:+z_,C"" "ix -f.["' 01- + Y C. j
Notstions of the following type havc been introduced in (5.50):

hI,;,- -•* ;'e p Iq (A1• + lip- a

The quantities C* represent structural coefficients of internal
field (see in more detail [11, 291 and paragraph 2, chapter 4).

It is convenient to rewirte the set of equations (5.50) in matrix
form:

X )(5.51)

Eliminating S from the equations (5.5!), we will obtain equations
for ionic displacements:

(5.52)

where is a matrix -- a componernr ef "effective" frequency tensor --

ha~ing the following form:

€ . •:. • -:,•) :.: •c ',•(r + V'C4. (5.53)

The set (5.52) has nonzero solutions when and only when

The secul," equation -5.54) is analogous to the equation (5.22)

and, thus, shell model is reduced to Born-Kar-ran theory. In doing so,
it points out a physically clear method for the calcui;i-i.-n of components
of the frenuencv tensor with account taken or the long-range a-id short-
range force-, and polarizabilities of iens. However, in the calculations
4ithin the framewc.rk of this tnode; (see bc-1 w. paragrapi. 3 of this chap-

i - !74 -

11-

LF



ter) it is necessary to use i ulrge number of adjusting parameters.
Therefore, at the first stage it is often expedient to make an attempt
to interpret the vibration spectrum with the aid ef simpler models, and
then pass on to several shell models of increasing complexity, correct-
ing the imperfections of preliminary calculations and achieving a more
detailed agreement with the experiment, the way this was done, for example,
in the work [26] for SrTLO 3.

One of important features of dispersion equations (5.54) 1. that
when q-10 the frequencies of acousto.cal branches tend to zero whereas
the frequencies of optical branches remain, generally speaking, finite
even in the case of infinitely long waves. The circumstance that when
q=O one of the solutions of (5.54) is W2=0, follows from the special
characteristic of all square matrices, Rv T and, consequently of the
matr",. ý 4th this characteristic consisting in a dicreasz of the rank
of these tuatrices by three unities when q=O, i.e. I 3s=0

In particular, tiis condition follows directly from an examination
of equilibrium of the crystal upon its translation as one whole (q=o).
Another important feature of dispersion equa-ion is the difference in
the character ofW(q) of the transverse and loagitudinal vibrat ions, which
is connected with the above-mentioned feature of the macrcsc.piL field E,
with this feature Lonsisting in that the components of tho field coincid-
ing with the direction of the propagation of vibrations and perpendicular
to it substant'ally differ from each other. This may e shcwn directly
as a result of aaalyZing Cotlomb term; contained in n .

A necessary condition for stability of vibration process taking
place in a cr~stal is the reality and difference from zero of all of its
characteristic frequenices. This condition is defined by the secular
equation (5.54). Naturally, this statement does not extend to the triv-
ial solution, i.e. vanishing of the frequencies of the transverse and
longitudinal vibr.-4nns of acoustical branch when q--O. which describes
extreme case of vibrations, i.e. a uriform displacement of the crystal.
Complexity or equality tc zero of the frequencies of any one cf the vi-
bration modes indicates the presence of an aperiodic component in the
time factor of the solutions (5.54). This is equivalept to a de-
struction of the lattices or to such a change in its structure with which
the vibrations again become stable. In accordance with the well-Anown
theorem in F301, condition for the eristence of only positive solutions
is satisfied if all princtpal minors of the determinant made up of the
elements of the matrix 4 ar'! positive, i.e.

I"•' l I A-•. (5.55)

and, consequently, vanishing of one of khe principal minors of (•) in-

dicates insrabili'y of the crystal structure in question. I)

1) it may be considered that a phase transition of the first kin,

takes place when the values of the principal minors of i are positive
or differ little from zero (compare with chapter 4, paragraph 1, subpara-
graph 2).
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The condition (.5.53) is is general expression defining the stability
of a crystal and could be laic. down as a basis of a general theory of
phase transitions. In partiC.LIVi, the expreasior. (5.55) was used by
Thompson to determine the mnelting points in crystals [3i]. It is obviousI that in order to obtain tem~era-:ure dependences of the quantities con-
tained in 4i, as a result of w'hich the condition (5.55) will be disturbed
at a certain temperature, we: c~ainot limit ourselves to a purely harmonic

approxi-mation in the initial eyVations. It should be noted that introduc-
tion of anharmonicity into !hesa equations e~ven when it is regarded as a
small perturbation, leads to a c:)nsiderable comaplication of the entire

problem (~see, for example, [ 32-) inasmuch as the normalcy (i.e. independ-I ence) of vibration modes proves. to be, strihtly speaking, disturbed.

In, Cochran theory [6, 7*this difficulty is circumvented by that

the temperature dependences of the parameters of 2P are either postu-
lated or are introduced con~lit:.onally on the 'basis of a comnpa-ison with

expressions which follow frxrn phencmenological rept-esentations. Natur-
ally, this reduces somewhat tin "effectiveness" of stzlbility condition
and limits the possibilities o:' analysis of m;-roscopic mechanism re-

sponsible for the appearance c-' phase transitions in terms of dynamic
the'niy. At the same time, the application of the condition (5.55) is
of value in itself even in a harmonic approximation inasmnuch as it makes

it possible, in principle, to connect thc vibration spectrum of a crystal
with the phase-transition p~ints with these transitions having a diverse

nature -- they incli-de melting, transitions connected with polymorphism
of the crystals and, finally, -.he 'rrro- and antiferroelectric transi-

t.ions.

To determine phase-trars~tio-i poin.s connected -ith a change in

the syemetry of a crystal it proves to be expcdient to look for points
of distrubance of the condition (5.535) in conformnity with scee definite

moda3s of vibrations. in thii case _.t is possible to simrplify the struc-

tuze and decrease the order of the midnors (to break them up into isnits).

For example, for cz-ystals of cubic :.ymnetry, if vibrations rpgt aln

one of~ the principal axes of symmetry the sets of equations (5.52) are

broken up into three independent subsets each one of which has an order s

(two of them corresponding to tw-o transverse waves prove to bc alike),

and accordingly, the order of the -matrxapain no one of these!

equations is equal to s. As will be. seen later, anoth-er advantage of

examining thz disturbance of stability of the crvstals for one of the

modes is the possibility of a mere celtain interpretation: of the phys-
ical mechanism which iss the cause of a transition. 1

Vibrations cor. -spondi,,g to a,-oustical branch dc. not b--ing about

an appearance of electric fieles in -i nonpiezoelectric crystal a.nd, there-

fore, it is natural to connect the irastability of electric state of a

crystal (ferroelectric transiti(n') with the instability of the system of

electrilc oscillatnrs, i.e. with 3 nonfulfillm~ent of the co-id-Ition (15.55)

1) See paragraph 2 c7 ttis chpe zoncerning the -metho'fs of de-

cz-easirzg the order of the determinant of a secuiat equation uiing the
group-theory m'ietbods.
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for frequencies of the dipole limit optical branch of the spectrum. Here
the case of anomolously low Afreauencies of the optical branch is of the
greatest interest. This statement playing the role of the basic thesis
of dynamilc theory of ferroelectricity is at tbe same time a "null approx-
imation" and, as will be clear later, is valid only for crystals with
weakly marked piezoe;.ectric properties.

We will now e~almine dielectric properties of a crystal in an exter-

nal field E-ýE" t For this case the equation of shell model may be
written in the~ follo-ying form:

4ýlfjx -(R + 3Cz) X+ ? +CY) S - CEI, (5.56)

From these expressions we car, find the dielectric constant

dEA

where

A corresponding calculation carried out in the work [6] lc s to
the following expression for static =0) dielectric constant 60:

'o~ De 41 (0) 1~~~'~-1 S% (5.57)

Hnre z' and z"l are dynamic ionic charges with the numbers of
the row and column of the inatr~ x (ý(O) which were crossed out in --h
calculation of the principal minor of (I- It is clear from (5.57) that
when Ocrti (0`1-40. /--P Thus, an inference follows from the expres-
sion (5.57) that an attempt can be made to interpret the anomalous in-
crease of i.e. the phase transition, as a loss of stabilit-y by the
lattice with respect to one of the normal vibrations whose frequency be-
comes ira'- nzrv. Such an approach -Is Lquivalent to the concept of "soft
mode"' examined by Ginzburg. This concept was already discussed in the
introduction to tl'is chapter and -.ill be examined in detail in paragraph
4 w:hich will also exaaine the question of the role cf anharmoniciny of
vibrations,. Thi-; role is e2xtremely important 'n describin2 a ferroek~c-
tri~c transitilon. Application of the expressions (5.52-5.54) is illus-

traedin argraph using simple exarpi'lis.

06. Apr-licatiot. of Theory to Crv
With Piezoelectriý- i~roperr,

in Sy--"etnical Phase

An ante:!Vt '.:,s made in tl'e work -7' to -.pply the representatioris
of dvnamic theorY to furroclectrics with a msore complex s ~~~rvhan
cubic cryst-als and having a .;tron!g pie-zoelectric el'fect in paraeiectric
region.
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One of important features of this case is the necessity of examin-
ing vibrations with a wave vector q=O. This is connected with the inter-
action, characteristic of piezoelectrics, of waves belonging to acoustical
and optical branches of the spectrum. 1) Thus, the discussion conceran an
attempt to examine dielectric, elastic and piezoelectric anomalies from
a single point of view, i.e. in terms cf stability of a crystal lattice.

Theory of electroelastic properties of crystals was developed by

Born and Huang [11] on the b-sis of a model of hard ions. Later, their

theory was refined by Cowley [33] who included in the examination effects
connected with electron polarization. However, for the purposes of this
examination it proves to be possible to limit ourselves to a model of -lard
ions. Neglecting of electron iolaL~zability of ions is reflected chiefly
on the results of quantitative evaluations. In doing so, qualitative
characteristics of a crystal change immaterially. In this case, the
equation 4)2jnX=jX - zE contains the matrix 4•=R + zCz and E -- a columnar
matrix the elements of which represent the amplitude of depclarizing macro-
scopic field equal for longitudinal waves propagating in a diatomic crys-
tal to -4s9P).

The matrix 4, is expanded into a series with respect to q:

(5.58)

t0 is a matrix having an order of 3s x 3s and a rank of (in - 3) (i.e.

q=O).

Next, a matrix Itk is constructed. The elements of this matrix'k

satisfy the conditions that Hi if =i1 and Yv=1:

The elements of the rei.sors of elastic constants JkLm'
electric susceptibility Xik and piezoelectric constants eikL are
expressed in terms of the elements cf the matrices (ý and H in the
following manner:

i.k j - (5.59)

where Ih. l---- (4€e 4 ;

piezoelectric constant

S( •(5.60)

1) Examination of vibrations with q4 =O is aiso necessary in de-
scribing an antiferroelectric transition.
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and dielectric susceptibility

MiW.., (5.60)

Each one of the sunmmations given here is done over all clements of
the mdtrix with the other indices being constant, i.e.

Mt p•

The matrix H is connected with the frequencies and amplitudes
of normal vibrations in the following unanner:

P - (5.62)
J.4

Here the summation is done over all of the normal modes of vibra-
tions (j=l, 2, 3 for q=O are omitted inasmuch as they correspond to the
three acoustic modes).

Formula (5.62) makes it possible to express the elements of the
matrix H in terms of the frequency of normal vibrations. It it is
assumed, as before, that owing to a weak temperaLure dependencc (i.e.
anharmonicity) instability occurs for any one of the modes j=f when
q-tO, then COf.,-( -- 9) near the transition as in the case of nonpiezo-
electric cubic crystals, while the elements of the matrix V and the

values of Xje remain approximately constant. Taking into account (5.62)
and the circumstance that the element ot the matrix ( dependent on
(T -Q) is contained in the expressions for ciktm and eikt, an infer-
ence should be d:'swn that the separate elements of these tensors will
follow Curie-Weiss lad in the transition region.

For illustration, the properties of a diatomic cubic crystal of
the zinc-blende (ZnS) type are examinedin L7]. Crystals of this structure
are characterized by three different elastic constants c11, c 1 2 and

c 1 4, by a dielectric constant 46 of a fixed crystal and 'of a free
crystal, and by one piezoelectric constant e 14 . As in the case of non-
piezoelectri¢ crystals, conditions with which a ferroelectric transition
will be observed can be obtained by an appropriate selection of the
constants characterizing the interaction of lattice elements and of the
coefficients before anharmonic terms. A new circumstance in comparison
with the results set forth above, is the necessity of taking here into
account the piezoelectric effect in pa.'aelectric phase. i.e. taking into
account the interaction of optical and acoustic modes of vibrations.
In this scheme and essential oifference is the following. In the case
under consideration the equation (5.40) is formulated as follcws:

"71. (5.63)
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Dielectric constant of a fixed crystal consisting of hard ions

is defined by the expression (see in greater detail in [7]):

.•= t + 8: ('3P,R'Iu

1= D / Ewith /= 0c 4 4/

IE D
The quantities c 4 4  and D4 4 and the piezoelectric constant

are defined by the relationships:

o + '2-2( (5.64)

2 )

' + .3'. (5.65)#,, (t,; + 2) r ~ a ,i 5 03

Here R0 is the constant of interaction between the ions of Zn (1)

and of S (2) with q=O; V is defined as a ratio of the force constants

12 Ah12
Ry Rxy"

Figure 5.8. Qualitative temperature devend-
ence of the quantities cE4  and 'I for a
model of a ferroelectric with piezoelectric
properties.

If the force constants are such that Wt in the equation (5.63)
differs little from zero and that owing to anharmonicity in transition
region 2

- 41; (s' -+ 2(T--(s.

then substituting this expression into (5.63) and then into (5.64) apd

(5.65) it can be shown that at a certain temperature the quantity c 4 4

must vanish and, consequently, with a decrease Pf temperature th:- crys-
tal becomes unstable with 7espect to the tranf-erse acoustic irs'! before

it becomes unstable with respect to the tran,verse optical mo \.:igure
5.8).

In Dr4.,ciple, using an appropriate selectioa of the constants of

a crysta" it is possible to "design" a Lransition in which crystals, in

particular those of ZnS, will exhibit antiferroelectric properties. For

this purpose it is necessary to assume P. that the instability of the
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transverse optical mode takes place when q=- (which corresponds to

the motion of like lens toward ea'h other ovet one lattice spacing).

This type of transition may materialize if the temperature TA at which

it is . I'-e observed proves to be considerably higher than e (compare with
chap---.- paragraph 4, subparagraph 3). Such a situation appacently
aris NH4H 2 PO4 . According to the data of Nagamija [34] an antiferro-
electric transition of this crystal may be defined from the standpoint

of his examination as instability with respect tn the mode of vibrations

having a lower frequency than the ferroelectric mode.

Application of representations on the mechanism of a ferroelectric

transition on the basis of displacement of ions co hydrogen-containing

ferroelectrics (for example, Scignette's salt and KH2PO4) leads to a
number of difficulties. It might be assumed that the double transition

in Seignette's salt is connected with the situation examined above when
the crystal has two transition points one of which is brought about by a

stroag piezoelectric effect (see paragraph 3, chapter 3), i.e. by in-
stability with respect to acoustic mode of vibrations. However, at the
present time, physical mechanism of ferroelectric transition in these
crystals is as yet insufficiently clear (see also paragraph 3 of this
chapter).

Par. 2. Group-Theory Analysis of Vibration Spectra in Crystals

Calculations of vibration spectra of actual crystals are connected
with consicerable.difficulties. In addition to a large amount of calcula-

tions these difficulties are brought about by insufficient information on

potential functicn of a crystal, The last is especially essential for

ferrcelectrics representing chiefly crystals with a comFlex structure and

a large number of atoms in the unit cell.

The results of calculations cf vibration spectra may greatly de-

pend on the model used, with the simple models proving to be insufficiently

effective in a number of cases; on the other hand, in complex models it

is necessary to introduce a large number of aditsting parameters which

impair the reliability of theory. Because of 4his, results which can be

obtained on the basis of general principles without resorting to concrete

models and to the approximation cornected with them, acquire special sig-

nificance.

Such results may be obtained first of all with a consistenL taking

into account of the crystal syietry using group-theory methods. Group-

theory approach affords the fellowing possibilities.

a. It makes it possible to predict the number of bands in a vibra-

tion spectrum fcr a specified value of the wave vector q, the multiplicity

of degeneration of the bands, the character of their polarization and the

types of splittings in the case of minor changes tn the wave vector.
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b. Using che projection operators it is possible to find at the
singular (symmetrical) points of Brillouin zone I) the symmetry coordi-
nates the linear combinations of which are normal vibrations; in this
manner the mode of normal vibrations is determined directly in a number
of important particular cases (see paragraph 3 of this chapter).

c. The determinant of secular equation (5.22) at the symmetrical
points of Brillouin zone can be reduced to a product of several deter-
minants of lower order. This makes the calculations considerably easier
making it possibhe in a number of cases to obtain results in analytical
form even for complex crystals.

d. Group-theory analysis also makes it possible to follow up a
change in vibration spectra (i.e. to predict a charge in the numter of
lines and the splitting of the bands) in the case of ?hase transitions
and external -crions on a crystal.

e. For displacement-type transitions, in particular for ferro-
electric transitions, using the concept of "soft mode" it is possible to
limit the class of possible changes -- predicted by Landau theory -- in
the symmetry of a crystal during a phase transition.

1. Prlnciplcs of Group-Theory Analysis
of Vibration Spectra it. ̂rysLals

Group-theory analysis of vibration spectra is based on the circum-
stance that each normal v'bration is transformed in accordance with an
irreducible repressntatf ,n of a syimnetry group, with the multiplicity of
the degenerat n of - vObration being equal to the dimensionality -f the
representatio-. see, for example, [35, ?6]). Therefore, for a group-
theory analysis it is necessary to find the characters of reducible rep-
cesentatfon according to which the entire assemblage of ncrmal vibrations
is transformed for a specified value of the wavc vectot q (such a re-
ducible representation is called mechanical representation) and it is also
necessary to expand the mechanical representation into irreducible rep-
resentations of the wave-vector group.

The characters oi a mechanical representation Xq may be
found from simple geometrical considerations. With a turn by an angle 4V
about the z-axis the coordinates ::, y and z of Cartesian system are
transformed in accordance with the following rule:

(5.b6)

1 Baaicconceptsconnected -ith irreducible representations of
apace 3roups and projection operators are set forth in brief form in
chapter 6 .'re references to respective literature i.re also given.
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Rith a mirior turn by an angle • we have:

"--ZX y -Ycc"I (5.67)

T'e traces of the matrices (5.66) and (5.67) are equal to 1+2 cos
and -i+2 cos w respectively, Taking also into account that translations
to the lattice vector Ah (here a is a matrix of the base vectors of
the lattice) in an irreducible representation of a space group (see chcp-
ter 6) corresponds to a multiplication by exp - iqlh,we obtain [36]:

,1 ()-(,± +2eoy) Take -tAh (5.68)

Here the group element g=t=S where t• is a "nonelementary trans-
lation" (i.e. translation over a portion of the lattice Fpacing) and S
is a turn or a mirror turn. The plus s'ign corresponds to a turn and the
minus sign -- to a mirror turn; nh indicates tne numbers of atoms in a
unit cell with number zero, which passed Into the unit cell h under the
action of the syrmmetry element g w~th)ut changing their number.

After the character.; of mechanical representation have been cal-
culated the numbers mqp of the normal vibrations tran formed in accord-
ance with irreducible representation of rqp of the wave-vector group
Gq, can be found using the following formula:

rn - N 1  1f) i,,(). (5.69)

Here Nq is the order of the group Gq, )(,(S) is the char-
acter correspcnding to the element g in the irreducible representa-
t" on of Iqp:

- j1 , (S) - (5.70)

where 4p is the corresponding character of a loaded irreducible r~p-

resentation. The characters of loaded representations for all irreduc-
representati.ons of the space groups are given in the monograph [37].

Compatibility relationships (they are also sometimes called cor-
relaLion relationships) art also fcAird in group-theo,- anelysis. These
relationl" ips show the change in irreducible representations in accordance
with which normal vibrations are transformed with such a small change in
the wave vector q that its gcoup changes. Compatibility relationships
define, in particular, the adhesion or splitting of the branches of vibra-
spectrum with a c"-.ige in q.
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In order to determine them it is necessary to talculate the numbers
mqpt q'p' which show how many times the irreducible representation is
contained in the representation r .

| 1 (5.71)

Relationships similar to (5.71) also make it possible to foilow
a change in vibration spectrum in phase transitions in the case when a
symmetry group of one of the phases is a subgroup of a symmetry group
of another phase.

For =xample, for the limit normal vibrations such an investigation
is reduced to a calculation of the numbers:

Wf-- *_ W:tI•. (5.72)

Here N is the order of the point group of a low-synmetry phase, and
J and jI are the numbers of irreducible representations of the sym-
metry groups Gn and Gc of the high-symmetry and low-syrtnetry phases
respectively.

The problem of change in vibration spectrum in the case of an
external action on the crystal is reduced in essence to the preceding
problem if, in accordance with Curie principle, we mean by the symmetr
group of a crystal in the presence of an external influence a group
consisting of symmetry elements common for the crystal and external in-
fluence,

Examples of using the relationships (5.71) and (5.72) will be
given in paragraph 3 of this 2:.z.pter. Paragraph 3 is devoted to the
analysis and calculation of vibration spectra of concrete ferroelectric
crystals.

2. Synrmetry Coordinates and Sp.itting of
Secular Equation at the Sytwetric Points

of Brillouin Zone

Initial equations of Born-Karman theory (see 5.20O

are written in Carte:Aan coordinates of displacements of all atoms of a
crystal. Howe,.er, a substitution of the following form

!x [ -- X 7 (4 ) d q t ( 5 , 7 4 )

i.e. making use of translation synmet:ry ef the la:tice makes it possible
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to reduze the initial system of equations of the order of 3Ns, where 3Ns
is the number of degrees of freedom of the crystal, to a set of systems of
equations of the order of 3s where s is the number of atoms in a unit
cell for N values of the wave vector.

Accordingly, a secular equation of the order of 3Ns which could
have been written for the initial system (5.73) iF split into N secular
equations of an order which is smaller by N times. This splitting
proved to be possible because we (using the language of group theory)
passed on from a coordinate system in which crystal symmetry was not
taken into account, to ccordinates transforming in accordance with the
irreducible representations of a symmetry group -- in the case in ques-
tion in accordance with irreducible representatiors of a translation
group. The fact that the coordinates X'(q) are transformed in accord-
ance with irreducible representation ?'q of the translation subgroup
can be easily proven by a direct verification.

Thus, the basic property of the crystals cemmon for all of them --
translation symmetry, is automatically taken into account in Born-Karman
theory. However, the point symmetry the elements of which will remain
for the wave vectors q at the symmetric points of Brillouin zone, is
diffcrent for different crystals and different values of q and it can
be taken into account during concrete caiculations. Projection operators
should be used to d~termine the symmetry coordinates (see chapter 6).
After all of the symmetry coordinates have been fcund, bearing in mind
that normal vibrations which are transformed in accordance with The
irreducible representation under consideration, are a linear combina-
tion of the respective symmetry coordinates, sorvý Lonclusions concerning
the mode of normal vibrations may be drawn in a au'ber of cases without
a calculation.

In particular, if only one normal vibration is transformed in accord-.
ance with the irreducible representation in question. its mode will coin-
cide with the respective symmetry coordinate with accuracy to the normal-
ization constdr.t.

If we pass on from the base of the coordinates Xr(q) to the
base of s.rr.metry coordinates which take point syrmmetry into account)
then the secular equation (5.22) of the order of 3s for the determina-
Lion of i. bratiotn frequencies of the crystal with a specified q ma,
decompose into units. Each unit will be related to a certain irreducible
repreaentation, and the order of the unit will be equal to the number in
(see [381) of normal vibrations which are transformed in accordance witn
the irreducible representation in question. To split the secular equation
the matrix 4(q) of the components of thc frequency tensor should be
subjected to a unitary transformation:

6"(€•-o4(•0,.(5.;5)

Here b is a transformation t~atrix which brings about the transition
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to the base of the symmetry coordinates, 1) is a matrix which is
transposed and is a complex conjugate with respect to

Examples of using symmetry coordinates in tha calculation and anal-
ysis ofvibration spectra of ferroelectrics will be given in paragraph 3 of
this chapter. For the time being we will note that, for example, in the
calculation of vibraticn spectrum for a simplified model of KH2PO4 by
means of a transformation of (5.75) it was possible to obtain analytical
formulas for vibratior, frequencies even from a 12th-oraer secular equation.

3. Selection Rules

Selection rules which determine whether a given normal vLbration
uill appear La infrared spectra or Ranan spectra are based on a general
theorem [39] according to which the integral taken from a functiotn which
is transformed in accordance with a non-unit irreducible representation
of - group over the entire configuration space is identically equal to
zero.

It follows from this theorem chat for a fu ction F relating to
a reducible representation T; )Fdv will be nonze-o only in the case
if T contains a unit representation.

We will apply these results to obtain selection rules for infrared
absorption the intensity of which in lorg-'rave approximation [40] ;s de-
fined by the square of the modulus of the .aiarix element of the dip, e
moment.

ý_x = vib! ÷,.d•=>' (5.76"

Here 4 llib and ,vib are the initial ana final wave fur .ions

of vibratory states. The integrand of the matrix element (5./E) is trans-
formed in accordance with the following cepresentation.

S-'a"' X V >- (5.77)

where T.(2) and •(1) are irreducible representations in accordance

with which 4 2vib and 4ýlvtb r-svectively are transformed, I is a

vec .or representazion in accordance with which the dipole moment d is
tra;asformed. For the activity of the +ivib--)'42vib transition it

is necessary that T contain a unit r-presenta ion or (which, as can be
shoum, is the same) that T( 2 )x V cnntain V( 1 ).

1) It is convenieat to take as U a rectangular matrix zorrespond-
ing tO symnmetry coordinates only for one irreducible representation se-
Lected. Then, as a restlt of transformation of (5.73) we will ol'tain a
unit of secular equation -lated to the specified irreducible representa-
tio.-
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Diagonal matrix elements require special examina•ion. In this
case there is only one 3et of wave functiors and their .roducts in pairs
realize the so-called symmetric product of the representations [(3J)]2

[39] and not a direct product of -rJ x UJ. Therefore, for the presence
of diagonal elements it is necessaly that the unit representation be con-
tained in the product of:

't - Ii',X >: V. (5.78)

As an example wa will examine selectiort rules for the first-order
infrared spectra in wnich vibrations with a wave vector qO appear.

If a transition takes place from the fundamental (completely
symetrical) state, then it follows from (5.77) that the irreducible
representation in question is "ac.tive" in the infrared spectrum if it
is contained in vector representation, i.e. if one cr several vector
components are transfo,.med in accovdance with it.

In a similar manne: it can be shown that if, neglecting the ab-
sorption, the tensor of polarizability of the crystal is considered to
be symmetric, then irreducible representations which are contained in
[v. will -•,, "active" in tha first-order Raman spectrum.

After carrying out a mvre detailed analysis and determining pre-
cisely which component of polarizability tensor is transformed in accord-
ance with a given irreducible representation, it is possible to predict
in a number of cases the polarization of scattered radiation by the syo-
metry of normal vibration and vice versa. In the next paragraph this
method will be erplained using the Raman spectrumn of the ferroelectric
NaNO2 as an example.

4. Group-Theory Analysis of Limit ripole
Vibrations in Ionic Crysc.-!s

The standard group-theory analysis does not take into account the
dependence of the limit dipole vibrations on the direction of the wave
veczor q-40. At the same Lime, examination of this dependence may mate-
rially change the interpretation of the bands of vibration spectra in
ionic crystals. To take this dependence into account in group-theory
analysis the limit dipole frequencies should be classified according to
irreducible representations of the wave-vector group whereas the non-

dipole limit vibrations are classifi-d, as before, according to the
irreducible representations with q!O [410.

In order to carry out a group-theory analysis of dipole limit vi-

brations for a given direction of q-4O it is convenient to carry out
first the standard group-theory analysis for qMO and then make use of

compatibility relationships for irreducible representations of the point

group that are activQ in infrared spectra. However, it sht'jlJ be taken
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into account that the degree of splitr--g may prove to be smaller than
that predicted by grour theory. Thus, in ionic cubic diatomic optically
isotropic crystals the thrice degenerated frequency of dipole vibration
is split by the macroscopic field into an undegenerated frequency of longi-
tudinal vibration and twice degenerated frequency of the transverse ,.ibra-
tion. These frequencies do not depend on the direction of q-10 -,.reas
group theory foLmally predicts for the whole (nonsymmetric) direction Vf
q a splitting inco three undegenerate vibrations. In addition to this,
it does not follow from group-theory considerations that the frequencies
of respective vibrations must coincide for wave vectors not belonging to
one star. However, in !sss symmetrical crystals such a classification
proves to be more adequate to reality. This ts shown, for example, by
n-merical calculations for crystals of rutile structure [13], which com-
pletely tit into the scheme of procedure given above.

More detailed data on normal vibrations can be obtained by detee-
mining the %ymmetry coordinates with the aid of projection operators. To
determine symmecry coordinates of dipole vibrations with a specified
directton of q-40 symmetry coordinates should first be found with the
aid of projection operators for irreducible representations with q=0,
and then a "secondary projection" should be carried out by applying to
the symmetry coordinates obtained the projection operators for irreducible
representations with a given wave vector q. The advantage of such an
approach consists in that it does not affect at all the symmetry coordi-
nates of nondipole vibrations for which the usual procedure is applicable.
With the aid of svmmetry coordinates it is possible to determine the char-
fcter of dipole limit vibrations (longitudinal, transverse or mixed) and also
set up tranrformation matrices and split with their aid the secular equa-
tion for determining the vibration fraquencies (see subparagraph 2 of
this paragraph).

5. Limitations Imposed an Possible Chances
in Symmetry in the Case of Phase

Tra-sitions of Displacement Type

,andau thermodynamic theory of phase transitions of the second
kind limits the class of possible changes in symmetry in the case of a
phase transition (see paragraph 2, chapter 3). H wever, as tointed ort
in the work ["2], in transitions of displacement type when -%e "order"
parameter is connected wih the "soft mode" on, wore limitation should
'J) irpos0d on the irreducible representation accounting for the phase
transition: it must be contained in mechanical representation.

If a phase transition is not connected with the formation of super-
structure, i.e. it takes place without a change in the number of atoms in
tOe unit cell, then this mechanical representation corresponds to the wave
v ctor q=O. We will note that for ferroelectrics in which transition
tzts place due to instability with respect to the limit dipole vibration

the irreducible represeitation connected with the transition arst, con-
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sequently, be contained its the vector representation (see subparagraph 3
-,f this paragraph) and in this manner additional limitations imposed by
the "soft mode" on the change in symmetry in the case of phase transitton

coincide with the limitations imposed by Curie principie.

Par. 3. Calculations of Vibration Spectra of Actual Ferroelectric Crystals

As already underscored above, calculation of vibration spectra of
actual ferroclectric crystals is conntcted with great difficulties due
to which the calculation of a vibration spectrum with the aid of a shell
model, for example, one which requires introduction of a large number of
parameters is worthwhile chiefly in those cases when experimental dis-
persion curves W(q) were obtained with the aid of slow-neutron scatter-
ing. Then, using models of different degree of complexity it is possibl2
to achieve reliable interpretation of vibration spectra. Unfortunately,
it was possible tn put such a program into practice only for strontium
titanate [261 owing to the fact that it proved to be possible to obtain
sufficiently large and pure single crystals and study them with the aid
of neutron spectroscopl. For a number of other ferroelectrics (BaTiO3

[43, 44], KH2PO4 [21, 221, [45-48j, NP-NO 2 ) [23, 49] only a group-theory
analysis of the vibration spectrum was made and comparatively simple mod-
els for the limit normal vibrations were calculated.

I. Perovskites (BaTiO 3 , SrMiO3)

A unit cell of cryrtals with perovskite structure (SrTiO3 , BaTiO3 *
etc.) is shown in Figure 5.9a. The space group of the crystal in cubic
phase is %A (Pm3m), in tetragonal phase -- C'v (P 4 rn) and in rhombic
phase -- C v Pmm2). The results of grovo-theory analysis for the limit
normal vibrations [43, 44, 50] are given in Table 8.

Selection rules indicate that vibrations of the type F~u and

B1  (for C4v) are forbidden in infrared spectra, and Flu and F2u --

in Raman spectra. In the case under consideratioa, analysis of symmecry
coordinates makes it possible to determine unambiguously the -ode of the
vibration F2u (Figure 5.9b).

Compatibility relationships for a phase transition from a cubic
to tetragonal modification have the following form:

FIu44AI + E,

F 2 uOBl + E.

The dependence of the frequencies of dipole vibratorL on the direc-
tion of q - changes the group-theory classification for the vibrations
Flu (cubic plase), A1 and E (tetrago-tal phase) and A1 , B1 and B2 (rhom-

bic phase). For vibrations of the type Flu this dependence will amount

to their spli..ting into a longitudinal (undegenerated) and a transverse

(twice degenerated) vibrgtton.
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Table 8

Results of Group-Theory Analysis of the Limit
Pirmal Vibrationrs for Crystals

With Perovskite Structure

pToe3 1p-ma...... C ap C,.
Ba.......... ...... F.?,.1 Al A, £ ,8

3 qeftato- emea 3 3j 4 ~4 4 4
M~msu1 Io-j 4".M10-. 1 0 1 t

Mafaeen ron vy"M go - V~em.

Key: (1) Point group (6) NOTE. Irreducible representations
(2) irreducible representa- in accordance with which none of

tions. the ncrmal vibrations of crystals
(3) The number of norm4l vi- with perovskite structure are

lrations transfonted are not given in the
(4) Optical table.
(5) Acoustic

is

% J.

% S,

sa oft 00,

I# '; I •e• kO

z Ia en@9 o
3.*,$, 0

Figure 5.9. Normal vibrations of the type F2u
for crystals with perovskite struc-
ture.

a -- a unit cell of crystals with perovskite struc-
ture; b -- mode of normal vilzration F2u for crystal
lattice of perovskite type. 1

We will pass on to the results of numberical calculations. Cowley
[263 examined six diffarent models for describing lattice vibrations in
Sr'ri03* including a modsl of "hard" ions. The parameters of the model
wer-a determined by means of an adjustment to experimental data using the
nonlinear method of least squares. In this process, eight adjustment
pardmeters are used in the model of "hard" ions, and in the simplest of

the stll modius -- fourtean.
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The model of "hard" ions (model 1) lea~ds to considerable divergences
with the experiment. Therefore, a number of refinements are suggested:
a) the short-range forces are taken into account not only between the
neighboring ions but also with the layer of ions following the nearest
layer (model 2); b) effective ionic charges are varied (model 3); c) po-
larizability not only of the negative but also of the positive ions is
intreduced (models 4, 5, 6).

Each one of these models, 2 and 3 and 4, 5, 6 contains the pre-
ceding model and complements it.

As sh.uld have been expected, models with the highest numbers in
which the largest number of parameters are varied give the best coinci-
dence with the experiment. In this case, when the values of the dielec-

tric and elastic constant approach those of the experiment it is also
possible to obtain a fair coincidence for the dispersion curve (Figure
5.1I0).

2- 17Pei.owe 3- flqpwa* 2- APohaeaw 3 ou

,13I
~~III~~jo.5 "---

. 0100

Figure 5.10. CaLc;ilated and measured Cowley [26] dis-
persion curves for SrTiO3 .

'Žc"id curves correspond to model 4 and broken curves --
-•. ,.• modei S.

Keyi -- Frequency of 10 cps; 2 -- Longitudinal;

3 -- Transverse; 4 -- Wave vector q.
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Howevar, some atomic parameters of the lattice have values which
are difficult to explain from physical standpoint. As supposed in [26],
this contradiction may be removed if not only the dipole but also the
Iuadrupole moments are taken into account for highly polarizable ions
/chiefly negative ions).

An important inference from the results of the calculations on the

basis of d~fferenr models is that merely an insignificant change in the
parameters of short-.range forces with the charges and polarizabilities
of the ions being invariable, greatly affects the results of the calcula-

tion. This confirms the supposition following from theory that an insig-
nificant temperature dependence oi iiteraction constants with an exact
balance of the short- anr long ranti forces may bring about a high temper-
ature dependence of low-frequency transvetse optical vibrations.

We will pass on to a discussion of the results of calcuLations of
the vibration spectrum of barium titanate. Attempts at these calcula-
tions were undertaken in the work [44] for a model of "hard" ions. Elec-
tron polarizabilities of the ions were also taken into account (phenomeno-
logically, and not within the framework of a shell model) in the calcula-
tions. The covalence of the bonds was taken into account by an introduc-
tion of effective ionic charges.

Vibrations of ions are described by the following equalion: I

where R•' are constants characterizing the short-range forces of ions

and Cik "" strdctural coefficients, as in (5.30).
1Kv

The values of Rik are calculated from the known representation
of interaction potential [ii] (see 4.50).

Substitution of the values of the charges (zTi"), ZBa= 2 , zo= -2)

into these expressions leads to a result that among frequencies which are

solutions of dispersion equation, some prove to be imaginary, or in other
words, a purely ionic crystal proves to be unstable inasmuch as a strong
Coulomb in~eractiop of sublattices is not balanced by short-range forces.

Therefore, overlaps of electron shells are introduced: z'--rzi where r is

an empirical coefficient. However, in this case, solution proves to be

stable when r<0.1619. A value of polarization Ps unders-tated by more

than one half in compariso)n with the experiment corresponds to this value
of r.

It is, therefore, understandable that in the futtire it would be of
interest to undertake attempvs at the calculations of the vibration spec-
trum of BaTiO3 for more realistic models.

- I2 A
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[1
2. Potassium Dihydrogen Phosphate .(KH2P041

Thecretical investigat-*ons of the vibration spectrum of KH2P04 [22]

wcre undertaket, in two directions: 1) group-theoty analysis oi the entire
vibration !spectrum and detertaination and analysis of symmetrv coordinates

f.tric odificiation [45, 483]; 2) num~erical calculation of the frequen-
c. es onomllimit (=)tasainvbain aroo fcmaa

tAelylowfrequencies of up to 200 euf1) [421, 46] and calculatien o~f the

rf Aive mpliudesof displazement of particles in these modes L'471.

Agroup-theory analysis of vibration spectium was carried out in
the work [45] for paraelectric modification of KH2PO4, i.e. the numbers
oiT branches of vibration spectrum and multiplicities of degeneracy of the

frequencies of normal vibrations corresponding to different irreducible
representations 'or singular (syrnmetrltc) points of Brillouin z 'ne were de-
termined and compatibility relationships making it possible to jdethe
adhesion or splitting of the branches of vibration spectrum with such a
-hange of thu wave "ector q when its group changes were also obtainea.
A similar calculation was carried otit in the work r48] for lcw-temperature
modi ficAc ion..

In accordance with Ginzburg--Andzrr-on--Cochran theory, direct in-
formaticn~~ coArigten~cromechAnism of a ferroelectric transition ;tan

be obtained from spectroscopic studies of limit normal vibrations. This
accounts for the spec-ial importanca of the study and interpretation of
P~anan spectra and infrared spectra of the first order for ferroelectrics.
Therefore~, a more detailed analysis was made for the limit normal vibra-

tions of ZDP.

In a number of cases, long-wave normal vibrations of a crystal can:
be approximately divided into external and internal v5.brzttons of moletu-
la- or ionic coemplexe!.. Although the legitimacy of such a division is not
obvious in advance, the fact that in Gifferent crystals isomorphous to
KH2PG4 the samie bands are observed ini Raman spectra in the region of in-
tern&l v~brations Df ( O,)lions indicates that for crystals with the
Ha2 POAi st~r~jture this appro'tization is reascitable. In tLeir turn, fromn
the extearnal. vibrations of the ions of (H2P04)-1 it is possible to sepa-
rate their orientational and translational motions. The results of a
group-theory analysis made on rh~. basis af identification of the limit
normal vibrations with the internal, orientational and translational
vibrationz of (1 2F0 4 )- ions Are given in Table 9. _

To obtain more detailed data en normal limit vibrations both for
ierroelectric [48] and for paraelectric modi~fication [45], synnetry cocr-
dinates -- linear combitiations of particle displacements, transformed in
accordance with a givtn Irreducible representation were obtalned with the
aid of Mealvin [51j projection operators, Analysis of symmetry coordinates
indicates that separation of normual vibrations into internal, orientational
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Table 9

Results of Group-Theory Analyuis of Normvl Limit
(q=0) Vibraticns In K:,2PO4 on the Basis of Their
Identification With Internal, Orientationql and

Translational Vibrations of (0 2 PO4)" iOas

i- -,-.l 7.-:
Above curie point Below curie point

A4 3 0 0 1 All 1
4~ 6 A 0 2 1 i0I 2 .! B 1 3 2

NOTE. n is the total number of vibrations trans-
formed in accordance with a given irreducible rep-
resentati.n; ni, TA, To and R are the numbers of
"iternal vibrations, ,.coustic and optical transla-

tions and orientations respectively.

and translational vibrations is a priori not rigorous although as noted
above it can serv; as a reasonable approximation for a preliminary inter-
pr~tation of the spectrum. With the aid of symmetry coordinates it is
possible to obtain transformation matrices for splitting the se~ular equa-
tton from wshich the frequencies of normal vibrations are found similarly
to the way this was done in the works {21, 46, 47] for a simplified msodel.
Hcwever, an obsta-ýc for a numerical calculation which in principle woulj
make it possible to interpret Raman spectra and infrared spectra of the
first order, is the as yet insufficient knowledge of potential function
of the crystal.

Group-theory analysis predicts that for a ferroelectric modifica-
tion, 45 lines must show in the first-order Raman spectrum (34 lines in
the infrared spectrum) and for a paraelectric modification -- 28 aud 18
lines respectively. But in the experiments on Raman effect [52] 27 well-
defined bands were found for paraelectric modification out of which, ac-
cording Lo the interpretation of che authors of the woLk [52], only 18
lines correspond to fundamental frequencies; 36 lines are observed below
the points out of which a portion sf the bands also corresponds to com-
positG frequencies. However, if it is assumed that the correlatioi be-
tween protons scarce!% splits the frequencies of normal vibrations, then
it follows from the a;.alysis of symme:try coordinates that above Curie
point 23 lines must show ir. Raman spvctrum and below Curie point -- 36
lines. This agrees better with the experimental data. It is possible
that Paman spectrum obtained in the work 352] is not entireiy complete
and thus the supposition thai correlation btween protons scarcely splits
the frequencies of normal vibrations cannot be ortsidered to have been
proven.
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Figure 5.11. Unit cell cf' ,3/4 f' z a
simplified m( 7

poi-,t. Nuinctals 1-4 in~dicate te•'V A,
s ru.tucal units.

We will note that (from "he sta";)dpoirt )f fCinr, Lirg•--AndexSOr -
Cochran theory) ferroel-ec'uric vibration "t "I2rO4 colresPolds to irraduc¢ A
Ible r'epressntationpf, bfttelow Curie poi-nt. avl i .rredicible representa-
tion of B2 above Curie point. This agrces wit.h Erk. sc-1,maie mode of
ferroeiect-ric vibratior, a,,sumed by Cochra.i for k-inPO4 7,j.R

A more detai~led comparison of results oPt.tined in group-theory
analysis, with the experimeilt reqvires furzher exper-imen-a! studies of
Raman spectra and infrared spectra 'If: tT.2F04, in pzrticular a study of
polarization lines and temperature dapeutderce ef intensities and half-

widths.

Neutron diffraction analysis shows that the sizetclare of= 02PO4
crystats may be regarded as consisting of £ ms of K(+ and H-%P04 8roLps

531. This also finds a certain confirmztion in spectrosccpic studies

52j.~ A unit cell of parael,-ctric modification of KI2PO4 for the respec-
tive model is shown in Figure 11'a and a unit cell of ferroelectric jaod-

ifi--ation -- in Figure 11b.

At the stngul.ar points of Brillovin zone, to determine the vibra-
tion frequencies the secular equation may be split into several simpler
equations the orders of wbich are determined from 8roup.,.heory analysis.
For this purposes transformation matrices a.re constructed out of the

coefficients at the base functions in orthonermalized symmetry -oor~inates

corresponding to the sJven irreducible reprezentation and then the matrix

Sof the components of frjqu~ency rensor is .transformed in accordance
S~with the followin•g -ule [38, (see subparagraph 2o paragraph 2 of this

chapter) :

IVAI
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Here is a transformed secular matrix having a unit form; the
transformation matrix U+ is a transposed matrix complexly conjugate to

RikU. For the KH2PO4 model used the splitting of secular equation and numuer-

ical calculation [21, 46] were carried out for a q-40 alorng the tetra-I g-nal axks. In ljoing so, to calculate the long-range Coulomb forces the
(P2P04)- groups wc-re assigned a unit negative charge and repulsive
forces were taken into accounit only between 16 ions and the nearest
oxygen r£titrs.

Table 10

Calculation of Frequencies (in cm-1) of Transla-
tional Normal Vibrations in KH2PO4

J~~ Rim "%kU" f2 Hae vv

118 ats Ef (1%) Baj 4 sot

1114

lg13 j 7 B,~ A(,) 193 17

NOTE. The 3rd and 4th columns represent compat-
ibility relationships characterizing the behavior
of the spectrum during a phase transition. The
following relationships exist in addition to those

ý;hown in the table: Al(1T1)-,.Al(T 1); A2 (V-Y4-A 2(1ý'9 ).

The results of the calculation are summnarized in Tablc 10 where
they are compared with the data on the first-order Ramian spectrum r521.
Agreqmnent with experimental data is sufficiently good. The frequency
Alfor ferroelectric mocification turns out to be6 imaginary. This in-

cates 4incorrectness of the model of potential used, for describing the
respective normal vibration. We will also note that theory predicts
unobserved splitting of the frequencies Ell Ell and Ell' which could
have been clearly detected by means of measurements in polarized light.

Appiarently the model used for numerical ca)culctions m.ay be
utilized in the cp-dculztion of translation specti-a both of the cry-stals
isomforphous co KP'. P04 and of the other crystals consisting of ions vfL
alkaline metals and molecazlar or ifonic comp'lexes approaching in form
spherical complexes. Examples of such crystals may be provided by
Na2SO4, K2SOA, K2Pk'4, etc.

The calculation Ahtch was carried out msakes it po;sible not only
to interpret Raman spa-ctra In the region of comparatively low frequencies

M 9
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Figure 5.12. Normal Translational Vibrations
in KH2PO4.

a -- above Curie point; b -- below Curie point.
Small circles indicate Kl ions and large circles
indicate ions of the (H 2 P0 4 ) group; black circlas

indicate particles lying in xy plane and white
circles -- those at the c/! level. Displace-
ments along the x- and y-axes are indicated by

arrowheads; displacements in the. positive direc-
tion of z-axis are indicated by plus sign, and in

the negative direction -- by minus sign. The i.um-
bers in parentheses indicate the respective fre-
quencies in cm"I.

but also to find the mode of the respective normal vibrations. For this
purpose, frequencies determined from the secular equations obtained should

be substituted into equations of motion written for symmetry coordinates
of translational vibrations, and these equations sI-ild then be solved.

Figures 5.12a and 5.12b show normal translational vibrations in KH2 PO4
for parai=ctric and ferroelectric modifications respectively and give
the frequencies corresponding to them [47]. The character of the cL.ange
in normal translational vibrations in KH2 PO4 during a phase transition

may be graphically seer, from a comparison of the figures.

3. Sodium Nitrite (NaNC 2 )

Difficulties of understanding the phenomenon of ferroplectricity

at the microscopic level are brought about to a large degree by the com-

plexity of the btructure of ferroelectric crystals which represent struc-

tures containing complex groups of atoms tightly bound with each other.
Because of this, the great interest of researchers in a new ferroelectric

NaNO2 having a comparatively simple structure is understandabl. [54].
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F1gur¶. 5.13. The structure of NaNO 2
below Curie point.

According to the data of x-ray [551 and neutron [561 diffraction
studies, at temperatures be!• Curie point (9=163 0 C) the structure of
NaNO 2 belongs to the group C•• . A unit cell is bhown in Figure 5.13.
The results of a group-theory analysis of vibration spectrum of NaNO 2
are summarized in Table 11 from which it may be seen Ol,•t all optical
vibrations are active in Raman spectrum. Vibration of the A2 type is
inactive in infrared spectrum.

Table 1i

Group-Theory Analysis of Normal Limit
Vibrations in NaNO 2

1., ,4 Ii., 1 0 I 2 .,,. a ,a..
A2  1 0 41 (.P WA 1(, (?) s.D,, 4 1 (r.) I I ( )

NOTE. The numbers of normal vibrations
transformed in accordance with the given
irreducible representation: n -- the to-

tal power; T, T', R, n! -- the numbers
of acoustic and optical translations,
orientations and internal vibrations re-
spectively; •t-" tensor components.

A method, described below, which while having a high illuminating
power and simplicity in comparison with the usual procedure at the same
time makes it possible ii the case under consideration to determine on-
ambiguously the symmetry t pe of vibration lines was used in the works

[23, 571 for the interpretation of an experimental vibration spectrum

of NaNO 2 obtained by the meried employing Raman effect.
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Figure 5.14. Paman spectra of NaNO 2

a -- the rcgiort of low-frequenc: vibrations of the
crystal (y is 'ie direction of observation, z-axis

is parallel to the height of tb', monochromator slit);

b -- the region of 1,000-1,500 cm-1. Letters indi-

cate different orientations of the crystal in accord-

ance with Figure 5.14b.

A sample of cubic form with edges parallel to crystallographiL axes

a, b and c was placed on the axis of the lartn and illuminated with natiral

light. A polaroid passing a component of light with tha electric-field E

va:.ror paralie. to the height of the moncchromator slit was installed

on the pati. c' .:attered "ight. A coiicidence of polarization planes of

the polaroid and of the monochromator lattices was achieved with such an

a•rrngement. This permitted a most complete utilization of the mono-

chr~xnator illuminating power. Six spectrograms (Figures 5.1 4 a and 5.14b)
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with the orientations of the cry:tal shourn in Figure 5.14a were obtained
under these conditions.

The idea of the method consists in tme ý'ollowing. The projections
Pi of the dipole moment, wh~ch define the intensity of scattered radia-
tion -•re equal to:

"ZE PJ 
(5.79)

Here Ek are components of electric-field vector, clik are com-
ponents of polarizability tensor. Knowing the irreducible representa-
tions to which the components of polarizability teneor ccrrespond (Table
11) and taking (5.79) into account It is possible to determine the polar-
ization of scattered ridiation.

A At

0z o
S -N

Figure 5.15. Symmetry coordinates of the
limit normal vibrations of the ferroelec-
tric NaNO2.

Numerals 1-4 indicate nonequivalent atoms.

Table 1z

Intensities of Spectral Lines With Different
Orientations of NaNC 2 Crystal

I A. A.

A 0 ,g 41')

Key: (1) Orientation of the 'ýrystdl.
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table 13

Vibratiot. Spectrumt of a Ferroelectric
Crrstal of NaNO02

2.-2u-____

3OE r~.~ece arSxrsedi n

or - zen7 ~ oo v1ra 4u (ki b-~rs

aNiOnE. Allbands shoin ixrese iamn spctrum

vibrtions oftica tanltoa vion.o o

NKey: mc ( it) Ep rizespc oNt(4 cainallatongo pia
(2) Crystn. l- translalionaltioreqfen-

(3) Aqueous solution cies

Rei;ults of a group-theory analysis of the vibration spectrum of
NaNCk for all syimmetric points of Brillouin zone, and also results of a

-group-theory anallynis of the limit dipole frequencies with account taken
of their dependence on the direction of q-#O may be found in the workc

Par. 4. ?hysical Mechanism of Ferroelectric Transition and Dynamics of
Crystai. Lattice

Equations obtained in paragr-ph I make it possible to formulate in
a cPifficiently general form the stability conditions for lattice vibrations
and determine relationshipa connecting dielectric constants 10 and t

and the frequencies of normal vibrations. However, physical mechanism
responsible for the initiation of a phase transition is detei~mined in this
case only to th..± extoent to which the inicial model of the crystal has been
coneretized. Within the framework of th2 model used in the derivation of
the basic relationships the question of whkr at a certain temperature a
disturbance of the condition (5.55), i.e. a phase transition, takes place
remains unexplained. Consequently, it is necesEr.ry to focus attention on
those properties of a shell model which can explain the appearance of
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ferroelectric anomalies, i.e., speaking in the language of dynamic repre-
sentations, It. is necessary to determine the possible causes of the loss
of dynamic scability of the lattice in a ferroelectric. At the same time,
it is of interest to examine certain features of Jynamic characteristics
of a ferroelectric in the phase transition region ins a greater detail and
as far as possible an the basis of not excessively complex representations.

1. Concept of "Soft Mode" and Anharraonicity

of Lattice Vibrations

Proceeding from formulas (5.50)-(5.52) for a shell model we wi~l
examine the force constants 4 fr- the simplest case of a diatcmic cubic
lattice (for exau,,le. NaCl, K0, etc.) [6].

43r
For the limit (q--O) transverse waves the field factors C r= '

012= --C - and the force constant •T is reduced to the following form:

#r-•- • ,(5.80)

In the case of longitudinal waves C,= -- A-, C2- 3

The well known relationship between polarization and dipole moments
brotught about by ionic displacements was used in the derii'ation of these
fronns as, i,..

&. + 2P-= ezx
3v

and z indicates in this case effective dynamic charges.

Thus, examining conditions for one of the principal minors of 4>
becoming zero, we come to the following condition for transverse vibr -

tions: e4: (we - 21(,,) t O
"R- 94 (5.82)

It may be perceived from (5.81) that in principle $L does not
vanish. The physical sense of the condition (5.82) is obvious and cor-
responds to the results of Devonshire--Slater tleory (see paragraph 4,
chapter 4): the sign of the phase transition is the equality of the
short-range forces tending to return the displaced ion to the initial
position, and long-range electric forces conducive to a displacmnnt of
the ion. This relationship is sometimes called ferroelectric-act ývitv
criterion [59, 60]. In order that W2 become zero and that in accord-

T
ante with formula (5.40) E0 change with temperature according to Curie-
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Weiss law, it is sufficient to assume that in the transition region the
quantity

LP_ (5.83)

where Is Curie temperature.

This relationship (see also paragraph 4, chapter 4) can be obtained
by different methods. It is sufficient to assume thar- any one of the
qqantities contained in the second term of (5.83) varies as l+CIT where

tIT Is a small quantity in comparison with unity. However, Slater [61]j
showed that temperature coefficienLa of volume expansion and too are
too small and that the only reasonable explanation of the relationship
(5.83) can be obtained if it is assumed that R0 depends on the ampli-
tude of ionic displacement, i.e. by assuming that vibrations of at least
some of the ions of a ferroelectric have a marked anharmonic character.

The same relatcionship of the coefficient characterizing the re-t')ring
force which a3cts on the displaced ion is also used in Devonshire --Slater
theory [61, 62], and in this subparagraph the model used in dynamic theory
hardly differs frorn the model of inhatrnonic oscillators. However, the
difficulty cons!_ztts In that the introduction of anharmonicity directly
into a dys.:- c-,,heory syslterm con5siderably complicates the prob-
lem even if noni~.. terms --re regarded as a stmall, perturbation. In
this part, such a _-lution o:~ it proves to be effective ~ird _--Iotcut
with w~ich dynamiec reFrL;ent.!Lzans are combined with the methods of
statistical physizs (see -,ubparagraph 2 of this paragraph).

In. doing so, as a restilt of utilizing thermodynamic perturbation
theory (see also chapter 4, paragraph 4, subparagraph 2 and [51 iti
nossible to reduce a system of nonlinear oscillators to an equivalent sys-
tom of harmottic oscillators with a certain new effective force constant
which linearly depends on temperature, i.e. R.4f=RQ0l + 1(T). Substi-
tuting these expressions into (5.80) we will obtain. the necessary rela-
tzonship W ~(T - 09N. At the temperature a when the restoring force

Ref is equal to Coulomb force the crystal becomes unstable and as a
result of a rearrangement of the latcice a new structure is for-ned which
is characterized by t.he presence of a spontaneous electric moment. A
calcuLation of constants entering the equation (5.82), with the use of
atomic nararneters of the lattice of NaCi, CsCl, etc. 16,2"'i indicates
that for alkali haloid crystals the value of R is approximately twice
as large as that of the second addend, In other words, the lattice of
halogens proves to be too rigid, the vibrations of ions insufficiently
anI'an.ionic and polarizabilities instafficie.atti; high for the start of a
mutual compensation of electric and rcstoring forces, which was discussed
a bov~e.

Fo~r ferroelectrics these relationships prove to be different. In
this case, the coaff.:ients of internal field are sufficiently large for
thc limit Ferroelectric transverse vibration and the value of R is, on
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the contrary, small and is characterized by a strong temperature depend-

ence owing to marked anharmonicity. As a result of this, the condition
(5.82) is :ealized. The so-called soft mode of vibrations of a ferroelec-
tric is Piso reduced to these qualitative reprasentations. It should be
noted that these representations cannot be considered to be a specific
attribute of dynamic theory. In the language of theory of anharmonic
oscillatorsi stability condition will be written in the following manner:

(5.84)

(for notations see subparagraph 1, paragraph 4, chapter 4). Apart from
the difference in notations this formula coincides with (5.82). The
coefficient in front of z2 L2  for BaTiO2  is several times higher than
for halogens whereas the assumption of relative freedom and a marked .n-
harrronicity of displacements of t-tanium ion makes it possible to con-
sider the force constant "a" to be a small quantity and the ratio
3b 1 + 2b 2 sufficiently large. Therefore, the condition (5.84) can be

a
2

realized for BaTiO2 .

A physical pattern very close to the representations conce-ning
thc "soft mcde" m~y 'c ooat~iled oa the basis of thermodynamics.

As far back as'194 9, V. t. Ginzburg showed that in the case of a

phase transition of the second kind of displacement type (or of the first
kind approaching critical point) the frequency of one of vibrations of the
crystal lattice must become zero [1] 1), namely the frequency of that
vibration which is connected with the changes in the order parameter of
Landau thermodynamic theory.

Ginzburg proceeded from an interpretation of quadratic term 011i
in the expansion of thermodynamic potential 4ý with respect to the pow-
ers of - (see 3.2) as a generalized elastic energy.

Such an interpretation is confirmed by the circumstance that the

equilibrium value of A=ixo is determined from the condition Z- =0.

i.e. c,+ t3=0 (see 3.8). This coincides with the equilibrium condi-
tion for an anharmonic oscillator:

,41 + +,•.-o (5.85)

and tm3st be warranted for transitions of displacement type in the case of
which nq is simply connected with a displacement of crystal sublattices.

1) Only a ferroelectric transition of the second kind was examined
In the work [i] (see also [2, 31) but as noted in the work [3], the ap-
?roach developed in [1, 2] remains valid for any phase transitions of

disptaceaent type.
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I
For small fluctuLtions of the order parameter 0rL=' "0

we find from (5.85) the following near the equilibrium value of ^0:

L d (+01) + 601-- o. (5.86)

With a T>e i
(7 - #)(5.87)

With a T<() - UJp= -_ 74 21.1 2*(I--T)

,t- •; " --;- ---F -"'5.88)

The linear dependence of the "soft mode" W.2 on - T ma, be
connected with the use of the approximate expansion (3.2) but the fact

itself of one of the frequencies of optical vibrations becoming zero (cr
at least the fact of an anomalous decrease of it) at the point of trans-
itiou of displacement type apparently does not give rise to doubt.

The parameter pj may be expressed in terms of a reduced mass of a
vibration with a frequency Wi and effective dynamic charge of the
"soft mode":

m

where N is the number of particles in a unit of volume.IA
If the dipole moment of the crystal changes in the case of displace-

ments correspopding to the frequency Wi, then polarization may be se-
lected as the parameter ,t. (we will recall once more that with transi-
tions of displacemenc type -A~displacement of sublattices), and the

respective phase transition will be a ferroelectric transition.

In this case, the calculation of dielectric constant with (5.86)-
S-5.88) taken into account, gives:

(5.89)

.'<,.*5.90)

In the derivation of (5.89) and (5.90) it was assumed thaL a ferro-
electric transition from a cubic to tetragonal phase is examined.

Later these considerations were developed by Ginzburg [3,63] for I
a phase transition of the first kind also. In doing so, it was shown that
the following expression remains when T>0:

(5.91)
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with the difference that in this case Curie texaperaturz T. differs from
thin temperatuze cA' phase craosition 0. Therefore, the Ifzýquency at the
phase-transition point tendu to a finitr. value of

.,- •/ c- rSA (5.92)

for paraelectric phase and to a v&lue of

•. )•V-(•--.)a(5.93)

for ferroelectric phase. Evaluatior z car-ded out with the aid of the

formulas (5.92) and (5.93) for BeTI.' gie a £Dgw 6 ,O 1 hertz
and OOW, •1.2 * 101 2 hertz, "ht. corresponds to the ;avelengths 2.•
A-,u3 MC ard Xiz-i.5 iwn respectively.

2. Taking Anharmonicity Into Account by Us.ing
the Methods of Pert rbtlor Theory

The possibility of )ppe-r-.re. of - eituation it. which a i.-"roelec~-
tric transition takces place, i.e. a mutual compensation of collective long-
range forte,! conducivo ro the 4Jsplacements of ion;, and restorifig forces
brought bout .tiefly by interace or. with the ne3rest nefShbcrs is d&ter-
mined not xily by the balance o. these forces but also by their u•onlinear
character=. in other words, explanatioi: zf temperature dependences ob.
served n ferroelectrics is possible only with the condition of tzking
anhartmo:.ic effects into account. It was already noted above that solu-
tion of dynamic equations (5.22) wir;, account taken of the teras in U
containing, powers hi;her than x2  is connected with'great. difficulties
even if only because the normacy (i.e. independence) of different modes of
vibrations is thnn disturbedt. t Mis calculations [6, 7] Coc-iran circum-

vented this difficulty by simply postulating the litnear dependence of
R=R0(I + IT) of the force consLant on tempera,ure. However, taking
anhartonicity into account in dynsmic equations may be achieved by a more k
correct m1ethod.

If it is considered that nonlinear terms are small in comparicon
with linear terms, then a possibility appears to use the methods of per-
turbation cheo-y. The assumption concerning the smallness of anharmonic
portion of energy being sufficiently correct (at least if the transition
point itself is excluded) in the case under consideration, a)ready fol-
lows from the fact that as shown in [61] and then in [6], a relatively
weak dependence of the quantity R in the tormula (5.80) is required

to obtain the necessary relationship of Ni. Thuz., the problem in ques-

tion can now be solved on the basis of Lhermodynamic perturbatLoa theory,
similarly to the way this was done in paragraph 4, chapter 4, but in com-

bination wilh the use of solutions of differential cquations of the vi-

brations of ions (i.e. of normal coordinates). The question of taking
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arth~rmonicity into accouznt iY1 tetus of equations of lattice vibrations
and perturbation theory was examined for the first time by. Born [11] and
then in the works of a n~umber of authors (see r64jy,. in its application
to the Vroblem of ferroalectricity this method was used for the first
time by Anderson [4]. The essence of the method is reduced to the follow-
ins.

The Hamiltonian of an unperturbed systv4 No is wvItten in the
foliowing form:

JX jX 41 *J111;X Mde -s

i.e. for simplicity, one acoustical (the superscript "~all) anti one C.ptical
branch (the superscript 0) is taker into accouPnt here.

rhe normal coordinates Xq art- soiutions of the system of equa-
tions (5.22):- Saq and S(, are thie respective modull of elasticiLy.(q))

The anlianonic portion of the Ham~iltonian regard;ed as a perturba-
tion may be repzreaenttd in the followinsg form:,

Toe funumcerktal approximation (&'so used Ln model theories r59
mid [601)cin~sis-.s in that the distribution funit~ons and the fqnctions of

diffe~zerts sworage exp ~-are arranged in series with respect to

,kfter 6fs, the probolem is actually reduced to the calc1ulation WilthI;the aid of ý: ~ierzzurned Hamiltonian, of the average values of 041addi-
tionally multiplitd by the polynomials of different powers of Xq. In
dofi&~ se, in~ the lowe~r order with resp~ct to anharmonicity all thermal
proptrties, folloiw from a set of effective Hamiltonians (one for each vi-
bre-tion) whfcb -rt obtaired by the averaging of X, over oill viotai
vibra-i-6ns with the. excepti~on of the one for whflch 4ai Affective Aafatlt-
tonicft is detemined.

In this manner, the free energy is determined in the form of an
expansion with respect to the powers of j

~ ~ +~+~-~t-.)'i. (5.96)

Here Aois fre-z energy Ir Lhe absence of pi-rtrbatiqn, tibe first-

crder term, is, mt quasi-heurmonic average of tip erturbatitm
the r'2cond-erde'r term is? as usual in pprturbation theory, energy fluc-
tuation. _________

1** Inasaucl as a cla~sital prcblem is beliig a-;ýIvc4 it wzrjld be
possible to use W~th ocual sucrtess not the Hainiltcnian function X b'Ut
potential 6*neray U(see charter 4: pazragraa 4, subparagSraph 2).



(3 - r

I
It is importAnt hhee that Harmiltonian function X is expressed

in terms of normal coordinates 4nd makes it possible to determine the tem-
perature dependenc? of natural vibrations ef thbt lactice. In th~e work
[4],. with the aim of simplifying the probleia a system of hard ions is ex-
amined, i.e. effects brought about by eleitron polarizability of the ions
are not taken into account. Construction of a Hamiltonien futlction with
thE displacements of electrons taker into accaunt is not -rnnnectoe with
ditfficultiae in principle .Pd ,it the same time does not intrcduce qua!itra- I
tive changes into conc!isionas drawn sy Anderson. 1) As a result of imr5
position of the condition t-f minimum of free energy (5.96) in the pre3-

ence of electric field the value of dielectric constant is defined as

Swhere Seff is effective (i.e. takin8 account of Coulomb

forces) value of optical modalus ot elast5,ity connected with vibration
mode when q=O.

The modulus cf elasticit? SO may be written in the following
form:

3: (5. T71

where #(q) with q,-0 represents Lorentz factoL which is eqal t -3
for transverst.; and for longitudinal vibrations.

Figure 5.16 shows hypothetical curves of th~e relationship tc q of
two terms of the equation (5.97) and SO for transverse bracnch for Curie
temperatura. An assumprion that (without taking anhanronicity into .c-
count) the modulus of elasticity of the transverse optical bronch becomes
negative at Curie point was Laken into account in these rd1ationshipj.

S

$ W

Figure 5.16. Qualitacive relationship
of elastic nmodulus to the
wave vecter q.

Effective petential energy ýalculated for such a vibration with
the aid of procedure discussed above proves to be equal to:

C"- S, I X10 P + I XI, ,* P

A --rs,%ns -pprocnc was lacer used in th* works [u65 66~ '. n Which

an e.premssn f= the co•n9t;•i.s of phenomenoiogi.cal theory in tens of
microscopic per-erzets waq obt.ained with the aZd perturbation theory. As
notxd in . wore LE• . inaccuraties are co.itained in the respective ex- A
pressiow.• in the work 063.
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Thus, the quantity X0 (i~e- a trsnrverse optical normal vibra-

tion) has a potentr.al gith two, minima, Taktr;g the value of one of these
minima the quantity Xý,) receives an increment and this ensures the
initiation of ferroele tic paiariation.

We w~ll underscore once more that the potential with two minima
pertains in Anderson's =odd not to the entire substance but only to the
transverse lirait optical vibration. This is the distinction of his
theory from the theory correspondf=ig to a case when a potential with two
minima acts on ferro-3ctive icens.

Evaluations madz by Anderson lead tt) a conclusion regarding the
relative smallness of the effect of Enharmonic terms and fluctuations
on the character of ion vibrations even ir direct proximity to the transi-
tion point owing to the fact that anhamo-.!Lcity has a marked character
only for some of the leng-wave modes of vibrations and amounts on.ly to a
small portion in the total energy balance. In other words, in th's sub-
paragraph, dynamic theory agrees well wijh the conclusicns obtained on
the b6sis cf a model of anharmonic oscillators and thermodynamic thcory
of fluctuations in .he transition region (see subparagraph 3, pqragraph
1, chapter 3 and paragraph 4, chapter 4).

Later, Anderson's approach was develo-nd in '-o`- by ••1'v [67]
in ,hich dielectric co,.Ytant was deter.-iaed not only in a perwunent field
but in a variable field al:ac. The susceptibility , calculate.. in [67•

for ferroelectric phase near Curie temperature e proved to be equal to:

OMIl I
t~r_9t.V'(5.98)

For paraelectric phase near 0
(5.99)

Here i is Lorentz factor, a = where is electron

V

polarizability, and &I is the value of ferroelect-ic frequency away
from Curie point. I1 is of interest to note that X proves to be

maximal not at a T--e but at

(5. 100)

and at

in addition to this, regardless of •he dependence cn

210(5,ll)
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An attempt at an examination of a Aferroelectric the properties of

which are determined not by one but by two or more "soft modes" is also
reported in the iork by Aizu [67]. An analogue of this case in theory
of anharmonic os:illators is a crystal in which not one but several sub-
lattices perform anharmonic vibrations (see subparagraph 1, paragraph 4,
chapter 4). According to [671 the presence of several "soft modes"
leads to a possiuility of seve.ral successive phase transitcas.

Some of the results i. [4] were later obtained more rigorously by
Wilcox [68] with the aid of diagram technique (see also [69]). Wilcox
used a "'.enormalization of frequencies" in order to obtain Curie-Weiss
formula for paraelectric phase.

The physical pattern underlying the calculations examined above
is as follows: with the approach to the transition point the frequency
of ferroelectric mode drops; directly near the transition point this
normal vibration consist3 In a displacement of ions to a new e4uilibrium
position and vibrations relative to the new equilibrium position. Thus,
the potential relief of th,cs vibration is highly anharmonic.

In order to illustrate this pactern in the simplest way it is
possible, following Silienman [32, 70] and Blinc [71],to examine it
for a model of an , ijuitiistant diatomic linear chain of atoms with a
miss m and with int.e :-Action between the nearest neighbors (the force
ronstant kl) and thor' which follow them (the force con3tant k2 ). The
,:quations of motion fir such a system have the following form:

The relation;hip of the frequencies of the acoustiý:a] and optical
branch respectively to the wave vector q is given by the following ex-
pressions.* I)

44, qd 4ks

-s (,}-- +-sinu. (5.103)

Here d is lattice constant,

As it follows frrmn (5.103), the frequency 01(0) is cvmpletely
dcttrmined by the force coistant kl. Therefore, 4f kl is selected as
a small and negative quantity and k2 -- as a large and positive quantity,

1) We will note thatthe formulas (5.103) and (5.18 coincide when
k2=O and m1=m20.
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then the lattice will be unstable with respect to optical vibrations with
small q but will remain stable for the large values of q.

Using normal vibraticns the Hamiltonian of the system in harmonic
approximation may be written in the following form:

x.- (;( + (5.134)
S )

Next, we will take into account the fourth-order anharmonic term
(in the chain under consideration i third-order term is forbidden owing
to the presence of a center of syN.atry):

X1 ,;'. (Xi-XOP. (5.1o5)

;Ki may be expressed in terms of normal coordinates:

MR 2

Effective "quasi-hermonic" Hamiltonian may be obtained by averajaing
over Xa .n- Xa using perturle'•or tI - •e.acti

with antd '' 2 an
with X0 upon substituting (A);(q) and a (q) wt (q)

(aZ2(q) where:

L r(5. 107)

(A similar expression should also be written for &2 but the frequenices
a

of acoustic vibrations prove to be relatively weakly deendent on temper-
ature).

lT krThe average <zlx:., -

where k is Boltzmann constant.

Taking into account that wben q sin are small qdl'nd, we will
obtain the following when qdl:

qkr Clos, ll I .+ s ., (5. 108)

It may be seen fror. (5.108) that the presence of anharmonic term
stabilizes the system above Curie temperature. With a q-*O the fre-
quency WO(0) changes with temperature as

-I(o) -.(r -- 6).

where
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We will now dwell on the attempts at a more detailed enamination
ot ferroelectric vibrations [72]. The properties of excitatious for
trariitions of different types and also p-oblems of attenuation were
examined in the work [73] with the aid of the method of self-consistent
field. A high anisotropy of ferroelectric mode was observed in noncubic
ferroelectrics. This anisotropy connected with the anisotropy of dielec-
tric constant is reduced to a dependence of the frequency (4(q--40) on
the directiona of the wave vector Lending to zero (see paragraph I of this
chapter). It is shown that ferroelectric vibrations have a low attenua-
tion only in the case of applicability of seli-consistent-field theory,
i.e. prcisely in the temperature region where Landau thermodynamic theory
is applicable. It is noted that owing to a high attenuation it is diffi-
cult to observe ferroelectric vibrations for order-disorder transitions.
With the approach to Curie temperatare, a slowing-down oZ relaxation and
accordingly an anomalous temperature dependence of dielectric constant
are observed.

In the work [651 the semlphenomenological equations in the work
[i, 6] were obtained with the aid ot temperature diagram technique and
a generalization of them is given for a case of q40. A strong effect
of acoustic mode =a: xti.ted. It was found that with small q the spec-
tram in perovskites is deter"ined by six micro',copic constants an exper-
inental determination of which could ensure a verification of theory.

It follows from the foregoing that at the present time dynamic
theory describes ferroelectric transitions only qualitatively. As may
be seen frem paragraph 3 of this chapter, calculations carried out for

actual fcrroelecLric crystals bear a heuristic charanter a.id can be
utilized chiefly for the interpretation of vibration sa:ra and only
for a quvlitative description of their temperature dependence. Diffi-

culties connected first of all with insufficient information on potential

function of a crystal appazently do not mare it possible to hope for

creation in the immediate future of a rigorous anharmonic dynamic theory

of concrete ferroelectric transitions. This circumstance explains the

interest in the calculation of different approximate and qualitative
models and their comparison with the experiment-, and as yea extensive
work is to be carried out in this direction.

3. Transitions of Order-Disorder Type
in the Light of Dynamic Theory

Unlike barium titanate and perhaps some of the other crystals in

which a ferroalectric trarsition of displacement type takes place, a

trans 4 tion of order-disorder type takes place in a large number of the

other ferroelectrics. The featureý of such a transition are excellently

illustrate'i by Ising model which was discussed in detail in paragraph 4

nf the preceding chapter. Here, however, we would like to draw attention

to thi fact that lattice vibrations may also play an important part in
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transitions of order-disorder type if in these transitions, displacements
of sublattices as one whole as, for examplein the case of Kh2 PO4 [74],take
place along with the disordering of atoms or dipole groups.

As the x-ray data indicate [75], during a phase transition in
I12PO4 a considerable displacement of the K, P and 0 ions along the
c-axis occurs in comparison with their positions in paraelectric phase.
These displacements may explain the magnitude of spontaneous polariza-
tion [75]. It is of interest to note that whereas a high isotopic effect
is observed for Zurie temperature (6 =1220K fo W2O4 and 213°K for

KD 2PO4), for spontaneous polarization and Curie consta.it the isotepic
effect is nearly absent. If a change in Curie tLmperature during deuter-
izing points out the paramount role of proton subsystem, then .n abseaice of
changes in spontaneous polarization rd Curie constant; and also che fact
that spontaneous polarization is nearly completely explained by the dis-
placements of ions require taking into account in theory the degrees of
freedom corresponding to ionic displacements.

The first such attempt was undertaken in the work [76] using the
variational tethod. However, dynamic aspects of phase transitions were
not examined in this tbeory.

Proceeding from considerations cited above, Kobayashi suggested
a new model for describing a phase transition in KH 2 PO4. According to
this model, excitation connected with the tunnelirg of protons (see sub-
paragraph 3, paragsaph 3, chapter 4) strongly interacts with the optical
vibzation of K-P04 along the c-axis with the frequency of the bound mode
tending to zero at the transition point. The mode of optical vibration
participating in the phase transition is similar to that examined in
Cochran's work [7]. Such a model explains the isotopic effect for rurie
temperature and its absence for Curie constant and spontaneous polariza-
tion.

On the basis of results obtained In te work [74] a conclusion is

drawn that KH 2 P04 belongs to a "ýmixed" type of ferroelect.ics since a
phase transition in it is connectod b:th with a disordering of the proton

system and with instability with respect to the limit optical vibration

with this instability appearing at the same time. This point of view

was already stated earlier in • works by Bline and associates [77, 78].

In the light of the foregoing, the results in the work [79] devoted

t. interconnection of elastic and dielectric properties during a phase

transition are of a special interest. As shown in this work, elastic

anowalies can also be explained within the framework of dynamic theory

(intcrconnection of elastic and dielectric anomalies was discussed earlier

in the woork [7] for zinc-blende (ZnS) structure) (see paragraph 2, chap-

:er 3).

The main result in the work [79] is reduced to a discovery that

if elastic anomalles are also observed simultaneousl7 with dielectric
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anomalies, then a transverse limit optical vibration with a frequency

W)t ((Ao-+O when q-*O) must participate in the micromechanism of the
transition.

The tight bond between optical and acoustical branches may, in
particular, lead to a result that with a change in tempetature the crys-
tal may become (see paragraph 1, chapter 5) unstable with respect to the
transverse acoustic mode even before it becomes unstable in regard to the
transverse optical mode. In thermodynamic theory such a situation finds
its reflection In that the condition for phase transition is determined
not only by the singularity of behavior of dielectric constants ~ (T -

- E)) but also by elastic and piezoelectric constants (see suuparagraph
1, paragraph 3, chapter 3).

Thus, although some of the ferroel.ectric transitions which were
formerly regarded as transitions of the order-disorder type and were de-
scribed by this or other variety of lo-zal-minima model, should indeed
be regarded as raore complex transitionc than, for example, those in
perovskites, nevertheless they too are closely connected with the singu-
larities of behavior of the optical and acoustic modes of ?a:tice vibra-
tions. Examples of such ferroelectric transitions are transitions in
KH2PO4, K4 Fe(CN) 6.311 20, Seignette's salt and in the other ferroelectrics.

In connection with this, it Is necessary to note that an anomalous
behavior of low-frequency bands of the spectrum was found in the vibration
spectrum of KH2 PO4 [80] and NaNO 2 [49, 57]. In doing so, participation
of the limit dipole vibration, the frequency of which cacreases at Curie
point, in the micromechanism of transition [81] (see in more dtail in
chapter 15) was proven by direct experiments in the case of NaNO 2 in
which ferroelectric transition is brought about by the orderi-.g of NO2
groups disordered in the ferroelectric phase.

4. Appearance of "Soft Mode"
in Raman Spectra

The question oF intensity and spectrum scattered near a phase tran-
sition point was examined in the work [82] w•ithir. the framework of Ginzburg

theory.

Spectral density of the intensity of scattered light J(w) is pro-

portional to iV where G,-- 2q-Oe")dt are Fcq~rier components

of the fluctuatiors of the order parameter. These fluctuations are

brought about by thermal motion and can be described in the first approx-

imation by the following equation [821 (see paragraph 4, subparagraph 1):

S(V +'•,, (410 + 4-1741 - (5.109)
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The equation (5.109) differs from the equation (5.85) by taking
into account a random force f which describes the effect of thermal
motion.

It follows from (5.109) that:

, .0_• + .(5,110)

where

It follows from this that

where

is integral intensity of scattered light dependent on the component f1
and through it on the temperature L3].

We will note that ,--
4y1)-.( L-) (5. 111)

where the frequencies 1) +\i " •V2 correspond to the maxima of

the function J(W) when When the function JP)

has only on" maximum, i.e. two satellites in Raman effect -- violet and
red merge into ont; maximum (Figure 5.17) With the approach to the point

It 2 cl(a- T
of a pl,ýe trz.zsitin of the second kind -- (see 5.88) and

chanes similar to those shovn i-i zigure 5.10 must occur in zhe spectrum.
These changes should be even sharper in the case of a phase transition
prroaching critical point.

5. Attenuatio.in of Ferroelectric Hode

One of the interesting problems connected with the concept of soft
mode is the question concerning its attenuation and, acc..idingly, roncern-
ing the haliwidth of the band corresponding to it in infrared and Raman
spectra. In the language of quantum mechanics this is reduced to the
question of rth lifetime of a quantum of ferroelectric vibration -- ferro-
electric phoron.
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Figure 5.17. Change in the appearance

of Raman spectrum according to the ratio

attenuation constant and resonance fre-

quency of vibration.

Key: i -- red satellite; 2 -• violet sat-

allIit 1.

In the usual ionic crystals the lifetime of a transverse optical

oAonon (see, for example, [83]) is determined by the process of its decay

into two other phoao.,s weakly dependent on temperature. For a ferroelee-

tric phonon near Ci*re temperature, awing to the siallne:o of i's frequency

it is necessaij to take into acc'rJnL not only the process of its decay but

also the processks of collisiop with the other phonons. A respectiva

study for the case of perivskite crystals w-s carried out in the work

8831. The appearance of ihonon. spectrum was taken from Cowley's work

L2](Figare 5.18'.
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f

Figure 5.18. The shape of lower
branches of phonon spectrum of

Z perovskite crystals.

it may be seen from the figure and laws of conservation that theIcfollowing processes are possible:

Of +&-V. (5.112)
o/+,•* =L.(5.113)
"I" s+'"(5.114)

Here the symboFs of, a, aT, al and o belong respectively to

a ferroelectric, acoustic, transverse and longitudinal acoustic and
opticab phonon.

An analysis carried out in [E3] indicates that for the case under
consideration only the process (5.112) is essential, with the results of

the calculations for an isotropic model leading to -he following expression
fur the lifetimc of a ferroelect:ic phonon:

- ,+W4 . (X2 + AO (5.115)

Here is electrohtrictson conat, h a Panck constant, rve -- veloc-
ity of trarsverse sound wavnesverse (T n l )2o--ui requetc and

electric vobration, c -- Curie constant, is esncrystal density, the
pframeter ch characterizes the slope on the ferroolectric branch when
Hare =all (for SrTio3 cntt0 , cmh/se) ni k honskT -- h umber

e - I

oC quanta of vibrations with the subscripts 2 and 3 corresponding to the
transverse acoustic phonons of the ferreelectric branch with q4O respec-

VT
tively, qO j-

We cite the following Dvorak's data [83] on temperature dependence
of the lifetime lit" of a ferraetectric phonon for SrTi0 3 :

T (OK) ............ 50 40 30 20 10 5
Or (10lo 11secb.. 0.34 0.36 0.38 0.33 0.17 0.05

It may be seen from this that 'r has an anomalous temperature de-
pendence for ferroelectric mode.
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Attenuation time 1 and attenuation constant £ defining the
width of the band corresponding to the ferroelectric mode in the spectra

' c
are connected by the relationship 2 . Therefore, investigation of

the bandwidth corresponding to 40, may provide a direct way of checking
the results set forth above. The results of experimental works [84-87]

apparently agree qualitatively with the inferences of theory. However,

more exact experimental studies of 'r are necessary (see also chapter 15).

Attempts at more realistic calculations are also of considerable
interest. For example, four-phonon processes the importance of which
was pointed out for the first time by Silverman [88] who carried out a

respective calculation for a diatomic linear chain, should be taken

into account. In the work [89] the attenuation of ferroelectric mode

was calculated by more rigorous methods, including taking into account

the four-phonon processes for the case of not only low bur high temper-
atures also. The main couclusion of the work is that the relative atten-
uation of a ferroelectric vibration must be small, with the exception,

perhaps, of the near region of transition. Quantities which have to be
measured experimentally for a reliable comparison of theoretical results

with the experiments are also indicazed in [8('.

6. Evaluation of Effect of Free
Carriers on the Spectrum

of Ferroelectrics

Until recently twc important sections of uolid state physics --

the physics of semiconductors and the physics of ferroelectricity -- had

few points of contact with each other. However, after a synthesizing of

a number of new ferroelectrics having at the same time semiconductor

properties [90, 91], and after the discovery of semiconductor properties

in such comparatively well studied ferroelectrics as barium ritanate

a "border" area of investigations gradually evolved between these two

sections and started to develop.

I whole serL..: of physical riirons exist that lea4 us to expect noch

that is interesting from this contiguous direction. Indeed, a ferroelec-

trie transition originates as a result of a disturbance of the balance of

attractive and repulsive forces which keep the atoms of a crystal lattice

in equilibrium positions. But in the usual crystals this balance is pre-

served up to the melting point or until their mechanical disintegration.

Being thus "close " in a certain sense to phase transitions, ferroelectric

crystals have an unusually high susceptibility, especially in the transi-

tion region, with respect to various kinds of influences and sharply

warked nonlinear properties. It is, therefore, natural to expect on one

hand the effect of current carriers in ferroelectrics-semiconductors on

the phase transitions, and on the other hand -- a sharp change in the

semiconductor parameters in the region of a ferroelectric transition, such

parameters as the width of forbidden zone, elecLric conductivity, etc.
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As a result, a whole series of new physical effects may appear in ferro-
electrics-semiconductors, that are "cross" effects with respect to the
physics of semiconductors and the physi:s of ferroelectricity.

The study of this new area ef solid state physics requires a com-
bination of "classical" representations and of the methods of the physics
of ferroelectricity and of the physics of semiconductors. This duality
is already beginning to show in the first works [92, 93] devoted to a
thermodynamic examination of the properties of ferroelectrics-semiconduc-
tors. In examining the photo effect in the crystals of SbSJ, V. M. Frid-
kin [92] postulated the following expression for free energy:

A#AP Pf

where n is the concentration of free or nonequilibrium carriers and
2g9P) is the width of the forbidien zone. It is then assumed that

Z,-- ,0 + P0 (,;.

where E 0 is the width of fcrbidden zone in paraelectric phase and "a"
is a conita,-t not dependent on T and P. Such an approximate treatment
based on a simple superposition of terms desciibing the polarization
energy of the lattice and of the energy of the carriers in the conduction
zone made it possible to make a number of predictions later confirmed
by experiments. In particular, the change in Curie temperature with a
rise of the concentration [92], the laminer structure in SbSJ [93], etc.
were ewlained on the basis of this theory.

Although at the present time the physics of ferroelectrics-semi-
conductors is at the stsge of initial growth and development, the range
of problems that are to be soLved has already become outlined sufficiently
clearly. Among them are semiconductor properties of ferroelectrics (elec-
tric conductivity [94], photoconductivity [95], luminescence, etc.), stud-
ies of semiconductor parameters of ferroelectric crystals [91, 94], prob-
lems connected with the shielding of spoutaneous polarization, distribu-
tion of the fields and volume charges in ferroelectrics [96, 97], insta-
bilities in ferroelectrics-semiconductors [98-101], effect of nonequilib-
rium el .ctrop4- processes on ferroelectric properties and ohase transi-
tions [102], new ferroelectrics-semiconductors [91, superconductiv cy

in ferrnelectrics-wmiconductors [103-106], etc.

Evaluation of tht effect of free carriers on the spectrum of ferro-
electrics-semiconductors is also of an unquestionable interest.

A rigorous solution of the problem on infrared spectrum of reflec-
tlon and absorption in ferroelectrics-semiconductors, i.e. finding the
susceptibility of a cryst.l with account taken of the correlation between
normal modes of the lattice and oscillations of an electron plasma is
connected with great difficulties. However, by using a simple model it
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proves to be possible to evaluate the orders of quantities characterizing
the distortion -- brought about by a transfer of free charges -- of the

vibration spectrum of the lattice in the phase transition region. A sim-

plified treatmentp i.e. a superposition of polari..Ation effects of the

lattice vibrations and of the drift of undegenerate electron gas `rompcre
with approximations used in [92]) vas successfully used in a number of
works [107-109] devoted to the studies of infrared spectra of crystal
semicond-ctors, for example Mg2Sn, InSb, etc. After a rensonable adjust-
ment of aicroscopic parameters (effective mass of the carrier m* of the
effective lattice charges) the theoretical relationships of the real and
imaginary parts of the dielectric constant to the frequency in infrared
region of the spectrum obtained in these works could be brought into a

sufficiently good agreement with the experimental carvas even with rel-
atively high concentrations of the free carriers Nef'O17 to 1019 cm-3.

Conduction current through the crystal is a result of a drift in

the direction of the field of undegenerate electron gas. Dissipation

losses are defined by the quantity -- where e is electron

relaxation time. Complex polarization is a result of combining the elec-
tric moments brought about by lattice vibrations and by the carriers of
the charges.

The formula for real td and imaginary a'l parts of the dielec-

tric coistant of the crystal (the symbol 6 indicates the presence of
through conductivity) was obtained on the basis of assumption made above

similarly to [108]:
*;(w)-+jj (n--) +'* -- 5,(*"+' P (5.116)

a

+(5.117)A

in the expressions (5.116) and (5.117) the first terms represent

the spectrum of the lattice, i.e. r ) ' ((V) and (_0(=;t(O*

and the second sums represent the spectrum of the current carriers. Sum-

mation with respect to i takes into account the contribution of differ-

ent lattice vibrations; sutmmation with respect to k takes into -1ccount

the contribution of different types of carriers (electrons and holes).

In the formulas (5.116) and (5.117) zkek is effective charge (henceforth

zk=±l), and N is the concentration of free carriers, si is the pcwer

of the oscillator.

Next, a numler of simplifications are possible. Inasmuch as we

are concerned with the soft ferroelectric mode, i.e. with the frequency

4) of the transverse optical vibrations which i3 considerably lower

(at least by 3-10 times) than the other natural frequencies 4i and is

characterized by a large value of YT >10 , the effect of all of the
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remaining addends in V' and C" may be neglected both in the region of
resonance (?.) and away fromn it (W "(< QT) without specihl dc'zri'
ment to later evaluations. In doing so* we have 2T whr

Ss is a staeic (W<4 G~r) dielectric constart of the lattice. If we
limit ourselves to taking inr-, account the contribution it fr'ýoe carriers
of a certcin tlpe (for example, electrons) and If wig take into consideration

that with W -40 e2 N 4 ~ where ars 16 electric conduc-
m*(c42 _v

2) my

tivity measured with a perman~ent field, m* is effective massv th~en (5.116)
and (5.117) will be reinitten in the follouing manner:

_________ ____(5.118)

We will determine now the effezt of the terms ''' on the char-

and owe. I isobvious that the position of the mnaximumz of CO

of the center of the absorption line, i .e. Vk (W)Ma. The po~sition of
the point of fte(cj)=O defining rhe frequsency of the plasma resonance k
may change most.

sxpand ing tl 518 noarge rvles ofithe cone ntraon LO i ae.

dinedroinin e faromn h odto W= ewl id

aWeiatohi sufficiently smalalelfth ocntain Ntie

thned rmteeuto

And f a renuatinc is suficenl smrall('T<GSe.te fo
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The effect of free carriers on V"(aj) should be characterized
by the quantity

Wf

In the case when the free carriers are electrons, the second terms
in (5.118) aud (5.119) prove to be co: ensurabie with f. when the values
of Ne are ceasonwble, i.e. obtained by experiment. Generplly speaking,

the value of V= t changes according to the sign of the carriers [10Q].

In the case of n-type electric conductivity the relaxation time is rela-

tively long C=l-:1013ý sac 1  and in the case of p-type electric con-

ductivity the relaxation time is short 1 15 , The former

case is of the greatest interest. As regards the effective mass m*,
according to experimental data this quantity varies in a range of 0.04 to
0.2 %e in the case of the values of concentration with which we are con-

cerned. Henceforth the larger value of m*-0.2 me is used. It is clear
that with smaaler values of m* the effects of the influence of the car-
riera will be observed in the case of smalleg conce.arations No. With

the assumptions which have been made 6s= " •--- 0"4 Ne sec"I (for

p-type semsionductors =O6 Ne c 1 ).

Coming back to formula (5.121), neglecting unity in.ccmxparison
y2

with _ and the second term in the denominazor and taking for SrTiO3W•2

"a YT>3DOK'0olS-Wr (&oe, s=230) (see [50]), we have for

'4i0". However, already with Nen--0,5 * 10 cm -t) and with
e •018 c'=3 -2W 01 -3 06 - -02

ie -- 'AdoT -2.4 " 102, and with N.,O1 9 c 3  -0.24.S- aT

In doing so, f.>r=u!a (!.12) becomes incorrect and fornula (5.121) or
(5,122) should be used. With the aproach to Curie - change little

although 4 increases approximately b one order; according to exper-

imental data in [S3J the value of y2lw increases ap!,roximately by

by this same magnitde (increase of anharmonicity and, consequently, of
the losses).

The curves V'j(0) calculated on the basis of '5.118) axt shown

in Figure 5.11. The second, the low-frequency point of the passage of

of 4d(W (5.121) through zero has a certain singularfty: with a suffi-

ciently high concentration (Ne>10 18 ) away from "T or with high YT
in the resion of the maximum a low-frequency plasma resonance is realized

under the conditions of a veak frequency dependence of f,'. This applies

especially to the case described by formula (5.122) whan the existence of
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Figure 5, 9. Frequency dependence of £Fe with

T =7.5 and .1T=0* 5 for different concentra-

tions of carrier5.

Nel cm3: 1 -- 0; 2 -- 1.5 * 10 1 ; 3 -- I 1018;

-3 * 1018; 5-- 5 108.

1cngufditial waves is possible in a certain frequency or temperature
region (inasmuch as the condition (5.122) can ýze satisfied by the varia-
tion of bcth variables W and T). The width of this region can be
determined if the space dispersion of & is taker into a-.ccunt.

The relationsh'p 0' ((J) with different concertrations is clear
from (5.119). With &i increase of Ne the magnitude •-f the maximum of
the absorption line is miked by additior3l lsses broisht abeut by plasm3
Lhe effeGc of which decreases with the aproach to Curie point B since

the value of increases. Thz curves of V'(T, are given in Fig-
ure 5.20. 2 Y£

7. Ffiect of Space D:spersion on
Optical Constants

In the exzwi-stion of elec vomdgnetic ;.aves in different media a
local coupling between the induction vector D and the field E is usually
p(stulated, i.e.

(5. 123)

In zhe presence of absorption the tensor of the dielzctric constant
Lik is a complex quantity, i.t. D is replaced by D 2 j where--

is conduction-turrent density.

-224-

C.r



In the definition (5.123) -ik depends on frequency and no ac-
count is taken of the dependence of cik on the wavelength with this
dependence caking place if in the period during which the particles movc
in space (vibrations of the lattice atoms, the range of conduction elec-
tron, etc.) the field E has time to change (see [111, 112]). The mag-
nitude of the space dispersion of eik characterizing the departure

beyond the limits of local coupling (5.123) is defined by the parameteran

atXL' in which "a" is a length (the size of molecules, Debye
%$ 21rc

Shielding radius, etc.) characteristic for a given medium, •0=p isAo4
the %iavelength ir. vacuumr r-n 4, is tho wavelength in the medium, and

n is refraction index. For the usual condensed media, in the region of

optical frequencies f=1O1 2 to 1015 hertz, the parameter - 1- =l0" to

10" ,and the effect of space dispe-ion is negiigible. However, near
the plasma resonance where eik-4 0, or in a reg~on where Vik( W, T)--

"-)OD when refractive index anomalously increases and, accordingly, the

parameter an also, space dispersion may prove to be considerable.

Space dispersion can be taken into account in dynamic equations if

the field E written in the form of a wave propagating in a crystal is
an

introduced into them. However, if the parameter ; is not very large

a phenomenological approach is possible. In this case, unlike (5.123) the
relation between D and E is written in the fcorm of ae expansion with re-
spect to the space derivatives of the field E, i.e.

'. (- . C-) (5.124)

As usual, summatiot. is over twice repeated sebscripts.

The term with is responsible for the appearance of
natural optical activity in the crystal I) (see £111]). It disappears
when the body has a center of symmetry. With reqpect to the order of
magnitude 'Y L -a. Quadratic term in the expansion (5.124 exists

regardless of Re presence of the center of sy.Tt,•t,,y and is
of an order of a 2 . 2)

1) I.e. appearance of a double refractiong and rotation of polari-
zation plane of a linearly polarized wave (see [111, 113]).

2) It can be shown that the value of Siklm fron (5.124) is con-
nected with the parameter S contained in the correlatio:i term in the ex-
pansion of thermodynamic potential q=•p2 r •p 4 +...+ 6(grad p)2
(see chapter 1, paragraph !). In the example examined in chapter I -

d2 where d is lattice constant.
15A
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I.-

p.0

Figure 5.20. Temperature dependence of 9'd

when =0.2 for different concentrations

of the carriers.
Ne cm- 3:1 -- 0; 2 -- 5 101 7; 3 -- i018"

4- 3 1 1018: 5 -- tO19 .

Henceforth a case of an iso:ropic medium will be examined for sim-
plicity and, consequently, the subscripts in (5.124) will be omitted.

If the medium has a center of symmetry, then after a substitution
of

E-E6 ex(I (wi- wASM) (5. 125)

(s is a unit vector)
we have:

O,--S•, ," -, -.. ' • . t(5. 126)

where ,-=r - iX is z complex refraction index (% is absorption index),

£'a 2 2

The expansion (5.124) and, consequently, (J.126) are used when L
is a small quantity.

If &-.oo and n is correspondingly large, the relationship
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SCElDi is inverse dielectric constant

(5.127)

with the magnitude of • coinciding with CL with respect to the ozrVe of
magnitude.

We will examine now the singularity of behavior of electromagnetic
waves -4hen ?--0 and --3POO .

Propagation of planle waves is defined by Maxwell equations:

H1 -. ISEIh D - --- Imi.

whence

(5. 128)

Stubqtituting into (5.128) D=9E and 2 - n* we will obtain
from thi equation tor n t!- followinr multiple solutions for a trans-
verse wave (sE=O):

H2 , and if a<
.21 + CA

-- 2

For longitudinal waves
"s(sE)"= ."

Al- . (5. 129)

As is known L112, 113], longitidinal waves exist when 1!-40 other-
an

wise n3 -4 og and the pzrameter of expansion becomes anomalously large

and, consequently, the en:ire macroscopic approach 0n>) becomes -1le-
San I together with (5.129) defines the fre-gitim~ate. The w havti A0

qiency region of the existence of piasma waves.

For ferroelectric "soft model' (•T l 1012 we have d I0-10
an• T

and assuming T <102 we vill obtain n3 10

Taking (5.129) into account we see that the region of existence of
plasma waves is limited by the values of eIll10" 6 .

It is is easy to perccive from formulas (5.129) that this region is
vert ,..ýrrow. With the approach to Curie point and taking into account the
increase of V and decrease of C this region becomes even narrower (in-
crease of attenuation , ,ith T---o causes little change in this
result).
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To determine n( ) of the transverse waves near Curie point it is

"necessdry to make use of formula (5.127) which after a substitur-at. !nto
(5.128) gives the following approximdte solutions

S-r-" + -. (5.131)

w,:.h the condition thatI• ,(5.132)

Snasmuch as -'0i2 the L.',.dition (5.132) is ;aticfied when
--. <O. An evaluati rn indicates t'at . nearly itu the entire

range of values of &) and ' ior most fe~roelectrics. Space dispersion, i.e.

"the second ter..: in (5.130) ,ecomes tangible, i.e. of the order of 10-2

only in direct proximity to a. However. in this case, observation of the
usua! spectrum is made difficult by dissipations in fluctuations.

The second root of n2 is very large: 12>103 away from the

resonance. In direct proximity to the point of Z'(W)=0 n 2 -4-* and then
changes t;i sign TA,) oo (Figure 5. 1 9) .

If it is assumed that in this region the value of n 2  is finite
2

because of the effect of attenuation and passes through zero, then in a

very narrow frequency region nj may have reasonable values, i.e. a
second transverse wave may exist. With the approach to Curie point the
width of both lines narrows owing to an increase in the absolute value

of F-'. With all of the other values of (4 n2 >10 6  (with n 2 <0 n 2=-

- x2 ), i.e. a total internal reflection takes'place.

In the absence of a center of s)yrmetry in a crysta! and, conse-

quently, for all ferroelectrics in a region where Ps5  0, a first-order

tei., appears in the expression (5.124) and in this case

D= iE- if'sEI.

Inasmuch aý. we are :oncerned with trans,:erse waves (0or plasma

waes FsE -O), when the vales of P arc large we have:
(5.133)

where g has an order ot - V

Substituting (5.133) into (5.128) we will obtain for n- a cubic

equation
- -. 0. (5.134)

which has the following approximate solutions when g42<<1 [113;:
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Zvi j..(5.135)

"*15"" (55.136)

Inasmuch as gt10"6  near Wr, the condition Qi) is saL-
isfied when Z(W, T)410 3 . However, for ferroelectrics not having a
piezoelectric effect the temperature region above the transition poirt
where approximate solutions (5.135) and (5.136) are valid , may be ey-
panded owing to the circumstance that the value of g2 must depcnd on
temperature as (0 - T2'where v.<I is a quantity depencent on the
character of the transition.

It follows from (5.135) and (5.136) that with the approach to
Curie point the effect ot space disp(.rsion for waves described by the
refractive indices ni, , considerably increases.

Waves defined by n3 appear owing to space dispersion and their
behavior greatly depends Gn t(e-3, T). However, it should be remembered
that the range of values of n. 2 • (40, T) having physical sense is
limited by the conditions ; i and Vi2g(9 .

In taking anisotropy of a ctystal into account, space dispersion
leads to a number of new effects (in particular to a week optical aniso-
tropy of cuaic crysc'als, see [113]). It may be sippo!ed that for ferro-
electrics these effects jnust be very strongly marked.

We will also note that in the presence of high electric covducctiv-
ity in a crystal, brought about by electrons the effect of space Jispersion
considerably increases [107]. With a sufficiently high concentratior, of1 a \2, ATZ ,, _?-

free carriers (Ne^A1 1 7 and higher) the parameter r- -. - - 1
to 10-8. AoIj

A value close to this one results if it is considered chat near

Wo anDe where for undegenerate electron gas i.)-=/ (-j--N (see

Thus, for electron gas

to 10-8; g,-10°4.

A considerable change in the orders of these values in c.xnp-risoit
with the usual crystals and ferroelectrics leads to arn appearance of a
number of singularities in the relationships n(cOT) [1071.

Thus, for ferroelectrics (especiatly for ferroel .tric3-semi-on-
ductors) caking space dispersion int, r account aecome. important in the
frequency rcgion of "soft mode'.
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The use of dynamic theory proves to be necessaty in describing
the micromechanism of ferroelectric transitions in which the frequency
of "soft mode" becomes z-ero or reaches anomalously low values.

Temperature dependence of the halfwidth and intensity of the band
corresponding to a ferroelectric vibration in Raman anti infrared spectra
sharply differs near the transitiun point from the temperature dependence

of the halfwidths and intensities of the other lines of the spectra.

At the present time all theoretical predictions bear only a qual-
t-itive character and Lire made for relatively simple models. Some of

tiem have already received experimental corroboration (see chapter 15).

The further development of dynamic theory may proceed in several
directions. Firstly, attempt can be madc to do the calculati-ns for more
complex models in order to obtain results related to concrete ferroelec-
tric transitions. Secondly, predictions and theory of new physical effects
connected wiLh the "soft mode" are of a great interest, for example study
of anomalous behavior of Messbauer line at the transition point [114, !15],
damping of sound [1161, effect of the appearance of a new bound ferroelec-
tric-acoustic mode [117], etc.

Finally, a promising direction is the search for physical mechan-
isms responsible for the appearance of ferroelectric mode: study of the
vibration spectra of ferroelectrics-semiconductors, etc. Thus, the pos-
sibilities of dynamic theory of fcrroelectricity have not yet, by far,
been exhausted.
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C•HAPTER 6.. ELER.NTS OF SYMMETRY THEORY

Pa.. -.finition ot Group

te iU set G of elements for which the following 4 conditions are
satisfied is called a group.

1. rFr all elements of the set G there Is a defined "tulttplica-
tion" operation which puts into correspondencp to any two elements Oa"
and b a third element c:

cr-ab. (6,1)

In doing so, generally speaking ab4= oa.

2. Multiplitati-,n operation I3 essociative, i.e. for three arbit-
rary elefients a, b and c

a(bc)=(ab)c. (6.2)

.1. A set contains A. unot element E having the property that for

any element "a" of the group

aE.=EA=a. (6.3)

4. Together with the element "a" a set contains an element a-l
hJviig iht property that

Saa"la"aE. (6.4)

The simplist examples of grotps are: a) all real numbers including
;erc (additis)n is a group-•2•Iliplicacion operation), b) all rational posi-
tive frec'ciaont except zera, (multiplication is a group-multiplicacion 3per-
aklot),' c) the aggregate of symetry operations leavinig the energy of a
body invwra'abie under specified conditions.

I) A group trr all elements of wtich a'--ba is called Abelian group.
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Every s'bset of a group is called a subgroup if it is a group wILh
respect to the same group-multiplication operation.

The orde" (i.e. the number of elements) of - finite subgroup con-
taining a finite uiumber of elements is a divisor of the gioup oraer.

The simplest example of a subgroup is a subgroup of all integers
in a group of all real numbers (group multiplication is addition).

Par. SY)Metry Transformations. Crstal •yLen•_•t

By qymmetzy transformations are meant those displacements of a
body which superpose it with itself, or those transformations of coor-
dinates which leave the energy of a system invariant. Each one of the
possib)e iymmetry transformations may be represented in the form of a
combinz'tion f a turn of a body by a certain angle, a secular reflection
of the body in a certain plane and parallel transfer over a certain dis-
tance.

Symmet•y transformations of a given body always form a group.
For a body oi finite dimensions all symumetry axes and planes apparently
-1,gt bave a ccnon point of intersection in order that the application

ymmetry operatios would not lead to a progressive motion which can-
S":suPerpose a body with itselt, This restriction -also applies to

etry operations which zransform each direction in a crystal into
etivalent to it.

Syznerry groups having the property mentioned are called point
groups.

crystals having one and the same point group form a crystal class.
Altogether, 32 crystal classes exist.

Two aystemns of notations of symmnetry operations and symmetry groups
ýf thi crystals are usually employed. In Schoenilies system Ck indi-.

21tcates turns by angles that are multiples of 2k, S indicates mirrnr

turns by angles that are multiples of -j--, i.e. turns with a following
k)

mirror r.flector in a plane perpendicular to the axis of rotation.

The axis with the largest index k for a given point group i.
called principal axis. Reflection plane perpendicular to the principal
axis is denoted by eh,, the plane containing the principal axis -- by
6"v or 6'. Sacond-order symmnetry axis perpendicular to the principal

1) The spacing of crystal structure imposes limitations on per-
missible turns. The point groups of crystals can contain only combina-

zions of reflections and rurns by the angles I and -

2' 3 4 6
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axts is sometimzs denoted by 112. A transformation which carries each
r vectox into a -r vector is called inversion and is indicated by I

'= h •C¢29 i.e. it represents a second-order mirror turn).

In the international system of notations a k-order cxis is denoted
by k, t.he mirror-rotation axis -- by k, an axis and a reflection plane per-

pendicular to it -- by i/m or - (we will recall that here k is an in-
dex equal to 2, 3, 4 and 6 according to the order of the axis, and m is
a letter), an axis and one or more second-order axes perpendicular to it
-- by k2, an axis and one or several reflection planes parallel to It --

by km, a mirror-rotation axis and one or several twofold axes perpp.t;-
dicular to it -- by K2, a mirror-rotation axis and one or severa: reflec-
tion planes parallel to it -- by kn, am axis and reflection plares per-

kpendi;*cular and parallel to the axis -- by (k/m)m or - m.
m

In Table 14 are given Schoenflies notations and international
notations of 32 crystal point groups (crystal classes). In addition
to the complete international system of notations which was discussed
above. Table 14 also gives an often used abbreviated system which differs
from the complete system only by that a portion of elements having a
relatively low symmetry is omitted from it but in such a w', that the
onybol retains the basic signs of a given crystallographic class. For
examnple, an abbreviated notatior corresponding to a complete notation

is 4/mm (second-order axes are omitted).
m in m

In describing the total symmetry of a crystal (and not of the
group of equivalent directions alone) the crystal lattice is considered
to be infinite. In doing so, along with the turns and reflections a
crystal lattice also hWs translation synmnetry -- a property of beo.'t
able to coincide with itself in parallel displacements of the lattice
vector, ana it also may have special synmnetry eleinents -- screw axes
which represent a combination of rotation with a subsequent translation
along the rotation axis over a portion of the lattice spacing; it may
aLso have glide planes which represent a combination of a specular-re-
flection plane with a subsequent translation along the direction lying
in this plane.

An arbitrary crystal-lattice vector may be represented in the
following form:

r=nla + ntb + n 3 c

where a1 , n2 and n3 are integers andý a, b and c are the b-.se vectors
of the translations.

The point group of a crystal imposes certain restricti- ns on the
base vectors of translations. Altogether 14 types of point lattites are
possible, which follow from the applic.ýtion of SyrnICLtrV operations to a
point lattice of a general type.
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Table 14

Notations cf 32 Point Groups (Crysta! Classes)

ST~xnawaia. jeerxafx ripe". C 41
6S~TPaaI.. Cd (SI) 1

ROor=3*811a. POA01a~ sp~as.P. C. C, (CO)I 23
C~(usuaut... 2/se. CII 2 2

4 Pnrn~a'eecAr. pew3u -, spas. P. c. C1 I m2 MM2
I. . (u~~pm MiI.Oi VJ ;;22 222

5 ToTp~ron~A1rnHnaa. PeIUO'txu 4P228 ~I
P. 1. Commtpu 4Imrm. Did(Vd) 4M Af

4 4

Ca 41m

C4 , 4,Mus 4mn,
0,422 4 22

6 P 6o~sApuwcI.. (?pitraw~aqhn. C3 3 3

S3, 3M 14
D4 :232

-3M

m

I~IbCitO5 "OTHO. J'w ;a p's. P. 5'g 622 603'2
COINMMTPR C-4mngm. 1; 2 2

CA A

C,

RYOt:-0oap,~ P~iesnw t.~ao Pg .p 1. F. CM .1z 23

v.3

1) H~exagonal syngony may also contain classes of rhoimbohedral syngony.

Key: (1) Syngony
(2) Tr iclIin ic. Brava.is lattice P. Synine try T.
(3) Menoclinic. Bravais lattices P, C. Syninetry Vi1n.
(4) Rhombic. Bravais lattices P, C, To F. Symmnetry nmw=
(5) Ttanl. Bravais iattlces P, I. Syier /rI.

[Key concinued on next page!
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Key tc TabLe 14 (continued:

(6) Rhombohedral (trigonal). Bravais lattice R. Synmetry 3m.
(7) Hexagonal. 1) [See footnote on preceding page]. Bravais

lattice P. Symmetry 6/mm.
(8) Cubic. Bravais L~ttices P, I, F. Symmetry m3m.
(9) Schoenflies notations.

(10) International notation.
(11) Complete.
(12) Abbreviated.

I - 9'n
P 1 F

Figure 6.1. Types of Bravais lattice.

Artowheads indicate Lhe base vectors
for primitive lattice P.

These lattices, called Bravais lattices, are classified according
to seven syngonies (systems) as shown in Table 15 (several types of Bravais
lattices may correspond ta one syngony). Thr types of Bravais lattice
are denoted by symbols defi.~ing the type of the unit cell (Figure 6.1):
P indicates a primitive cell, C -- a centered-base cell, I -- a body-cen-
tered cell, F -- a Lace-centered cell, R -- a primitiv'_ cell but only
of triclinic syngon:y.

Tf a crystal cor tains only one atom in the unit :ell, then its
sym•uetry coincides *th the symmetry of syngony to which it belongs.
If h,ýwevar, the unit ,-ell contains several atoms, the cr~stal may have
fewer symmetry elements than its syngony, and screw axes anid glide planes
may be among them.

In the nternational nota•tions the screw axis is assigned a subscrpt:
for example, 21 is a seconc-order screw axis with displacement along the
axis following a rotation by half a period, aad the glide plane is denoted
with the letters a, b, c, n or d according t; the zype of the glide
(see in more detail in the book Ll], pp 46, 47).
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Altogether 232 space groups exist which desc:ibe cr',stal symmetry.
In Schoenflies notations a space group is denoted by a symbol for the
crystal class tn which a given crystal belongs, with a number correspond-
ing to the given group. International notations are more detailed. They
start with a letter describing the type of the lattice (P, C, I, V or R)
followed by the notation for the minimal set of syrmnetry elements, whichW characterizes the group.

Examples:

A crystal of KIIP04 - a space group in tetragonal phase 12 $s?D2d'
in international notatlons 142d;

barium titanate (above Curie temperature) -- a space group Oh' is
in i-nternationai notations IA3m;

a crystal of NaNO 2 in ferroelectzic phase -- a space group C20 is
in international notations i,-2m. 2

Par. Elements of Representation Theory

We will examined a set f of linearly independent functions It
4e (9'3..., Iff having the property th?' they transform into each other
upon the action in them of any group elemenr a:

(6.5)a

Here the elements "a" are regarded as operators. Examples of Wfk
may be provided, in particular, by the components of some vector, for
example, electric-field or polarization vector Px, Py, Pz (in this case
f=3). Then a third-order matrix Q will correspond to each element of
the group C. [sez (6.5)].

Figure 6.2, Transformation of polariza-
tion components Px, PY Pz with a rotation
around a fourth-order axis.
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As may be seen from Figure 6.2, with - '.ction, for example, of
a rotation by 7(2 around a fourth-order a. o:iented along the z-axis

the components Px, P y and P. are transformea in accordance with the fol-

lowing rules:

C4 Px=Py

C4 Py= - P

C 4z=Pz

ar.d, consequently, the matrix a=/ak!/ has the following form:

I-' 0: (6.6)

It is said (-( a set of matrices aki for all czements of a Croup

that they form a representation of the group. The functi~ois q1, l'C2 .
•.,,•f are called the basis of representation and the number f -- its

dimensionality.

If a linear unitary traneformntioi S is carried out on the func-
tions 4 19' 4' 2 -"""- '(?of

'; -- sT,. (6.7)

then the functions q'i form the basis of a new represerntation. The

following matrices will have such a representation

a - S-,as. (6.8)

whose traces (the sum of diagonal elenent-) will be the same as in the
fo.mer representations.

The traces of representation matrices are called characters of a
representation, and representations with the same characters are called

equivalent representations.

If an element of a group is mear.t by the transformation S, then
S-laS=b is also in element of the group. It is said of the totality of
all of these elements that they form a class, and it follows from (6.8)
that: the characters of all eleme&ots of a give;- class are the same for

any representation.

It may turn out that the bzsis functions can be broken into sev-

eral sets which with the operation of all elements of the group are

transformed only in terms of each other. For exawple, for the group

04h the components of polarization vector Px and Py wvill be transformed

while the component P. (oriented alcng the principal axis. will reerviin
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invariant or wi1! change sian. A representation in accordance with which
such a basis is transformed is called reducible. A set of functions
which cannot be broken up into such subsets will form the basis of an
irreducible representation. An example may be provided by the vector
components Px and P for the group and 1!4h or three vector components
Px, Py and P. for tLe groups 0, Oh or Td. And a set of the components
Px, Py and Pz for the group D4h is the basis of a reducible representation.

The number of nonequivalent irreducible represent-.tions for a given
group is equal to the number of classeq in it and the sum of the squares
of dimensionalities of irreducible cel,'esentations is equal to the order
of the group.

The matrices of any reducible representation ca-a be reduced by
meatis of linear trarisfrmation to a unit form I) so that each unit will
correspond to an irreducible representation.

Such an operation is called expansion of a reducible representation
into irreducible representations. The number of times n. which an ir-
reducible representation • enters a reducible representation is deter-
mined using the following formula:

I

as,--711() .( (6.9)

Here N is the order of the group, X(a) and X,•(a) are the characters
of a reducible and irreducible representation respectively, pertaining to
the alement "a'- of the group. Asterisk lndicateo the sign of a complex
conjugate.

The relationships (6.9) are widely used in practice. For example,
with their aid it i.; possible to determine the number of bands in vibra-
tion spectra, to determine the splitting and the character of a' change
in these bands in phase transitions, etc. (see chapter 5).

Standard notations are usually used for irreducible representations
of the point groups. One-dimensional representations are denoted with "he
letters A and B, two-dimensional representations -- with E, three-d~men-
sional representations -- with F (the point groups have no irreducible
reprcsentations of greater dimensionality). The functions cf the bases
of tue representations A are symmetric, and these of the bases of B --

antisyumetric with respect to the rotations around the principal axis.
The subscripts g and u indicate respectiveiy the symmetry and anti-
symmetry with respect to inversio¾,. A1 always denotes a unitary (fully
symmetric) representation, i.e. such an irreducible representation all
characters of which are equal to unicy.

1) By a matrix of unit form is meant a matrix in which "units-sub-
witrices" containing nonzero elements are arranged along the main digonal
and all of the remaining elements of Lhe matrix are equal to zero. An
*xample may be provided by the maLrix (6.6) in which units J0 1) and I
can be :-eparated.|'1 O1
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Par. 4. Irreducible Representations of Space Groups

P fundamental property of crystals is translational symmetry. In
the language of group theory thii meaas that every spacq group G con-

tains an Abelian subgroup of translations IV. A subgroup of translations
has one-dimensional irreducible representations each one of which is con-
nected with a ccrtain value of the wave vector q so that in an irreduc-
ible representation Tq of a translation t corresponds to exp - iqt.

Two vectors q and q, are equivalent (i.e. one and the same representa-
tion corresponds to them) if they differ by the reciprocal-lattice vector;
the base vectors bi of the reciprocal lattice are determined from the
conditicns

(6.10)

where ak are the base vectors of translations (or, as they are called,
"direct"-lattice vectors) (Figure 6.1) and Sik is a Kroncckir symbol.

Figure 6.3. The star of wave vectors (q),
connected with the point x of Brillouir.
zone of a primitive tetragonal lattice.

The region containing all nonequivalent vectors q is called
Brillouin zv!'e. It can be shown [2] that Brillouin zone always coincides
with a unic cell of reciprocal lattice.

Irreducible representations of the space groups are constructed
with the aid uf small-gro::ps (wave-vector groups) technique. First of
all, nonequivalent wave vectors q are classified according to the

"stars" {ql (i.e. according to the aggregates of wave vectors obtained
from each other by means of symmetry operations of the point group of the

crystal GO). Then irreducible representations of the wave-vector group
Gq are determined (a subgroup of elements of the group G leaving the
wave vector invariant is called wave-vector group Gq or small group).

Each irreducible representation of the group G is completely determined
by the star of wave vectors {q] and by one of the irreducible represen-

tations of the group Gq-

Irreducible representations for the group3 Gq for all space

groups are classified in the monograph [12] in the form of so-called

loaded representations. Any element of a space group may be represented

it, the following form:

(6.11)
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Here t is translation to which exp - iqt corresponds in the
irreducible representation of the space group; t. is a non-unit trans-
lation (i.e. translation over a portion of the lattice spacing); r is
rotation or mirror rotation (i.e. an element of the point group).

The characLers of the loaded representations % correspond to
the elements r of the point group of a crystal; the characters of the
elements are obtained from them using the following rule:

i($}-.±(r)eap(--iqt.. (6.12)

As an example we will examine irreducible representations of thespace group D for the star {qj connected with the pcint x of
Brillouin zone (Figure 6.3).

The group elements of the point group D4h which enter the group
Gq, the characters of loaded representations fcr the point x and the
"values of exp(-iqtr) are giver in Table 15. (A line in the column -or
e-iqt• indicates that non-unit translation in the space group does not
correspond to the symmetry element in question

Table 15

Characters of Loaded Representations
for Point x of Brillouin Zone

210 2.

it may be seen from the table the in the case under consideration
the chardcters of irreducible representations simply coincide with the
characters tf the correspending loaded irreducible representations.

Par. 5. Miller Thdices

Miller indices are u:ually used to describe the coordinates of the
atoms, the lattice .,ectors and atomic planes in a crystal. These in:U-es
are determined in the foilowing manner.

1. Viller indices indicate the coordinates of atoms in units of
lattice constants with the origin of coordinates being selected in one
of the vertices of a unit cell. For example, Miller indices for a cen-
ter atom in a body-centered lattice will be ', and the indices of the
face cenzerc in a face-centered lattice will be hO, OkA and k0h.
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(W) 0181) f N

Figure 6.4 Miller Indices

a -- for principal planes of a cubic crys-
tal; b -- for base vectors of a hexagonal

crystal.

2. To denote the directions in a crystal, Miller indices represent
a set of the smallest integers related to each other as components of a
vector parallel to a specified dinection. For example, in a cubic crystal,
Miller indices for the edges of a cell will be (100), (010) and (001).

3. In order to find Miller indices for atomic planes it is neces-
sary to do the following: write the number of the lattice constants from
the origin of coordinates to the points of intercection of a given atomic
plane with the axes of coordinates, then take the numbers reciprocal tc
them and reduce them to the smallest conmon multiple.

Miller ir.dices for principal planes of a cubic crystal are shown
in Figure 6.4a.

The so-called hexagonal Miller indices determined in the same manner
as the usual ones are ordinarily used for crystals of hexagonal and tri-
goral syngony.

Miller indices of the base vectors of a hexago'al crystal arz
shown in Figure 6.4b as an example.

Par. Projection Operators

An arbitrary function F may be eApanded into a series with respect
to the orthogonal set of its components ("projections") each one of which
is transformed in accordance with a certain row of some irreducible repre-
sentation of a given group [14]:
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J t

I A /Is.(6. 13)

Hera J is the number of irreducible representations of the group,[jis dimensionality of the irreducible representation 'V and f j is
a function transformed ir accordance with the i-th row of the irreducible
representation Vj.

We will note that any expansion with respect to the complete set
of orthonormalized functions is a particular case of the expansion (6.13).
For example, expansion into Fourier series

(6.14)

may be regarded as an expansion with respect to the base functions of
irreducible representations of a Sroup of translations.

eN
00

1 3

Figure 6.5. The base of a unit cell
of the ferroelectric NaNO 2.

The use of symmetrized functions fji as applied to the vibration
spectra -- they are called symmetry coordinates -- makes considerably eas-
ier the solution of problems connected with the determination of elgen-
values and eigenfunctions, in particular the calculations of vibration
spectra of crystals.

The use of projection operators is a systematic method of determin-
ing the symmetry coordinates. It can be proven (see for example [2]) that
the operator

here is a matrix element (a), T(a) -- an operator corre-
sponding to the symmetry element "a", is a projection operatorwhich
means that the function

is transformed in accordance with the i-th row of irreducible representa-
tion of the group G.
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We will explain the application of projection operators by using
an example. We will examine the base of a unit cell of the ferroelectric
NaNO2 (Figure 6.5). It may be seen from (6.15) that projection operator
for a unit representation A1  is reduced simply to z successive applica-
tion of all elements of a group in any order. To obtain the symmetry
coordinates for limit optical vibrations (q=O) it is necessary to use
only the elements of the point group of a crystal.

Point greup of NaNO 2 is C2 v (mm2). As an example we will examine
the action of the projection operator on the displacement of atom 1 in the
direction of the axis x (xi). We will use Schoenflies notatiofi for the
elements cf the group Cv: E is a unit element, C2 -- a second-order
axis, and 4v and 6v -- reflection planes containing the axis C2 .
Then we have:

P* -. (E• + C, -c.,, +,| =--

- (E + C, + so) X1 + s-

-- (+ C,•J--Z,+ -- (6.17)
-•z .x--2, + Zs-2i(zI -- :),

Projection operators determine a syirmetry coordinate with accuracy
to the normalizing constant. The other symmetry coordinates are found in
the same manner.

Biblioitraphical References

An exposition of group theory and a survey of its application in
physics iaay be found in the monographs [2-6]. The books are listed in the
order of increasing complexity. (Examination of problems dealing with
solid state physics is not correct throughout in the monograph [4L )
review of the earlier books on the application of group theory in phys-
ics may be found in the monograph [21.

Mathematical group theory is set forth simply but rigorously in a
classical book by Schmidt [7]. A detailed bibliography and a brief ex-
position of the fundamentals of abstrict group theory may be found in
the book of problems [8].

The monographs [9, 10] have very clearly written chapters devoted
to symmetty theory. A description of the point groups and tl.e 7haracters
of their Irreducible representations are given in [9], symmetry elements of
space groups are examined in [lu].

A detailed description of crystal symmetry is given in the mono-
graph [1] and all international notations of symnetry elements are shown.

i. detailed description of all soace groups may be found in the
handbook [ii] and in the monograph [12].
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Irreducible representations of all of the 230 space grours have
been obtained in the monograph [12] using the method set forth in [5]
(in this scheme the monograph [12j is unique).

The work [14] sets forth very simply the projection-operazurs
technique for irreducible representations of the point groups. This
technique makes it possible to obtain from a given set of functions the
linear combinations which are transformed in accordance with a specified
irreducible representation of a point group (i.e. combinations which
form the basis of representation.

Theory of projection operators for irreducible representations of
space groups is set forth in the work [i151. This work also gives pro-
jection operators for the space groups of a monoci~nic and rhombic syn-
gony.

Finally, a review of some of the applications of group theory to
some of the problems on theory of ferroelectricity may be found in the
lectures [16] and in the chapters 3 and 5 of this book.
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CHAPTER 7. DOMAIN STruiCtURE OF FERROELECTRICS

Par. 1. Causes of the Formation of Dct-ains and General Regularities of
Domain Structures

Initiation of spontaneous polarization in a crystal takes place
along a certain crystallographic direction of paraelctric phase. -This

direction is usially called ferroelectric axis or axis of spontaneous
polarization. In the case of uniaxial ferroelectrics the axis of spon-

taneous polarization coincides with the single dieection and, therefore,
is the only ax!i. Jn multiaxial ferroelectrics there are are several
axes of spontaneous polarization and in the paraelectric phase these axes

are crystallographically equivalent. Usually the number of possible

directions of Ps is equal to the twofold number of ferroelectric axes.

But if spontaneous polarization occurs along polar direction of the para-

electric phase, then there are as many possible directions of Ps as
there are ferroelectric axes [105, 106].

In an ideal crystil, in the absence of external influences the

ocurrence of spontaneous polarization is euaally probable along any one

of the possible directions. In transition to ferroelectric qtate a

crystal breaks up into separate regions called domains which are char-

acterized by the direction of spontaneous polarization. It is natural

tha. this process is brought about by a decrease of free energy in the

crlstaly i.e. free energy of a multidomain state proves to be lower. An

examinatiln of this problem can be carried out similarly to the way this

is done in the "ase of ferroelectrlcs [1, 21. We will take a crystal of

a ferroelectric in the form of a plate with a thickness d cut out per-

pendiclrarly to the axis of spontaneous polarixation, For a single-

domain crystol, electrostatiC energy Wo.d. [o.d.=single-domain] per

unit rf surface area is egpressed as:

[o.,=-o.d.=single-domain] It (7.1)

li the crystal breaks up into tabular antiparalltl domains as

sho'n in Figure 7,.1, then in order to find electrostatic enoray it is

nefessaia- to solve Laplace equation inside and outside the plate with
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Figure 7.1. Schematic representation of
a crystal of a ferroelectric,
broken up into antipara:lel
domains.

appropriate boundary conditions. In this case, energy per unit of alea
has the following form [3]:

S. .=m.d.= A.4(7.2)
=multidomain] " +,Iw

with the condition that w•d where u is the width of the domain.
Thus, the thinner the domain, the lower the energy of the crystal. How-
ever, the process of fraguienting does not take place limitlessly. The
fact is that the boundary layers between domains, which are called domain
walls or domain boundaries, have a certain energy. Therefore, on oe
hand a decrease in the dimensions of a domain leads to a decrease of elec-
trostatic energy, but on the other hand the aggregare area of domain
boundaries increases and, consequently, their energy also increases. An
equilibrium domain structure is determined by the condition of minimum
of total energy -- electro.•tatic energy plus the energy of domain walls,
i.e.

3.4uwP* @VJ
W 7+ i,&t+ V (7.3)

where 6 is energy per area unit of thi- domain wall. In such an
examination4 nly electrostatic energy of a crystal in the proper depolar-
izing field and the energy of domain walls are taken into account. In
addition to these types of energy, in ferroelectrics a change in elastic
energy is also considerable in most cases. Appearance of spontaneous
polarization is Accompanied by elect rostrlctive or piezoelectric deforma-
tion. Therefore, if there are internal mechanical stresses in a certain
region of a crystal, which always exi:t in an actual crystal, they can

be attenuated when the crystal breaks up into domains.

Defect3 of various kinds must also have a big effect on the forma-
tion of domains. When transition to a ferroelectric gtat,, is a transi-
of the first kind, there is a nucleus-fozmation stage. "'i- i.fects affict

both the position of nuclei in a crystal and thu di.,r!:Oi .- ontaneous

polarizttion in them. Norcoincidence of directions vf *"n in

separate nuclei must also lead to the fortation of domnai.-
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Unlike ferromagnetics, elecriostatic depolarizing ".eld of ferro-
electrics can be compensated by charges flowing tc the surface of the
crystal owing to electric conductivity of the crystal itself or of the
medium in which it is located. Experiments indicate that even if a crys-
tal of a ferroelectric is in a conductive medium, the domains nevertheless
become formed . Thus, apparently in actual crystals, internal mechanical
stresses and defects piay a very Important role in the formation of domain
structure. One of the main reasons for this consists in that spontaneouj
piezoelectric and electroatrictive distortions are very big, they ar
two or three orders bigger than the wagnetostrictive distortions. There-
fore, direction in which apontaneous polarization occurs in some specific
region of the crystal is determined to a considerable degree by the strain
distortions of the crystal lattice in this region.

We will now examine the geometric conditions which must be ob-
served in Zhe formation of domain structure. Neighboring domains have a
different direction of spontaneous polarization and, therefore, in the
general case not all of the crystallographic axes of neighboring domains
coincide. From this point of view, domains are equivalent to twin crys-
tals which appear with reversible polymorphic transformations wh.:n th-
crystal symmetry is impairei. An exception are apparently only domait.s
with an antiparallel orientation of spontaneous polarization in ferroelec-
trics that are centrosymmetric in piraelectric phase. It is known that
twinning takes place in such a manner that elements of the crystal sym-
merry lost during a phase transition become twinning elements, It could
be expected that this rule is observed also in the formation of ferroelec-
tric domains. Then domain walls should coincide only with certain .;rys-
tallographic planes.

Indeed, Chernyshova [4] noted that the crystals of Seignette's
salt break up into domains in such a manner that two second-order 3xes
lost in transition to polar state become twin axes.

Later, Zheludev and Shuva!ov [5, 6] showed that the twlnniig rule
is valid for the other terroelectrics also. Thus, from a crystallogrphic
standpoint, by breaki - p into domains a crystal becomes a polysynthetic
twin crystal, the domains become the components of this twin crystal, and
domain boundaries coincide with the twinning planes. The symmetry ele-
ments of nonferroelectric phase lost ir. phase transition become possible
twinning elements. In doing so, as noted in [5, 6] a polydomain crystal
regarded as one whole returns to the symmetrv of the original nor.ferro-
electric phase. We will note that in actoal crystals this rule usually
is not satisfied and a slight unipolarity is observed, i.e. domains with
one of the possible orientations of spontaneous polarization predominate.

In spite of the seemingly zomplete analogy betwecn a usual twin
crystal and a domain it should not be forgotten that domains possess
polarity. Therefore, bound electric -harges shocld be absent at the
boundary between them. Otherwise the energy of a domaýn boundary would
increase by the magnitude of energy of electric field set up by these
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charges (we consider the crystal to be a sufficiently good dielectric so
that the compensation of bound charges by the free charges flowing > the
wall owing to the electric conductivity of the crystal does not have to
be examined). Thus, the following condition must be satisfied on the
wall:

divD--0. (7.4)

Since E=O, (7.4) is reduced to

diP _.• (7.5)

Consequently, the polarization component normal to the boundary
must be continuous.

New types of domain structure connected with the possibility of
shielding sE.oritaneous polarization by free charges may exist in ferro-
electrics-semiconductors. Such a possibility has been examined by Shur
[7-101 for a one-dimensional case. The main conclusion of these works
is reduced to a prediction of in.tabliity in ferroelectrics-semiconduc-
tors in the case of fields srnallpr than a coercive field, i.e. to a prop-
agation of electric-inducticn waves along the specimen. This instability
may bs acc-umpanied by fluctuations of current in the external circuit.

Par. 2. Domain ztructure of Barium Tiranate

Barium titanate is cubic above Curie point. With a tran ition to
ferroelectric phase it becomes tetragonal. Ir doing so, as already men-
tioned, the polar axis coincides with the tetragonal c-.'xis. Any one of
the three mutually perpendicular fourth-order axes of tho cubic phase
may become a L-ax~s and, consequently, sponraneous polaritation has six
possible directions. Thus, the angle between polarization vectors of
the domains may be equal either to 90c or 1800. Domains witr a mutually
perpendicular direction of spontaneous polarization are called 90 0 -do-
mains and the boundaries between taw -- 9JO-bcundaries or walls. Corre-
spondingly, there may also be 180 0 -domains and 180 0 -boundaries (w11s)
separating them. Domain walls must coincide with the twinaiing planes which
m'.y be planes oc the type {iII} of the cubic ,hase and, in addition to
this, the condition of continuity of the normil component of spontaneous
polarization must be satisfied on them. For 40 0 -walls these conditiors
are satlsfie6 by tetragonal planes of U tye J01l1 and f-101 . It
is obvious that in the case of 180 0 -w- t .ie normal poiarization compo-
nent must be equal to zero and sincc dneous tetrago.7al deformation
does not depend an the direction of , ization vector, a 1800 -vall may
be any cylindrical surface wich a gen-ratrix of 4 parallel polar c-axis.

The basic regularities of domain strtcire of barium titanate were
eetermined by Kay and Vousden Lii1 Forsherg'i '12] and Hcrz [113, 141 during
E, !,uOy of single crystals in polarized lighL in orecr to understand the
possibilities of this aethod better, we will exawiae the plates of barium
titnnate having only 90 0 -dcmains (Figure 7.2).
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Figure 7.2, Schematic r'presentation of a plate
of a single crystal of bariuu, titanare in tetra-
gonal phase with the plate being broken up into
9CO-domains. The faces of the plate coincic.e with
pseudocubic planes of the type {0013.

Arrowheads irdicate the direction of spontdneous
polarizati-n. Circles with a cross indicate the
outlet of the negative end of the dipole, a circle
with a dot -- that of the positive end of the di-
pole.

In the cubic nonferroelectric phase the optical indicatrix rep-
restnts a sphere. Therefore, if a plate is observed in polarized l'ght by
placing it on the microscope stage between crossed Nicol prisms it will
7emain dark in any position of the stage. In tetragonal phase the in-
eicatriv is an ellipsoid of revolution. The axis of rotation is an op-
tical axis and coincides with the crystallographic c-axis and, conse-
quently, with the polar axis of the crys-al also. We will now observe
a plate shown in Figure 7.2a in a direction perpendicular to its plane.
Through thL domains the polar axis of which is criented normally to
che plane of the plate the light passec along the optical axis and, con-
sequently, does not andergo double retraction. Therefore, these domains
remain dark during the rotation of the microscope stage. It is usual to
call ruch domains c-domains.

Domains of the second type in which the polar axis lies in the
plane of the plate and through which the light passes along a-axis are
called a-domains. While passing through a-domains the light undergoes
double refractior. Therefore, in crossed Nicol prisms they will be dark
only in those cases when the axes of the indicatrix are parallel to the
polarization plane of the analyzer ".r jolarizer. Since in this case the
polarization planes of the polarizer and analyzer are perpendicular to

the lateral faces of the crystal, the pesition of extinction is direct.

Thus, the c- and a-domains are easily differentiated -- during the rota-

tion of the microscope stage c-domains remzin dark whereas a-domains
periodically become translucent and then become dim. In tetragonal

phase in barium titanace na >nc, i.e; the crystal 4s negative and the

position of polar axis in a-domains can be determined with the aid of

compensator. When the compensator is inserted the neighboring a-domains

have dissimilar coloration which they interchange with a turn of the crys-
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tal by 900. In tetragondl region c/a >1 and therefore the angle between
c-axes in 90 0 -domains is equal not i.o 900 but -o 890241. Consequently,
strictly speaking the positton of extinction in the neigaiboring a-domains
differs by 36'. The 1800-dordains are optically indistinguishable. How-
ever, Merz [13, 14] found that if electric field is applied perpendicularly
to the direction of spontaneous polarization, than in polarized light the
domain appears to consist of light and dark bands parallel to the polar
axis. These bands were regarded by Merz as antiparallel domains. It

was supposed that under the effect of electric fifld, spo,,taneous-polar-
ization vectors in the neighboring domains turn sli$!L-ly !-. opposite direc-
tions with the indicatrices becoming somewhat disti-cued in this process.
This leads to a result that the pcsitions of extinction of tee neighbor.
ing domains do not coincide. Later Miller and Savage [15] discovered
that the 1800 c-domains can be seen in polarized light whet the field is
applied along the polar axis. Kabayashi et al. [161 made optical and
x-ray studies of this effect. They folqnd that 180 0 -domains are distin-
guishable in -he presence of an electric field in the case when the beam
of light passes through the crystal at a certain angle to the normal
(Figure 7.3a and b). After shutting off the field the Lontrast of the
pattern gradually becomes weaker and as z result the domains become nearly
indistinguishable (Figure 7.3b).

The authors of the work [16] consider that a narrow region (wit
width of the order of 10-4 cm) forms with a slight distortion near the
1800 -wall during its motion. In this region, z-axis is inclined - ,proxi-
mately by 10 with respe-c to the pciar axis inside the crystal (Figure
7.3c). As may be seen trom Figure ;.3c, the regions at the opposite
walls are a secula- reflection of e.-ch other. The optical axes of these
regions are also inclined in different directiot.s with xespect to the
polar axis inside the domain. If polarization plar.es of the polarizer
and ana'yt-r are parallel to the planes (300) and (010), which corre-
spo,,; to the hIghest translucence of r*,e regions at the wall, but the
light passes through the crystal slightly obliquely at such an angle
that its direction coincides with the optical axis of one of the regions,
then this region will seem dark whereas the opposite region will appear
light. If the bean of light is inclined in the opposite direction, then
the dark region becomes light and the light region -- dark.

It was also shown [17] that light and dark regions appear at the
180 0 -walls upon the application of electric tield to an a-domain nrystal.
Their appearance was also explained by the presence of a monuclinic dis-
tortion in the region adjacent -o the wall. Since the direction of the
axes of the indicatrix in the regions at the walls on two sides of the
domain differs approximately by 10, the position of their extinction is
dissimilar. When one region is light, the other one is dark, and vice
versa.

Considerable successes tn the sttudy of domain structure of the
cryztals of barium titanate, having both the 900- and 180 0 -domains vere
obtained with the aid of etching method suggested by Hooton and Merz
[18]. It was found that those sections of the crystal surface wiere

the positive end of the polar axi3 comes cut 4re etched twice as fasL
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in comparison with the sections on which the negative end cones out.
The tste• of etching of the "latetai" surface and of the positive end
of the polar axis have a ratio of 3:4 [19, 20].

Figure 7,4 shows schematically the surface of a crystal of barium
titanate before and after the etching. Using this method it was pos-
sible to observe antiparallel c-domains and also to detect the "refiec-

tion" of c-donains through n.-domains,

a i

S., -.i """ :" ; " °':"'

OLD.

Figure 7.3. Antiparallel domains of barium titanate
in polarized light. (After Kabayashi, at

a!. [16]).

a -- with oblique illumination; b -- with normal illu-
minationt -- schematic representation of antiparallel
domain and stereographic projections showing the ori-
entation of optical axes within, the domain and in
boundary region.5. 0 -- optical axis of the tetrago-
nal region, 01 and 011 -- optical axes of low-sy)metry
regions, x' -- directions of fluctuations of electric
vector in a Light wave.
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Figure 7.4. Schematic 
representation

of a section 
of a single crystal 

of

barium titanate. 
(After Campbell 

et al.

[20]).
- before 

etching; 

b -after 
etching.
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Figure 
7.5. 

Photograph 

of the upper 
and

fewer 
surface 

of an etched 
sipgle 

t-ystao

of barium 
titanate 

and 
diagram 

of the do-

main structure. 
(After 

Hiooton and Merz

[20]).

In Figure 7.5 are shown photographs 
of two sides of an et-hed

cr-ystal 
and a diagram 

of its domain structure 
constr-icted 

on the basis

of these 
-hozographs. 

As may be seen froma the diagram, 
c-domains, 

"a",

and 

1% 
ard 

a so c and 

%b 
are 

a mirror 
image 

of each 
other 

ihrough a-digains.

At the 900 boundaries 
the norzaal pelaý.-ization 

compan,-t 
is continucis-

It Ls usuaL- to say that a "head to tail#, arrangement 
ex:sts. 

It should

be noted that this rule is not always satisfied 
and "head to head" and

"tail to tail" configurations 
are observee 

[21, 221. In this case, the

bound charge on the wall is apparently 
compensated 

by free charges 
flow-

' ~ --
-

in inoigtilcrccnutvt ftecytl
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Fousek and Safrari~va [23] investigated the effect of cooling rate
of the crystals wher. passing through Curie point and also the effect of
electric conductivity of the medium on the character of domain structure.
The regions of the crystals which had only c-domains were examined in
order to exclude the effect of a-domains on the~ formation of c-domain
structure. A sufficiently large sizi of the rzgions was selected (0.-250
microns with a thickness of the crystals of 20-140 microns). With a sl-ow
ci cling (0.10 a minute) the aggregate volumes of antiparallel c-domains
in a nonconductive medium are equal with accuracy to a few percent. The
domains have the form of plates wl-th a thickness of 1-4 microns, perpen-

dicular to one of the a-axes. Apparently such a structure is close to an
equilibrium structure. Cooling at arty rate in~ a -.edium with high conduc-
tivity (lcrnwiha e=. 3 1-acm-l was used) atid also rapid cool-

strutur!. he merenc ofdominson the surface of the crystal has
theapparaceof haoicalyscattered islatids with a considerable uni-
polaitybeig oserjedin hisprocess.

Anaysi oftheresltsobtaiin ledteauthors 'to a conclusion
that at first, with a slight cooling below Curie temperature a nonequi-
librium domain etructure is formed in O'ther casewith this structure
being determined chiefly by the arrangement of the nuclei. Such a struc-
ture chauges fairly rzpidly into an equilibrium structure. u-'evei, a
nonequititrium structure may remain either with rapid cooling or, if the

crvstal is in a condu-:tive medium, owing to the compensation of depolarizing
field.

The cause of the formation of 900 domains is :-9ther not a depolar-
izinF field since its energy may be considerab~j decreased by the appear-
ante of 1800 domaia-s, bull wechanical stresses. They may appear during the
Cooling of the crystal in the melt of .he _,olvent. or they are connected
with different kinds of defects. Fousek and erezina [241 exarnin-t- the

connectioit between the size of The ceystal, the extent of the de-:.;ct
a A its position in rthe crisc~al on one hard, and th3 !;hape cf 900 domain

on the ther. They selected the siiple-;t model of the defect -- a sphere
inside which the condition of a minitnum of elastic energy requires a turn-
ing of t_,ontareous polarization b)j 900 with respect to the .Žicirclement.

Investigation of domain str-ucture of bartiunn titarate in tetrogofall
pharte was conducted not only in polarized lighz anid by etching, other meth-

ods were AIso used. Some of them yselded valuable irfor~mation on the

details of domain conrigurations.&

The method of chargedpoiders, i tj wa successfully used to study
antiparallei c-doma.~ns. This methid consists in the following: a few
drois of hexane %which contained (inep'ewdercf yel low sulfur and red

~edoxide were applied cia the suriace of the cr-ystal. Lit was found

that solfur settles better cn tep~siti1vt ends of the diples and lead
cxide - :i the nqative. A sufficiently clenr pai tern of the domain

structure results.



A study of microrelief of tho etched surface of single crystals of
barium titanate was also conducted with the aid of an electron microscope.
Replicas were taken from thts surface which were then studied in an elec-tron microscope [20, 26]. The type nf the domnain, and in the case of

c-domains -- the direction of spontan..ous polarization, can be determined
by the depth of the etching and roughness of the surface.

In Figure 7.6 is given an example of the pict-ire of etched suri'-e
on which an antiparallel c-domain was revealed. Visu ization of domain
structure on the surface of a crystal of barium titanate is possible
not only by means of etching tt also by the relief of natural face. The
fact is that owing to the tetragonalness the surfaces of the neighboring

ca
a- and c-domains form with each other a small angle arctg c--a (Figurea

7.7). Therefore, the faces of the crystal "wrinkle" and their relief
reflects the domain structure.

Study of the natural surface has an advantage over etching since it
inakes it possible to study the changes in domain structure. Distortions
on the faces may be revealed experimentally using the methods of optical
interferometry [22, 27] and by studying in an electron microscope the
replicas taken from the surface of the crystals [28, 29]. The micro-
relief can also be revealed by a change in the current of seccadary elec-
trons when scanning a finely focused electron beam on the surface of the
crystal [301. Intensity of secondary-electron stream at each poiint of
the surface dependends on the angle of incidence of a beam of primary
electrons. Therefore, if the intensity of the beam of a cathode-ray tube
is modulated by the current of secondary electrons, then an image of the
surface cant be obtained on the screen.

Another method of visualizinlt the dc.,ains, also making use of the
scanning of a finely focused electron beam,was suggested in [31]. The
incident electrons bring about a local heating of the crystal and if thin
electrodes are applied on the surface, then pyrocurrent can be detected.
When gliding on the surface of the crystal the beam shifts from one domain
to another, the pyrocurrent changes giving information on the domain pat-
tern.

The use of the electron.nirror method is possible to observe the
domains [32-34]. The images of domain structure obtained during the
passage of electron beeam through a thin crystal ara given in a number
of works [35-38]. In this case, domain structure becomes "visible' owing
to different conditions of electron diffraction both in the domains with
a different orientaticn of the polar axis and in the wall in comparison
with the volume of the domains. The data of electron microscopy on the
dimensions of the domains and on the thicknesses of the walls are of
interest. Thus, domains with a width of 3 to 5 " 10-6 cm were observed

in [28]. According to the data in (37], 1800 domains have a width of

%0 30 1 I06 cm and 900 domains -- a width of 5 to 300 10-6 cm. The
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Figure 7.6. Electron-miscroscope Figure 7.7. Section of a tetragonal
photograph of c-domain in barium crystal of barium titanate, illustrat-
titanate (magnified 7,000 times) ing the distortion of surface on the
(After Cameron [26]). 900 boundaries between the a- and c-

domains (distortions are exaggerated).
(After Bhide [22]).

POVftIM4ECKAD VA3A

loi'se -f

POM603,6PIAIECAAR OA3A

mse

Figure 7.8. Geometry of domains in the rhombic and
rhombohedral phases of 1'rium titanate. (After Fors-
bergh L12D).

Key: (1) Rhombic phase (4) Rhombohedral phase
(2) Twinning with re- (5) Twinning with respect to the

spect to the rhormbohedra! face
plane (101)

(3) Twinning with re-
spect to the
plane (111)
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thickness of the 900 wail betwee., a-domains is less than 100 A [36, 37].
Studies using the electron-mirror method indicate that on the surface oi
the crystal there is a layer of about 0.7 microns in thickness with a
polarization vector oriented normally to the surfacc of the crystal, i.e.
a layer consisting of c-domains [33].

The works [39-41] show the feasibility of studying the domain
structure of barium titanate using the methods of x-ray diffraction
topography.

In the rhombic and rhombohedral phases the domain structure of
barium titanate was not investigated in such a detail as in the tetrag-
onal phase. Optical studies were conducted here by Kay and Vousden [11]
and by Forsbergh [12]. Cameron [26] observed etching patterns in rhombic

phase. Figure 7.8 gives the possible domain configurations and indicates
the directions of extinction in separate domains.

In the rhombic phase there ire 900 and 600 walls. The 900 walls
coincide with the pseudocubic planes 001 , i.e. with the rhombic planes
fi101, the 600 walls are parallel to the pseudocubic planes {011 , i.e.
to the rhombic planes {11f).

In :he rhombohedral phase the domain walls are the Pseudocubic
planes 0IO01. Naturally, there may also be antiparallel domains in both
phases. In the rhombic phase, upon the application of electric field
along the polar direction and during an observation in polarized light
along this same direction the antiparallel domains becipae visible, as in
the tetragonal phase [42]. The shape of the domains is rectangular with
the walls (100) and (110) (the indices are pseudocubic). Walls of the
type (110) are visible considerably better.

Par. Domain Structure of Triglycine Sulfate

Above Curie temperature, triglycine sulfate belongs to the centro-
symmetric point group 2/M of the monoclinic system. Upon transition to
polar state the mirror plane disappears and the crystal belongs to the
point group 2 of the monoclinic system. Ferroelectric axis is the mono-

clinic b-axis. Thercfore, triglycine sulfate is a uniaxial ferroelectric
and only 1800 domains can be in it. Since in nonferroelectric phase the
crystal does not have piezoelectric effect, spontaneous deformation which

accompanies the appearance of spontaneous polarization bears electrostric-

tive character and does nct depend on the direction of polarization.
Therefore, antiparallel domains are opticall: indistinguishabLe but they

rotate the poiarization plane in opposite d rections, i.e. one domain is

a right-hand dniain and the other -- a left-hand domfi, [43, 44-.

The us2 of etching proved to be most successful for visualizing

the domain structure. Extensive work on the selection of etching agents

and on the study of domain structure using the etching method was carried

out by Konstantinova and Sil'vestrova [&5_48], by Toyoda [44, 49, 501,

by Chynoweth -nd Feldman L51, 521 and by Meleshina [53]. Th'- powder
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method was used in a uuimber of works co reveal the domain structure [44,
49, 50]. When etching the surface of a plate of triglycine sulfate, cut
out perpendicularly to the polar axis the positive ends of the domains
are etched more strongly than the negative ends, and contain more etch-
ing patterns. The domains haie an oval form, most often a lenticular
form. Large domains pass through the entire thickness of the crystal.
The transverse dimensions of separate domains are very diverse. They
virv from a few tenths cf a millimeter to several millimeters, Chyno-

wet, and Feldman [52] found that domain walls do not always pass through
the crystal exactly parallel to the polar axis. mhare are also needle-
shaped domaics which do not pass throueh the entire thickness of the
crystal, and even domains which are e-.tirely inside the crystal. It was
possihie to find such domains on the face parallel to the polar axis using

In etching the surface of a crystal the sites of the &nergzvre of

dislocations are etchei more strongly. Therefore, the problem of indsn-
tifying sm~il domains and dislocations is importanr. Etching agents were
seiected both for revealing the daaain st.ucture and dijlocations [48,
50. 53, 5l. Th,ý biggest successes were achi.eved apparently in [53]
where etching agents which made it possible to revedl the dvmains and
dislocations simultaneously were selected.

Several more methods of rev:3aling the domains were demr-nstrated
using the crystals of trlglycine sulfate. Thus, Fousei et l. '59] used
the method of condensing tte vapors of a polar liqmid on the surface of
the crystal. Such a method was suggested for the first time by Toshev
[60, 61] for visualizing the domain structure of potassium dihydrog.n
phosphate and anmoniumi fluorobezyilate. le named it "dew" method. The
principle of this method consiuts in that owtng to the presence of strong
eloctric-field gradients along the domain boundaries, a force acts on
the polar molecules which tends to draw them into the cegion ef maximum

gradient, i.e. co the domain boundary. Owing to this- a move intensive
condensation of the vapors t4kes plac- along the boundary, and the domain
pattern may bf seen [or a certain length of time.

Distler et al. [bi.] and also Takagi et al. [63] found that with
a condensation of theraally evapora.ed silver -3n the surface of triglycine
sulfate the formation of nuclei takes place chiefly Cn the doMains uf one
sign. This makes it possible to reveal the 1800 domains with a good con-
trast. The s.ze of the nuclei is of the order of 100 A. Therefore, the
method has a high resolution arid makes it possible to ase electron micro-
scopy. Another method of revealing the domains, which is in essence sim-
ilar to the powder method, was suggested by Distler and Konstantinwva
[64]. They found chat the charged colloidal particles settle with dis-
similar density on domains of a different sign. A finely dispersed
platinum sot with the size of the particles of 20-100 X was used. Sucz
small dimensions of th. ?articles ensure high resolution.
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Par. Domain Structure of Seignette's Salt and Potassium DihydrogenS~Phosphate

Ir nonpolar phase the crystals of Seignette's salt belong to the

rhoabkc class 222 Appearance of spontaneous polarization along the

rhombic a-axir is accompanied by a monoclinic distortion and the crys-

tals pass into a monoclinic ::lass 2. In doing so, the rhombic a-axis
becomes a monoclinic b-axis. However, the notations of the axes are
usually rot changed and ýhe polar axis is called a-axis. The a-axis
forms angles of 900 with the b- and c-axes. The angle between the b-

and c-axes becomes a non-900 angle. Seignette's salt is a uniaxial furro-

electric and, consequently, only 1800 domains can be in it. However, the

situation is here ccmpletely different in comparison with the case of
triglycine sulfate.

'he fact is that in nonferroelectric phase, Seignette's salt is
roncentrosymmetric and has a piezoelectric effect. Therefore, sponta-
neous dformation Ldisplacement in the plane (100] is linearly connected
With spontaneous polarization and, thus, depends on its direction, Anti-

parallel domains way be obtained by means of a 1800 turn arou'nd the
b-axis (the so-called b-domains) or around c-axis (c-domains) (Figure 7.9).

The b- and c-ax2s which were second-order axes in nonferroelectric phase
become twin axes and the twinniag takes place with respect to the p'anes

(001) and (0:0) respectively. Thus, b-domains have walls parallel to the

plane (001), and c-domains -- those parallel to the plane (010). We will
note hcr't an important difference betwetn the 1800 waill of a tetrag'nal
barium titanate and triglycine sulfa-e on one hand and of Seignettel.

salt -- on the other. While in the foimer case a wall could be any cylin-

arical surface with i genecatrix parallel to the polar axis, ir, the latter

case the 1800 walis are only certain crystallographic planes.

Although breaking up of Seignette's salt into domains was supposed

a long time ago, donaain structure was nct observed directly f r a long

time, and there were orly indirect experimental facts which confirmed its

existence. Observations of Bprkhause electric jumps [65 66] belong here,

i.e. observationt of jumps in Lhe process of polarization, and detection

of pyroelectric effect by ioeans of Alectrostatic charged powders [67, 68].

In the latter case, pyroelectric effe:t would have been equal to zero if

the regions of spontaneous polarization had been very small and had been

uniformrti distributed along opposite directions. In addition to this,

the effect of electric field and mechanical stresses on the intensity of

x-ray reflexes was discovered later Fb9-72¾. This phenmnencr was ex-

plained by a change in domain structure in the presene of external in-

fluences.

Direct observation of domains in crystals of Seignette's salt was

carried our oriy in ;948 when Klassen-N'-klyudoxva et al. [73] discovered

tasat tvinr.g may be sei'n well in polar ad light on tie x-cut. The faa-

sibiltty of optical observation of ant, rallel domains is not so obvious

and, as already noted above, in barium titaaate and triglycine sulfate

domains of this kind are optically indistinguishable without an applica-
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Figuret 1.9. Schinmit-. repre.scnration of do-
IRAn it' Sexgnettelf, salt: a-.- the
p~osition f indicaLricen in themi.

a -adoais;b - -dmans 3

tion of extcernal. influences to che ciystal. The fact is that in unp-A.Ir-

ized phase Seignette's salt is noncentrosyrmmetric Therefore., appearance -

_f spontanecus polarization is accompanied by a spontanaous linsar elec-
Lxvcptical effect which consists in a turn of the indicatrix arounld the
polar axis (see chapter 11 for more details on electrooptical effect).
T~he angle of rotation Q is determined from the following relationship
[74]

~-- 5~t(7.6x

vhere aik are coefficients in the equation of the indicatrix 1

Hr it4 is a coefficient describing the aggregate electrooptical
effect. According to the calculations the angle "cl should amount to
1-2* and cain be completely detected by expicrimentns. Tn antiparallel Clo-

mains the indicatrix is turned in different directions as shvown in Figure
7.9. Tlarefore, in an observ~atiorn of a plate of seignett's salt alongA
the Polar axis in .rossed Nicol prisms the 1800 domain% have different12

positions of extinottico the angle between which is eqnual to U~. 1.1 ac-
ctidance with fornrula (7.6) the angle 201 has the some tem~perpture de-

pendence as spontaneous polarizat iont [74-76] and Indicnbom [74, 77] showed

that it can be. useC as an order factor in the expans'ion of thermodynamic
potential.

i. Lhorough study of domain structure of Scignette's salt in polar-
ized light was cairried out by Chernysheva ['4 73, 74, 78-80] n lnb
Furuichi and Nitsui [3, 811. T-iguve 7.10 shows a photograph of the -it-
te-n of x-cut observe-d ire micrescope ffien do~aln of one polarity are in
the positioz. of extinction. Both the b- and c-domains form bands with a
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Figure 7.10. Domain structure of Seignette's
salt taken in polarized light.
WAfter Klassen-Neklyudova et al.
[731).

width of frein I to 500 rmicrons. Configurations consisting both of the
b- and c-domains in the form of mutually pe'pendicular systems of bands
are usually observed. Some domains have a wedge-like form and do not
come out to the surface of the crystal. The wedge may Le oriented not
only along the b- and c-axes but along the polar a-axis also [80. 82].

Mitsui and Furuichi [3] showed that the width of a domain is pro-
portional to the square root of the crystal thickness d at:d that the
following relationship is satisfied fairly well:

Mueser and Flunkert [83]' noted that Curie poisb*_ of the regions
with b-domai- is somewhat higher than tbat of the regions uith c-domains.
It is of interest that crystals grown, at a Le-mperature corresponding to
polar state prove to be broken up into domains althongh the solution has

a sufficiently good electric conductivity and the surface charges are
compensated [751, Thi s experiment shows that elastic energy, and not
electrostatic energy, is determinative in the formation of domains.

Indenbom and Chernysheva [84] and Nakamura and Ohi [75, 85, 86]
noted a correlation between the domain pattern and arrangement of screw
dislocations. Nakamnura and Ohi observed domains fixed on screw disloca-
tions and not disappearirg even upon an application of strong elfctric
fields. Calculations of the form of such dom3ins were undertaken in [87j.

Unlike barium titanate the domain ;trvcture of Seignette's salt was
studied almost exclusiveiy optically although the Feasibility of using

electron microscopy [25] and etching with water [88] had been shown.

Domain structure of potassium dihydrogen phosohate has been little

studied. Above Curie point KH2PO4 belongs to the noncentrosrmmetr'c tet-

ragonal class 42n. Spontaneous polarization appears aloag the fourth-
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order axis. Thus, this is a uniaxial ferroelectric and only 1800 do-

mains can be in it. Spontaneous defformation consists in a displ'cement

in the base plane. In doing so, tetragonal unit cell becomes ruonoclililc

(the tre.e symmetry is rhombic). Tetragonal planes (100) and (010) may be

the twirning planes. This leads to a domain structure which is completely

anaiagovrs to the domain structure of Seignette's salt. Owing to a small

turn of the indicatrix in thu neighboring domains they can be differenti-

ated in polarized light [3, 69, 90]. Toshev [61, 91] successfully used

the "deie" method to reveaJ the domains.

Par. 5. Domain Walls

Jntil now, when examining the domain structure of ferroelectrics

we did not tovch upon the question of what the domain walls are, and

their thickness and energy. We will recall that in the case of ferro-

magnetics domain wall s a wide transition region in which magnetization

vector gradually turns from one direction to anothei. The case of a

1800 wall i s shown schematically in Figiure 7.i1a. The thickness of a
wall is determined from the condition of a minimum of the sum of exchange

energy and anisotropy energy. A portion of the wall energy connected

with exchange interaction decreases with an increase in wall thickness

s!nc( a parallel orientation of magnetic moments is most favorable for

this interaction. At the same time, the portion of wall energy which is

connected with anisotropy increases with the wall thickness since the
volume in which intensity of magnetization does not coincide with the

easy direction increases. Exchange energy ccsiderably exceeds auisot-

ropy energy. Therefore, domain walls in ferromagnetics are sufficiently

thick.

Figure 7.11. Schematic r-presentation of 1800
do~mlan wail in -a ferromnagnetic (a)

and in a fetroele.-tric (•b).

In• ferroelectrics the electrostatic-interaction• energies of dipoles

oriented in parallel and in antiparatteL do not differ very markedly. At

the-sante time, anisotropy is high. Therefore, it should be expected from

general considerations alone that domain walls in ferrueleCtrics are con-

siderably th-.nner than in ferromagnetiest The second important distinc-
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tion of domain walls of ferroelectrics consists in the behavior of polar-
ization vector inside the wnill. In ferromagnetics the modulus of magnet-
izacion-intensity vector in the wall does not change. In Lhe case of
ferroelectrics, owing to a high anisozropy it is difficult to expect
rotation of the polarization vector, rather its modulus changes. There-
fore; for example in the case of a 1800 wall, a pattern shown schematic-
ally in-Figurv 7.1lb may be expected.

In the greater po.tion of works devoted to a theoretical examina-
tio.n of energy and thickness of domain walls in ferroelectrics the crys-
tal together with the wall is regarded as a continuum. Calculations are per-
fomined s'milarly to the way this is done in the ca.e of ferronagnetics.
Thus, Merz )2j examined the energy of a 1800 wall of barium titar.ate in
the form of - sum )f dipole-interaction energy and anisotropy energy. He
determined from the condition of a minimum of agg egate energy the --hick-
n-ss of the wall and its energy. The thickness proved to be equat. to >ne
lattice constant, and energy -- to 7 ergs/cm2 .

The first phene.'sýnologicai calculations for 4 domain wall of
Seignette's saLt were carried out by Mitsui and Furvichi L81]. However,
they did not La:re into account the energy of piezoelectric Lefenreation

J23, electr,-stric•ion was taken i.nto account inconsistently, and deforma-
tions did not satisfy Saint-Venant continuity conditions. An exact phe-
nomenological theory of Jomainwallt. in tetragnnal titanate and Seignette's
salt was developed by Zhirnov [93]. He, used a method suggested by Landau
and Li'shits [94] for the study of domain structure of ferromagnetics.
Using thermodynamic-equilibrium condition in the absence of an external
eloctric field r.;ie course cf the change in polarization in the wall was
determined, and explicit expressions for the thickness of the wall and
its energy were also obcained. Examination was carried .,ut with the con-
dition of divP=O, i.e. with the condition of absence of bound charges
on the wall.

The following types of energy were taken into account in writit.g
the expressioa [or thermi.dynamic potential: 1) anisotropy energy brought
about by a deflection of polarizition vector from the easy direction;
2) elastic evergy: 3) energy connected with electrostriction and if the
:rysta' was aoove Curie temperature? -- piezoelectric with niezoeffect;
4) energy connected with nonuniform distribution of polatization vector.
Zhirnov dctermined th~t polarizaticn vector in the wall does not rctate
but -hat its mooulus changes. N'imerica' evaluations of the thicknesses
and energies of ,,alls in bari'umn titanate and Seigni-te s sa.t are given
in Table 16.

A simila. e:amiration was carried out by Ivanchik "95] a•rd Bulayev-
-. Iy [96] for b-riui, titatnate and by rousek: [97] for triglycine sulfate.

In doing so, unlike [93l, in f95, 96] a ferroelectric phaae transition
in oariutn titanate was considered to be a transitioit o.f the first kind

a i.d in the expa-ision for thermodynamic potential the sixth-order term.
tcr pola.riaation weri talken :ntn Account. In addition to this, Ivanchik
[95] showed that periodicity in the •rrangemant of antiparallex domains
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Table 16

Width (h) and Energy (6W) of Domain Wat.s in Barium
Titanate and Seignette's Salt According to the Data

of Different Authors

-2 0 1w -3 gnu 3w --'-.-S".;s]
-- S - 9-10.K h IN

I 2•; 6. • 10-t;

1 20 0 5 -1024- -- 23A: t..2 -1-2; WPO 91

7- -T0C TI- -10' C
7-20 10-30 - - _- -aWK . r.1

7 10.i 11 3.4 - - - 1 yec~hJ22

- So nI - - X-4 oyc-01l4l 134000

&ey: (1) Barium titanate (10) Zhirnov [93j
(2) 1800 wall (11) ivanchik- [9-i'•
(3) 900 wall (12) Bulayevskiy [96]
(4), cr=centirreter (13) Kholodenko F98]
(5) ergsicm.2 (14) Mitsui and, Furuichi [81'
(6) Triglycine sulftte (15) Little L21-

(7) Seignette's salt (16) Kinase and Takahashi [102]
Author (17) FouseK [971

(9) Merz [92]

follows from thermodynamic theory. As in [93', It was determined that
owing to hig! anisotropy in quadrai ic terns for polarizaior. in the ex-
pression for free energy the rotatin of poiarizatiori vecto- in the wall
proves to bh impossible. in the case of Seignette's salt
anisotropy is determined chiefly by the rhombic synmecry of the crystal
in paraelectric phase. P'arium tiLanare is cu., ic in paraelectric phasc
,nd, therefore, anisotropy in quadratic terms for p3larization appears
niy owing to elactrostriction. The thicknesses and energies of the

LoundL *es according to the calcula.ions in "95• and [96' are given in
Tdble u.

A detailed examination of a 900 wall in bar;um titanaLe was car-
ried ouz by Kholodenko [98 for the case when the condition d'v P=O on
the boundary is net satisfied and there are bound c.•arges whose density
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is equal to the density of thO free charges which compensate them.

Calculated data for this cast re also given in Table 16.

The case of a 1800 domain wall in barium titanate when the wall is
a plaue parallel to thu c-axis w?; examined in the works [93, 95-98].
Owing to the aniscropy of elas•'c energy it may be expected that the
energy of such a wall will depend on its orientation with re.pect to the
a-axi:. Using the -"athod similar to that used in 1.9ij Dvorak and Janovec
[99] -ai'..1- ti r'-tionship of the energy of a 1800 wall to the
angle y? between tha wa'&' ard a-axis. They found that the energy of the

wall is a periodic furictiou; of Te with minima aL f= -L n and maxima at

(n + -' (n is an integer or a null). This result agrees with the

tendency -- aiscovered in [231 -- of 1800 walls to becou~e :,riente6 along
the a-axis. However, as the calculations showen., the Jiffecence between
the miximum and ninimum energies of the walls a.mc~nts only to 0.01 per-
cent. It is difficult to suppose that such a small Jifference in energy
may be zhe cause of the orientation of dcmain walls along ti-e a-axis.

As we have already underscored, phenomenological theories regard a
wall as a continuum. Generally speaking such an approach is correct
only when the thitkness of the wall is ir. greater than the interatomic
distancosbutwhenr-it amounts only to a few lattice constants, as in the
cpse of 1800 wal;s, rhe validity of such a consideration is problematic.
In particular, as noted in [qg], possibly it is precisely because of this
that the inferenice of phenomenological theory concernitig weak inpular
dapendence of the -;all energy does not correspond to -eality.

Creation of mizroscopic theory of doarain,-allsencuunters great
difficult-zes. Kaenzig and Soiterhalder [100] examined a sumple mcdel
of a ferroelectric -- a body-centered cubic lattice of point dipoles.

"The r:ý.rgy of rl-e wall was de;Ired as the difference between the energies

of the .:rystai with a wall and without a wall. Naturall'.-, .. ch an
exa:jInation tha dipole-interaction energy alone is taken into account.
The authors of the wo•-k [1001 obtained the following formila for wall
energy:

•O. 88 p2a

where P is polarization within the domain and ¾i" is ialttice constant.

Two models were proposed for dcmain walls i, KH2MO4 [ioi:. 1n
one of Zhem the rotation of polarizaticn vector takes place by means of
two successive turns by 9(o and in the second mod.1 polarization is ab-
sent in the wall since the dipole momeits are completely compnersated.
ikinase and Takahashi 7L!02 made an attempt to create a microscopic theory
of 1 180° domain wall i-- barium titanate- An asstmption that no rotatiom
of polarization vector takes place in the 4all but that its modulus chanaes
was taid .own as the basis of the aodel. Next, the results :" a calcul--

:1 -
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tion by Kinase [103] for local fields at the sites of titanium ions were
used for a parallel and antiparallel arrangement of dipole moments of the
unit cells. In doing so, it was considered that only titanium ions are
displaced. Using a method of calculation for lattice distortion in a
one-domain crystal suggested by them earlier, Kinase and Takahashi [104]

determined these distortionc in domain wall. They found that a 1800 boind-
ary has practically a zero thickness. According to tlheir calculations

the energy of the boundary is 1.40 ergs/cm2 . If the displacement not of
titanium ions alone but of the oxygen ions 01 (Figure 1.3b) is also taken
into account, then a thickness of the boundary equal to two lattice para-

mctrs results.
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CttAPTFR 8. 3FOG3TANEOUS POLARIZATION AND REPOLARIZATION PROCESSES

§1. Spontaneous Polarization and Dielectric Hlvstere~is

One of the most remarkable proparties of ferroelectrics is their
ability to change the direction of spontaneous polarization by an external
electric field. This process is known as repolarization, and it can be
observed on an oscillograph scope with the aid %f rhe circuit proposed by
Sawyer and Tawer [1) (Figure 8.1). Here vertical deflection of the beam is
proportional to the charge on the specimen and horizontal deflection is
proportional to the voltage on it. The process of periodic repolarization
with alternati:g current of industrial frequency is usually observed with
the aid of this diagram. The Sawyer-Tawer method can be used only if the
electrical conductivity of the specimen is low. Otherwise the loop will be
distorted by the active component of the current. For this rci-- n more
sophisticated schemes have been proposed to compensate for th. _-urent of
conductivity 12, 3].

Figure 8.1. Ciicuit for observing dielectric
hysteresis loops. Cx -- ferroelectric speci-

men; C1 -- integrating capacitor; R1 and -K

voltage divider.

The dependence of polarization on electric field strength is of the
hysteresis loop form and .s depicted schematically in Figure 1.2 (see
Chapter 1). If perfect saturation i5 achieved, i.e., the direction of
spontaneous polarization coincides in the entire crystal with the direction
of the external electric field, then important information concerning the
ferroelectric can bi derived from the hysteresis loop. The growti of
polarization with increasing electric field streng.a after saturation is
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caused only? by the processes of electron and ion displacemeiit "i~nducedA
polarizatio:n)', and not by a re2versal of spontaneous polarization. Thcrefore
the permittivity *)f a crystal along the polar axis can be found f-romr
the slope of the saturation branch, and spontaneour polarization can be
determined by extrapolating the saturation branch to E = 0.(Figure 1.2).
The eiectric field strength at which polarization vanishes is c4lled the
ccercive field (EL T heoretical calculation of the coercive field as the

field in which the spontaneous Dolarization vector in a single-domain
crystal jumps suddenly from the position of tne arntiparallel to the parallel
field yield for bari'im titanate fields of the order 1 0 S- 1 0 6 V/ca [4, SI
The experimentally observed coercive fields are three arders of magnitude
smaller than the theor'etical values. This discrepancy is explained by tile
fact that the change of direction of spontaneous polarization is not abrupt
in the entire domain, but is a result of movement of the domain walls.
This subject is examined at length in the ensuing sections of this chapter.

There is considerable difference between repolarizaticri c4 ferio-
eiectrics and renagnetization of' ferromagnetics, despite the seemingly
perfect analogy of these processes. Vihen a magnetic field whoso direction
does not coincide with the axis of easy magnetization. is applied to a
ferromagnetic, the processes of displacement of the domain walls i.::
followed by the processes of rotation, during which time tVie spontF!ious
mE~gnetization vector rotates, asymptotically approaching ine direction of
the field, In the case of ferioelectrics anisotropy is so great that there
is practically no rotation of tha spontaneous polarization vector in
toleralble electric fields, i.e., this vector can lie only on tle ferro-
electric axes (they correspond to the axes of easy magnetization of ferro-

We will examine now the temperature dep--,ndernce of spontaneous
polarization. In the case of the first order phase transition spontaneous
polarization occurs abruptly' at the Zarte point, while in the case of the
second order phase transition it changes ccintinuously. Both cases are
depicted schematicalty in Figure 1.1- Baril.&n titanate, whose spont,-ieoo.s
polarization temperature dependence is iibustrated in Figiure 8.2, is am
example of a fer~roelectric with the first order phase trztnsition. Polariza-
tion in p~seudocubic direction [110~] was determined experiumentally. Since
irn the rhombic phase spontaneous polarizatien is aimed in yseudocubic direc-
tion [110] the experimental value must be multiplied Uy Y?2 to find the true
value. Spontaneous po-larization in the rhombohedral phase coincides with
pseudocuhic axis [1111. Here, therefore, the experi'mental values must be
multiplied by s/K Spontaneous polarization occurs abruptly at the Cu~ie
poinit [7, 81. The coercive field at room temperature varies for different
crystals from 50O-2,000 V.1cm. its temperature dependeiace is shown in
Figure 8.3. lIa the rhombohedral phase the coerzive field grovs rapidly as
the temperature appruachzs the helium temperatures [l01.

P The temperature dependence of' spýontaneou3 polarization of triglycine
sulfate is characteristic of second order phase transitions f'.igure 8.4).
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Figure 8.2. Spontaneous polarization temperature
dependence of barium ritanate: a -- in tetragonal
phase (Merz [6]); b -- in orthorhombic and rhombo-
hedral phases (Wieder [7]). The component of
spontaneous polarization on pseudocubic axis [10^]
was determined in the orthorhombic and rhombohedral
pha..es.

The value of Ps according to the data of different authors varies in a rather

broad range rll-15]. The coercive field at room temperature is approximately
400 v/cm [12].

According to thermodynamic theory, if in the expansion of the thermo-
dynamic potential we are limited to the terms P", we find the temperature
dependence of spontaneous polarization from equation (3.9a). If the term
with P6 is considered, as in (3.12), then it is easy to show that

0- V)-2 (,- M. (8.1)

if a' is known, then coefficients 8 and y can be found by the method
0

of least squares from the experimental dependence of P2 on (e - T) near the
Curie point.

In the case of triglycin-Ž sulfate B = 4-10-10 (el. st. un./cm=)"
and y = 3-10-18 (el. st. un./cm2)-f [16]. In the extremely narrow
temperature range just below the Curie point somewhat different values were
obtained for these coefficients [171. Using experimental values of 8 and
y it is possible to estimate the values of the first three terms in the
expansion of *he thermodynamic potential (3.12). This estimate shows that
the term with P• is extremely small. Therefore the second term in (8.1)
can be discarded, whereupon we find that p2 is a nearly linear function of

S

(0 - T). The investigations of Strukov [1?] and Gonzalo [19] -.how that
this function is linear at least to (0 - T) _ 0.16.

For ferroelectrics isomorphic to potassium dihydrophosphate the
second term in (8.1) is most important, and near the Curie point spontaneous
polarization is a linear function of temperature, and here Ps increases
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Figure 8.3. Temperature dependence Figure 8.4. Temperature dependence
of coercive field (Ec) of barium of spontaneous polarization of

triglycine fluoberyllate (1),
tita,,a:, crystal. (according to triglycine sulfate (2) and tri-

Wi~der[9]).glycine selanate (3) (according

to floshino, et al [111).

very rapidly as the temperature falls. This shows that the phase transition
of potassium dihydrophosphate is by nature close to the critical point (see
Chapter 12).

The temperature dependence of spontaneous polarization of Seignette's
salt is illustrated in Figure 8.5. P changes smoothly at the Curie points.

s
The coercive field intensity has a maximum value of -200 V/cm between S and
150 C.

If a ferroelectric crystal is single-domain or domains of one of the
possible orientations prevail in it (unipolar), tben a change of its
temperature will lead to the pyroelectric effect, i.e., to the appearance
of charges on the surface of the crystal. By analyzing the pyroelectric
effect it is possible-to determine the pyroelectric coefficient

dl's
T -- (8.2)

Figure 8.5. Temperature dependence
2 of spontan-ous polariiation of

Seignette salt: ordinary (1) and
deaterated (2) (according to

f liablutzel [20]).

- -fa 0 .4 it] 3'-C
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If the temperature dependence of the pyroelectfic coefficient isknown it is theoretically possible, starting at the Curie point, to deter-
mine by integration of (8.2) the magnitude of spontaneous polarization.
The compensation method, by which it is possible to avoid leaks of the
pyroelectric charge, is most often used for analysis of the pyroelectric
effect. Zheludev and Gladkiy [21] used this method to analyze Seignette's
salt crystals polarized with the aid of mechanical stresses, and Koptsik
and Gavrilova [22, 23] used it to analyze unipolar crystals of barium
titanate, triglycine sulfate and Seignette's salt. Poiycrystalline barium
titanate was aiso analyzed [24, 25]. It is noteworthy that m~asurement of
the pyroelectric effect near the Curie point involves great difficulties,
since the observed effect becomes partially the result of change of the

domain structure, which amounts either to breakdown into domains or reduc-
tion of unipolarity. This feature becomes the determining factor near the
Curie point and the coefficient passes through the maximum considerably
below the Curie point [22, 23].

Chynoweth [26] used the dynamic method to analyze the pyroelectric
effect. In this method the part of the crystal to which the electrode is
attached is periodically heated by infrared pulses and the resulting pulses
of pyroelectricity are measured. For pyrocurrent density, obviously, we
have:

All~ L7-rWTY (8.3)

dT
At a constant rate of change of temperature (j-!) the pyrocurrent is

proportioutal to i. Therefore by integrating (8.3) it is possible to find

in relative units the temperatur- dependence of spontaneous polarfzation.
This method was used for analysis of morocrystals [2b, 27] and ce:'amics
[28, 29] of barium titanate, and also tniglycine sulfate monocrystals [30].

§2. Elementary Processes of 180° Repolarization

Repolarization of ferroelectrics in an electric field occurs as a
resit of change in their domain structure. In order to understand this
phenomenon, therefore, it is necessary first of all to know the individual
elementary processes that occur and the laws that govern them. The most
direct information concerning this can be obtained from direct observations
of the domains. If, however, we are interested in the integral character-
istics of change of pol~r:Af.,on of the entire crystal, to which all the
mechanisms contribute, or we want to know which one of then is the most
important, then the answers to these questions can be found by analyzing
the change of summary polarization. These measurements can be taken by
purely electrical methods.

T•ere are two ways to solve the problem of repolarizption. The best
results are obtained by analyzing the simplest case -= 1800 repolz .ation,
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wheu tue field is applied along !he axis of spontaneous polarization and its
direction changes 1800. These are c-domain crysta's of barium &-itanate,
uniaxial pyroelectrics -- triglycine sulfate, guanidine, aluminum sulfate
hexahydra':e, etc. In this case repolarization Ptay be the result of thefollowing mechanisms:

1) formation of 1800 dortains with spontaneous polarization parallel
to the field;

2) growth cf nuclei in the direction of spontaneous polarization to
ti-e electrodes without substantial change of the cross section of these
domains;

3) expansion of new domains formed, i.e., movement of 1800 walls to
the side, perpendicular to the direction of spontaneous polarization.

Marz's analyses in polarized light [31] of the repolarization of
c-domain barium titanate monecrystals revealed that on application of an
electric field opposite spontaneous polarization nuclei o4 antipuiallel
domains form near the electrodes. These nuclei grow like thin needles in
the direction of the polar axis from one electrode to the other. Notable
lateral expansion was nvt observed. Numerous observatioru; of various
researchers show that in not very strong fields, up to a few kilovolts per
centimeter, antiparallel domains form chiefly in the same places.

Chynoweth and Abel [32] tried to create artificially on trigiycine
siIfate centers at which nuclei would be formed. For this purpose they
created, firsc of all, places with high field intensity, for which holes
were made on one of the surfaces, and secondly, defects by local irradiation
with x-rays [33]. Despite, however, the seemingly favorable conditions at
these places for the formation of antiparallel domains, the location of

their formation could not be predetermined.

Thus it is still not known what local features of a crystal facilitate
the formation of nuclei. It should be pointed out that Miller and Savage
[34' were able to create antipaiallel domains at a given point on barium
titanate crystals with the aid of a hole. If the nuclei forned at the same
places in weak fields then, according to Stadler and Zachmani.dis [35], in
strong fields of approximately 20 kV/cm the nuclei form at di.fferent places
every time, in most cases. The fraction of domains that form at repeated
places increases as the field intensity decreases and in the presence of
sudden mechanical and thermal actions.

Merz [31, 36, 37] states that the formation of nuclei in not very
strong fields is a statistical process and its probabitity is an exponentl.t
function of field intensity

i j (8.4)
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Ahere a plays the part of the activation field. It ha- also been theorized
that the nuclei are generated by heat fluctuations. .Ardajer (38] later
showed that the probability of such a mechanism of forraclun cf new domains
is infinitesimally small. Stadler and Zachmanidis nevertheik-s point out
[35] that if the domair -,all energy is aW = 0.4 erg/cm2 , then in fields

exceeding 10 kN/cm the formation of nuclei as a result of thermal
fluctuations may become a reality. Their expetimental rate of formation
of nuclei in strong fields (2-450) kV/cm is proportional to E' . Fo:"
Seig.ette's salt Mitsui and Furuichi [39] found that the rate of formation
of new domains is an exponential function of the field.

If for strong fields the formation of nuclei can be regarded as
experimentaily proved, then for Yeak fields the question remains unansawered.
The appearance of antiparallei omains in different cydles of repoiariation
at the same places may correspond not oaly to the formation there of nuclei.
It is not ruled out that there were already tiny antiparallel domains at
these places, which grow when the field is applied and can be detected
experimentally only wheni they reach a certi.n size. It is also held that
the surface layers of a crystal play an important part in nucleation
processes [40, 41]. Janovec [41 .,io proceeded from the presence of a
space charge on the surface of thw barium titanate crystal, gives a possible
explanation of this phenomenon. In this case a strong electric fieid forms
in the surfice layer perpendicular to the surfacc. On one of the sturfaces
this field will always be aimed .'pposite the spentaneous polarization of
the crystal volume, regardless of the direction of the field, and the
formation of tiny antiparallel domains is favorable here from the standpoint
of energy,

The nuclei of the new domains formed develop primarily in the
direction of spontan.!"us polarization, growing from one electrode to the
other. This stage o'f developfent of nuclei prec-edes their lateral expansion.
Stadler [4i] measi-red the forward growth rate of doMins for barium titanate
by the stroboscopic illumination method. He derived the following equation
for the dependence of the growth rate on the field:

v= (5,500 cm/sec) exp (-1.8 kV/m/E). (8.5)

In their first observations of the repolarization of barium titanate
Her. [31, 36] and Little [43] did not detect notable lateral expansion of
the domains. Soon afterwards Miller and Savage (34, 44-47] conducted a
series of tests, in which they used liquid electrodes of concentrated
litnium fluoriAe solution. They found that in fields up to I kV/cm
repolarization is chiefly the result of the lateral motion of the 1800 walls.
In some cases the entire region of the crystal beneath the electrode was
repolarized by the growth of a single domain. Further studies revealed
that there is also lateral growth of the domains with metallic electrodes
[48].
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Tests conducted later by Stadler and Zachmanidis [49, 501 in strong
fields up to 450 kV/cm and in a broad temperature range showed that in this
case too there is lateral motion of the 180' walls. It is notewo.thy that
the expanding domains have a rather regular shape, which depends on the

temperature and field intensity (34, 45, 50, 51]. The results of these
observations are summarized in Figure 8.6. Nakamura [52] developed a
purely kinematic theory of lateral growth of antiparallel c-domains. The
domain forms which he obtained coincide with the observed forms,

For the dependence of boundary velocity (v) on the field, Miller and
Savage derived the exponential lawI -a •-'• (8.6)

Here 6 signifies t.e activation field and v the wall velocity for
E - -. The value 6 is sensitive to ..mpurities and increases somewhat with
the field. As seen in Figure 8.7, however, 6 varies only between 2 and 5
kV/cm as the velocity changes eight orders of magnitude. The tendency of 6
to increase with the field apparently explains the high values 6 = 7.8 kV/cm
(for v = 2.8-104 cm/sec) obtained by Taylor rS3] with the fields of
2.5-6 kV/cm. The rate of lateral movement is extremely sensitive to
temperature, and when the temperature is increased from 25 to 1000C it
increases approximately four orders of magnitude. The tenperatura dependence
is determined chiefly by the diminution of 6 with temperature [54].

V.C Figure 8.6. Diagram illustrating
'S 00 0- 0 form of 1800 domain in barium

' titanate as function of external
0- 0 1--O electric field strength and

A-0o o- 0 temperature. To the right are
-• directions (l0.a] and [110].

(According tG, Stadler and
E, kV/cm 7xcmiuds (50]).

It 4.s notewori:y that at constant voltage wall velocity decreases
approximately five-fold through the first 2.000 X, and then remains constant
[(5]. Miller and S~vage explained this phetamenon with the aid of th-i
surface layer mode;. proposed by Drougard ane Landauer [561. In the strong
electric fields of .2-250 kV/cm, as demonstra".ed iw Stadler and Zachmanidis
[49], the rate of lteral motion is proportional to El,". The effect of
impurities and ele,.'trode material on the speed of the 180* domain wall was
investigated [55, 481. It was alsc discovered that if the field is elimi-
nated after total repolarization a certain number of small domains may be
formed with polarization antiparallel to the polarization of the crystal.
This phenomenon became known as reverse switching.

The 900 domains should have an effect on the motion of the 1800 walls
in barium titanate monocrystals, since because of the great anisotropy of
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permittivity considerable heterogeneity of the field can be expected at the
point of the crystal'where the a-domain intersects it. Callaby's investiga-
tions [57] showed that the a-domains can have a notable effect on the move-
ment of tht 1800 walls only when they have sufficiently great v;idth.

The laws of motion of the
1800 walls in the rhombic phase of
barium titanate, as established by

U f Callaby [58], are generally the
0oA same as in the tetragonal phase.

The antiparallel domains in the
UI-P rhombic phase are rectangular with

walls corresponding to planes (100)
and (110) (a section of the (J1O)
type was analyzed). The dependence
of the velocity of these walls on
the field obeys the law (8.6) with
v = 3-10' cm/sec and 6 = 5.7-10'

, i ; V7cm for wall (1qO) and with v =
cm/5.5.02 cm/s.c !,.nd 6 = 4.1•l0- V/cm

for wall (110). As in the tetragonal
Fi•ure 8.7. Rate cf lateral phase, velocity is maximal at the
motion of 1800 wall in barium initial moment and diminishes by
titanqte as function of inverse measure of travel of the wall,
electric !ield strength reaching a constant value after
(according to Miller and Savage passing a certain distance. The
[45]). length of this path depends on the 0

field; 70 A at 160 V/cm and 70,000 A
at 550 V/cm. The reduction of velocity also depends on the field. It is
greater for weak fields and smaller for strong. These results were
interpreted by Callaby on the basis of his surface layer model.

The lateral motion of the 1800 walls was observed in triglycine sulfate
by Chynoweth and Abel (59] in weak electric fields of 30-35 V/cm. In these
experiments liqutLd electrodes were used, and the domain structure after each
partial repolarization was analyzed by the charged powders method. Mitsui
and Furuichi observed the motion of the walls in Seignette's salt, and
according to their data wall velocity v - (E - E0 ) [39, 60].

Considerable difficulties are encountered in explaining the mechanism
of lateral movement of the 1800 walls. Since the 1800 wall is extremely
thin, its displacement parallel to itself, as indicated by estimates, is
improba-Ve [36, 15]. Therefore it is theorized that the lateral movement
is apparent. In reality the nucleus of the antiparallel domain, which
grows from one electrode to the other, leading to the displacement of the
wall, forms near the actual 1800 wall. It can be expected .nat it is easier
for such nuclei to form than new domains, which are completely surrounded
by the medium with antiparallel polarization, if only because the summary
area of the walls of the nucl,?us adjacent to the old domain is less than
that of the nucleus of the isolated domain.
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One of the first investigations of such a model was done by Drougard
[611, who advanced the theoiy that the p~obability of formation of a
nucleus as a protuberance on the wall of the existing antiparallel domain
is proportional to the perimeter of tl.e wall and that the nucleus, although
once formed, spreads rapidly or, tLe wall ti.rough the thickness of the
crystal. This model leads to a repolarization rate proportional to domain
area. It follows from the tests of Miller and Savage [45], however, that
the rate of repolarization is not proportional to the area, but to the
perimeter of the expanding eomair, since according to their data wall
velocity is not a function of domain area.

To reach agreement with the experimental data Miller and Weinreich
[62] used a somewhat different model. They surmised that many nuclei form
simultaneously on the wall in the form of protuberances and that their
probability of formation is proportional to wall perimeter. Since many
nuclei form simultaneously, each of them expands on a small portion of the
wall until it reaches its neighbor. Therefore the process of repolarization
is determined only by the mechanism of formation of the nuclei, which prefer
the shape of plane triangles, facing the domain (Figure 8.8). With this
shape the additional energy attributed to the greater total area of the
domain walls is slight. Miller and Weinreich analyzed the change of energy
(AU) of a crystal associated with the formation of a nucleus. They took
into account the energy of spontaneous polarization of the nucleus in the
electric field, the energy of newly formed domain walls and the energy of
the depolarizing field. Since wall velocity (v) is determined by the rate
of formation of the nuclei due to heat fluctuations, then

VUP (8.7)

The optimal nucleus dimensions
a* and Z* and activation energy 6U*
corresponding to them can be deter-
mined from the conditions aAU/3a = 0
and 3AU/al = 0. Assuming nucleus
thickness (c) to be equal to one
lattice constanit, then when E

- 300 V/cm a* = 3.6"10-6 cm and Z* =
= 16"10- cm. AU* depends on the
thickness sf the nucleus, and here
the relation

Figure 8.8. Schematic diagram of
triangular nucleuts on 1800 domain w•-utkw;. (8.8)
wall. (According to Miller and
Weinreich [62]).

is valid, where AU* and AU* are the

activation energies for nuclei that are one and n lattice constants thick.
Wall movement is governed in principle by the formation of nucleu of different
thickness, and therefore wall velocity can be written in the form of a series:

-287 -



(8.9a)

Since AU* is inversely proportional to E, then (8.9a) can written inthe form: n

(8.9b)

The first term plays the principal part in veak fields, which
corresponds to the formation of nuclei of one lattice constant thickness
Then the experimental exponential dependence of v on E (8.6) is obtained.
The experimental 6 coincides with the theoretical if wall energy is a;sumed
to be 0.4 erg/cm2 . Using this model it is also possible to nxplain the
change in domain shape as a function of the field.

The formation of nuclei with n > 1, having a great energy of activa-
tion, becomes increasingly probable as the field strengthens. Possibly
related to this is the experimentally observed slight increase of 6 with
the field. Stadler and Zachmanidis (49] showed that when E > 2 kV/cm series
(8.9b) changes as Ex. For E - 2 kV/cm x = 1.45-1.40, and when E ranges from
3 kV/cm to 450 kv/cm x = 1.36-1.34. This dependence of wall velocity on
the field coincides satisfactorily with their experimental dependence.

Other models of the growth of antiparallel domains in barium titanate
were proposed by Burfoot [63, 64], Abe (65], Nakamura [66]. Helical CiSlo-
cation, spreading perpendicular to the wall, plays an important role `r.
the 180; wall movement in Nakamura's model (66]. Dislocation leads to the
appearance of a step en the wall, which grows in a spiral under the
influence af the field, with the result that the wall shifts, remaining
parallel. As sho-vn by Miller and Weinreich [62], however, it is
improbable that this mechanism operates in field3 up to -103 V/cm.

The theory of movement of domain walls in KHI2 PO4 was advanced by

Schmidt [67].

§3. Integral Characteristics of 1808 Repolarization

Now that we have become familiar with individual processes of 180'
repolarization and their principles, established by direct observation of
the change of domain structure, we will proceed to the general principles
of repolarization. The pulse method proposed by Merz [36] turned out to be
very fruitful in this regard,

A crystal is subjected to rectangular pulses of alternating polari.ty.
The growth time of the pulses (-10 nsec) is much shorter than the repolarl-
zation time, so that it may be assumed that the entire process of repolari-
zation proceeds at constant voltage. Pulse amplitude and duration must be
such as to ensure complete repolarization of the specimen. Consequently
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the specimen i• hocked up to a resistor, the voltage on which, proportional
to the repolarizatinn current, also known as the switching current, is
observed on tho C:-:l11ograph scope,

The volzage pulse and switching current pulses are depicted
schematically in Figure 8.9 for vo;'age pulses of alternating and of the
same polarity. It is obvious that if the electric field is directed along
the axis of spontaneous polarization 4nd I8V* repolarization takes place,
then the area beneath the current pulse is 2Ps, converted to unit of area

of the electrode. Switching time ts and maximum switching current imax are

clear from Figure 8.9. In his first investigations of barium titanate
monocrystals by this method Merz obtained important results [36, 37, 68].

The dependences of i and t on voltage are of the form illustratedS•max s

in Figure 8.10. In fields up to 5 kV/cm the exponential law

where a represents the activation field, is satisfied. According to Marz's
data [36, 37] a is of the order of I0" V/cm and depends on crystal thick-
ness. Subsequent investigation5 yielded lower values of a. Thus Drougard
[61] obtained a Values "iarying from 5-10 kV/cm for various cr-stals of
thickness 10- cm; Taylor [53] obtained a = 8.2 kV/cm for 10- cm thickness
in fields of 2.5-6 kV/cm. Stadler [66] verified Merz's dependence [36] of
c on crystal thickpess, and according tc his data a - 4 kV/cm for a thick-
ness of S.10-2 cm and reaches 28 kV/cm at a thickness of 10-3 cm, satisfying
the exponential law for t to the field strength determined according to

equation (1.4), (1 + •-.0 kV/cm, where d is the thickness of the crystal

in cm. For thicknesses of the order of I0-2 cm this field is approximately
2 kV/cm, which is considerably less than the S kV/cm found by Merz.

Drougard [61] analyzed on barium titanate crystals the dependence of
the instantaneous switching current on effective polarization P, changing
from -P5 to +P . In moderate fields the experimental results agree

satisfactorily with the equation

where i is the switching current, P is polarization at any moment of time,
S

Qs is the total switching charge and B is the coefficient (0.4-2.3)-107 sec

The character of the switching time as a function of the field differs
in stronger fields. Merz [37] discovered in the first investigations of
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Figure 8.9. Schematic diagram of

voltage and current pulses: a -- Figure 8.10. Maximum repolarization
voltage pulse; b -- repolariza- current i max and inverse switching
tion current pulse with voltage time 1/ts as functions of appliedpulses of alternating polarity
c -- current pulse wiah voitige field for barium titanate mono-

pulses of the same polarity, crystal. Specimen thickness
(2.5-35)-1013 cm. (Merz [36]).

repolarization that barium titanate crystals behave in strong fields like
resistors, i.e., the repolarization current is linearly related to the field:

. .I E£ .

imaxF-x - (8.12)

where E0 is the thresholJ field, 8 is a ccnstant, d is crystal thickness.

In this formula . = u may be thought of a5 domain wall mobility. Hence

Merz concluded that repolarization in strong fields is determined by the
advance of 180* domains through the thickness of the cr>:-tal Later, however,
Stadler [70, 69] discovered in analogous investigations that the law

ts a ,9

where E is given in kV/cm and ts in sec, and whee'e ts is not a funetiot: of

crystal thickness, is satisfactorily satisfied for the repolarization time
in strong fields.

The processes of repolarization on bipolar pulses were also investi-
gated on the crystals of other ferroelectrics: triglycine sulfate [15,
71-79], Seignette's salt [80], KH2 PO4 [81], guapidine aluminum sulfate

hexahydrate [82-86], colemanite [87!, LiHn(SeO..L, [88, 89], (.%N14)ISO4 [90],

thiourea [9"], tetr, ;ethyl ammonium trichlormercurate [92]. The switching



time of all these ferroelectrics, like that of barium titanate, is an
exponential function of field strength (8.1q) in moderate fields, and foz
triglycine sulfate -a depends on crystal thirllians according to the law

a = aod-312 [93, 94]. In strong fields the repolarization time of

"Seignette's salt, gvqraidine aluminum sulfate, colemanite and (NH4)HSOa4
depends on tn- fý-eld aLCOrding te the law (8.12),. In fields bc, tween 20 and

SO kVicm (at %'f ý temperature) the repwlarizatic-n, timt of t;.2glycinD sulfate
is inversely I 1portional to the field '73] (Figure 8.11a):

t = const E- (8.14)

an, mobility increases with crystal thickness [7S]. In the case of
LiH3(SeO3)2 [89] in fields .,zom 5 to So kV/cm

t = const E -5/2. r8.1S)
s

. :ea t const E- L[9 (r-m 100 V/cm to 3 kV/cm.

in Wn

sE

a- $ ff5M.05i

E, kVicm E, kV/cm

Figure 8.11. Depondences characttrizing repolarization cf
triglycine sulfate crystals: a -- dependence of inverse
rkpolarization time I/ts for triglycine sulfate at room

temperature (Fatuzzo and Merz [731); h -- dependence of
growth rate of domains v = d/t on direction of electric

field at 45 0 C for triglycine sulfate crystals of different
thickness (Binggeli and Fatuzzo [75]).

The first explaitation of laws (8.10) and (8.12) of repolarization was
offered by Me~z [36, 37, 6S], who hypothesized that the repolarizatio,• time
in weak fields .'s determined by the time (f formation of the nuclei of new
antiparallel domains, and that t ;s therefore an exponential function of E,

and in strong fields, by the growth time of antiparallel domains through
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the crystal, hence a linear relation between t and the field. Late: studies,

particularly the discovery of lateral movement of 1800 walls, forced
re-examinaticn -f these first concepts.

The identical character of the dependence of the inverse switching
tine and rate of lateral wall movement on the field [for.Tulas (8.6) and
(? ))] indicated that repolarization in moderate fields occdrs chiefly by
means of lateral expansion of 1800 domains. The values of a and 6 in the
first experiments of Herz and Miller, of course, differed substantially,
but evcw the a-values nbtained by Stadler [69] are close to the 6-values.
Taylor [S3], analyzing the repolarization of barium titanate crystals with
liquid electrodes in fields of 1.5-6 kV/cm, obtained practically identical
values for a and 6.

Fatuzzo and Nlerz [73], Wieder [87], Fatuzzo [94], Wite [95] Ceveloped
a model of repoiarization. Fatuzzo [94] did a theoretical model calculation
of current pulses during iepolarization in the most general and regular
form, and we will discuss the basic concepts of his model, a special case of
which is the Wieder'nodel [87]. It is theorized that the nuclei of anti-
parallel domains are foraed randomly on the crystal surface, as in a
static process. The time t required for the formation of all nuclei is an

n
exponential function of the field:

Each nucleus grows in the direction of the field luring time td. The

developing domain expands laterally. At the same time nev: nuclei are formed,
grow ahead, expand, etc. The lateral movement can be real (i.e., tile wall
moves as a whole, parallel to itself) or apparent, hut in either case the
velocity of the wall is assumed to he isotropic and the domain circular in
cross section. Proceeding from these assumptions Fatuzzo calcuiated the
dependence of repolarization current on time and of repolari:ation time on
the field. The character of both these dependences is determined by the
magnitude of the parameter k. For actual lateral movement

A ±IN (8.17)

where 1. is wall mobilit, R is the-probability of formation of nuclei, and
r is the radius :f the ntcleus.c

For apparent lateral motion

W 2"



where R is the probabilifY of formation of an isolated nucleus, R' is the

probability of the fooqfion of a nucleus next to an existing domai,1 . In
both cases the greatei" k the greater should be the role of lateral moveir ent
of the walls. The phyS$.4al Sense of k is particularly clear in the case
of apparent lateral msvt"¢r- Here k shows how much more readily a nucleus
forms next to an existiho doiiain than does an isolated nucleus, i.e., as if

to characterize "'nucieu/dogain inteaction." In the case h >> 1 lateral
wall movement plays t!h c(hjef1 role in the repolarization process (Wieder's.
conclusions [87] are va,1d, -specifically, for this case). Fatuzzo found
that when k >- 1 and Vh. n¢oement is real,

#"•',(8.19)

where a* = 5a'/3. in t c ý,Se of apparent lateral movement

t - exp (-I-/) , (8.20)

where a = 2ca"/3 + a'/3.

in strong fiejds Iýe 4 ependence o t 5 on E according to (8.19) can be

regarded as a power fJnttAors and it is Jose to the one observed experi-
mentally for barium tit(Ate and thiourea. It cannot be ruled out, there-
fore, that apparent latta,1 w,1il movement changes into real lateral wall
movement in these cry!5t$j5 in a strong field. The repolarization current
pulse is symmetrical fo. h 7l" 1, ie., t' : t". (The meaning of t' and t"
is clear from Figure 8.)). This is understandable from simple qualitative
considerations. If rePltdrization by means of lateral movement predominates,
then the repolarization 01trent is proportional to the perimeter Z of the
domains. When t = 0, Z k and is = 0, then i increases and passes through

s
a maximum. Compariso•i ;( the experimental shape of pulse i with theoretical

indicates that barium ti-Owte and colemanite relate to the case k > 1.
Wlhen k is not too grcot 4lpr.ced to unity and does not depend on the field,
then the probabilities r4 foxwntion of nuclei, both isolated and adjacent
to a domain, are siMilal 4ýb a' - Q". In this case the dependence of
on the field is of ex-phhtiatl character:

ts const exp W'/E. (8.21)

For k 0, wheil tt• toechanism of lateral movement has practically no
influence, the shape of fI'A1 5c is is markedly as)ymetrical and t' - 0. In

this case the formation of isolated nuclei and their forward growth are the
prime factors in repola jiaon. Consequently irs proportional to the

rate of formation o? Thh tu1lei, and it is maximal at the beginning of the
process. This cbviou5l. yo(.esponds to guarkidine aluminum sulfate
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hexahydrati. Triglycine sulfate, tetramethyl ammonium trichlormercurate
occupy an intermediate position, and for thMD:e com~pounds the best agreement
between the experimental and theoretical current forms occurs respectively
for k = 1 and k = S.

Judging by Strukov's data [90], (Nil 4 )HSO 4 crystals also belong to

this group. Wieder [74] noted that for triglycine sulfate Fatuzzots model
does not agree with the experiment in the case of great crystal thickness
of the order of 0.5-1.0 cm. This is possibly related to the fact that in
this case defects within the crystal, not taken into account in the model,have a considerable effect on the apparent lateral movement of the 1800
walls.

The Fatuz:zo and Wieder ,odels pertain to the region of weak fields;
thus, as regards strong fields. the generally accepted point of view at
this time is that t.e repolarizition time of ferroelectrics, for which the
relation between the inverse repolarization time and the fiell is linear,
is dete,-mined by the growth time of domains from one electrode to the other.
The reason:, for the exponential relation between t and the field in somes
of the ferrolectrics are not yet clear. In a sufficiently strong field
the rate of uomain wall travel may be so great as to exceed the speed of
sound. StaCier [96, 49] pointed this out with respect to barium titanate,
but this problem was investigated most thoroughly by Binggeli and Fatuzzo
[75] on triglycine sulfate crystals.

The forward growth time of domains of triglycine sulfate at room
temperature in f:jlds greater than 20 kV/cn, is greater than the time of
nucleus formation. It is nearly equivalent to repolarization time, and
therefore the growth rate can be determined from electric measurements.
At higher temperature the field strength above which the situation occurs
diminishes. The dependences of growth rate on the field, obtained by
Binggeli and Fatuzzo for crystals of various thic::-ess are preserted in
Figure 8.11b. It is clear from this figure, first of all, that each curve
has two linear segments, corresponding to different mobilities and,
secondly, the mobilitiEs en both segments increase as crystal thickness
increases. The discontinuity on the experimental curves occurs at a
velocity close to the velocity of propagation of longitudinal sound waves.
!he authors feel that. since during movement of a wall there is some deformed
region near it, displacement of this region along with the wall due to
internal friction cause3 additional energy losses, and consequently
increases the "friction" for the walj itself. In the case of wall travel
at supersonic velocity deformation cannot follow, i.e., the wall travels
without creating distortions of the crystal lattice near it, and therefore
its mobility increases. As regards the dependence of mobility on cr'stal
thickness, then in the case of triglycine sulfate it obviously cannot be
attributed to a particular surface layer, as is usually dlone for barium
titanat,. The fact is, perhaps, that as the domain grows its length
increasct, without substantial changes in lateral dimensions, and therefore
the depolarizing field, which opposes the external field, diminishes. This



leads to wall movement with acceleration. Thep, the thicker the crysta! the
greater the average velocity and mobility determined by it.

Dluring repolarization of ferroelectrics there arc small abrupt
changes in polarization., which by analogy with the same abrkipt changes ip
magnetization of ferromagnetizs, have come to be known as Barkhausen j'*.;hps.
Barkhausen jumps are detected experimentally as small bursts of repr~iariza-
tion current. Barkhausan pulses have been analyzed chiefly durý_ýg rerpolari-
zation nf barium titanate crystals [97-101, 44]. There are several reasons
fi7 the app~aarance of such pulses: a) the formation of the nucleus of an
antiparallel domain; b) initial jump in the growth of such domain; c)
merging of two 1800 domain walls. Negativv Barkhausen pulses correspond to
the format. on of small doizain-; with polarization opposite to the direction
of t:he fieid.

The history of the speicimen has a considerable effect on the
repolarization process. The investigations of Fatuzzo [713, Shuvalov
[76-78], Tambovtsev [79) of t:~glycine sulfate crystals showed thal. if
bipolar voltage pulses are applied to the specimen at different intervals
i.e., one interval between pu..ses is greater than another, then i max and

tfor pulses of different polarity do, not coincide. This ohenomenovi tales

place in fields where the exponential law for the swiv~hing time is satis-
fied. Apparently the conditicns of the formation of nuclei change within
-%e interval between pulse~s. The g-eater the time between pulses, the
worse the conditions become for the form',.tion of nuclei. One of the
factors th~at prevent the application of ferroelectrics a-, matrix me-,inr)
elements of digital computers is the fatigue effect.

This phenomenon was discovered 3n barium titanate crystals [10-21 and
amounts to a gracual reductioa of the repolarized v.1Lou,-e afLor several
millions of repolarizations. 71ie repolarized vol-ure can bc restored tco
its initi-l value by repolariZing the crystal after a fei.. minutes with,
industrial aiteivating .-uzrent. Thn -~n-,-.ti gat ions of iiayashi, et a] [103]
showed that the higlaer the temperature and frceoue;ncy if Cie pulces -he
faster fatigue sets in. Tiny a-domains (-1l0- cm wide) were observed on
the surface of "Fatigued" crystals. Hay.ashi and coauthors, on the basts
of these experimentail data, concludcd that the fatiguc effect i.S related
to heating during repolarization of the region of the crystal located
between :he electrodes (in such experiments electrode ~overs pa-.: of the
crystal'. As a result '!,chanical stresse- build up hare, chiefl%, due to
reduction of tetragonali ty --: surrounding parts of the cryscal,
and these stresses are the :oause ,.&0 srall wedge-shaped a-domains. Thlese
domains prevc-nt tne movement of the 1800 walls, which leads to incomplete
repolarizat~on. It should be pointzd out that this explanation does not
coincide with th,. results of Callaby's investigation [57] of the influenice
of a-domains on the motion of 1800 walls. According to his e.timates,
a-domains of such narrow width should have. nD significant effect. It is
noteworthy that fatigue does not occur at, 777*K [1041. The rcason for this
is not known, but in any case it is not that the ba;.,ium titnante cry,_tall is
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in the rhombohedral phase, since fatigue occurs at 173*K in some crystals,
whereas in others it does Aot occur at 2S0°K.

Seignette's salt crystals, as a general rule, do not hold residual
polarization very well, and this indicates the exceptional stability of
the natural non-monodomain state. The longer the field is applied during
polarization and the stronger this field, the more slowly depolarization
takes place in them.

Investigation of partial repolarization produced interesting results
[73, 108]. It seems that if a pulse of less duration than some critical
time t* is applied to a crystal, then it leaves behind practically no
residual polarization. This phenomenon was investigated most thoroughly
by Taylor [10P] on triglycine sulfate crystals. He showed that time t*
decreases as field strength and temperature increase, and increases as
crystal thickness increases. If a crystal can be completely repolarized by
the successive discharge to the crystal of a small number of pulses of
duration greater than t*, then with pulses of duration less than t* this
can be done only by discharging a large number of pulses. When pulse dura-
tion, for example, is 6 microsec and the number of pulses is 10 , repolari-
zation comprises only 10%, but when the number of pulses is 108 it increases
Zo 90%. Thus there is some amount of residual polarization even with

durations less than t*, but very little. A possible explanation of the
observed phenomenon consists in the fact that if the time of application
of the field is les3 than the time required for the growth of a.nucleus
through the crystal, the antiparallel domain disappears after completion
of the pulse under the influence of the depolarizing field.

The absence of a threshold field at which the process begins
represents a considerable difference between the repolarization of ferro-
electrics and remagnetization of ferromagnetics. This is evident even by
the character of the dependence of repolarization t-me on the field in
weak fields (8.10). The slo- repolarization of barium titanate crystals
was analyze4 by Wieder £109], who established that in fields of 100-600 V/cm
the amount of polarization is satisfactorily described 1by the equatiot.:

V-, "•&;-(8.22)

Nakamura [110] and Romanyuk and Zheludev [106] also found the
dependence of polarization on time to be exponential for Seignette's salt.

Landauez', et al [4], starting with law (8.10) Lf repolarization,
determined that the coercive field depends ur the rate of increase of
voltage, i.e., on its amplitude and frequency. Actually, the frequency
dependence of the coercivi field i; observed experimentally [111-116].
Herc Borodin, et al [116] found that at frequenciez of several Hertz the
coercive fieldt diminishes as the frequency increases, and ther, even at
higher frequencies, in accordance with theory, increase5. It is noteworthy
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that the coercive field of barium tit.nate increases as crystal thickness
diminishes. The reasons for the dependence on thickness are obviously
the same as for a in (8.10). These 6. ?endences are usually related to the
presence cf surface layers.

W4- Repolarization of Barium Titanate Crystals in the Presence of 900
Domains

Ferroelectric crystals with not only 1800 domains also become
repolarized through the formation of new doiains and the movement of domain
boundaries, but not only 1800. The great variety of processes that occur
during repolarization, their influence on each other, the dependepce of
the development of some of them on the initial domain structure, make it
practically impossible to formulate any general theory of repolarization
for this case. Analyses amount only to determination of integral
characteristics of repolarization, such, for instance, as repolarization
time, without any sort of model interpretation, or to a detailed experi-
mental and theoretical analysis of individual processes and their inter-
actions. Of all ferroelectric crystals in which may occur more than 1800
repolarization, only barium titanate crystals have been analyzed, The
inverse repolarization ti:me of barium titanate in the orthorhombic and
rhombohedral phases in fields of 5-12 kV/cm is a linear function of the
field according tc law (8.12) [7] (the field is applied-in direction [100]).
On transition from the tetragonal phase to the orthorhombic and from the
orthorhombic to the rhombohedral the repolarization time with the same
voltage jump decreases [7]. This is evidence that the more asymmetric the
phase is, the easier it is for repolarization to occur. The abrupt change
of repolarization time during phase transitions conforms with the abrupt
reduction of the coercive field (see §D).

Of the individual aspects of repolarization the 90' motion of the
walls in tetragonal barium titanate ha3 been analyzed most thoroughly.
This subject is discussed in Little's work [43), a series of works by
Fousek and Brezina [117-121], and also Borodin et al [116]. Fousek and
Brezina [118] examined a model of a crystal with one 90* wall, dividing two
domains with spontaneous polarization parallel and perpendicular to the
field. In contrast to reality, in order to -impliiy the calculations the
wall was assumed to be parallel to the electroJ-s, and it was assumed that
-Garted z).argeS on i.t prior 0o a rr!-nticon Mf '*1e fiei:1 Are compensated
by free charges. For a crystal with such a domain wall ano lacking Interna.
stresses the change of energy after application of an external field can be
uritten as follows:

lI -r ((8.23)

This is valid in tbe assstnmpion tbhat the time :f influence •f the
field is mPuch shorter than the time required for compensation of connected
charge: occuring on the wall. Energy II depends on the location of the
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domain wall in the crystal, and therefore pressure acts upon the wall. The
part of the pressure caused by the presence of the second term in (8.23)
changes direction in accordance with the direction of the fieid. The first
term in (8.23) depeiids on the position of the wall by virtue of the fact
that permittivity in thz domains differs by more than one order of magni-
tude. The pres3ure attributed to this term is applied from the direction
zf the domain with the least permittivity, regardless of the direction of
the field. Thus, when sinusoidal voltage is applied to a crystal the
pressure acting on the 900 wall is asymmetric.

"Regenerative forces" prevent movement of the wall under the influence
of pressure. They are attributed fifs-L of all to the fact that the energy
of the wall, by virtue of the presence of defects, is skme non-monotonic
funption of its location in the crystal, and secondly by the fact that during
movement of the wall, on the lateral faces of the crystal, to which the
spontaneous polarization.of one of the domains is normal, there will occur
a surface chprge and the field created by it, and the energy of the crystal
will increase [121]. Because of the asymmetry of the external pressure the
bias loop, i.e., change of the position of the wall during the period, is
also asymmetric. Actually, aa borne out by observations, deviations from
the enuilibrium position are always greater in the direction of the domain
with spontaneous polarization perpendicular to the field. Furthermore, in
the same direction there is usually continuous displacement of the neutral
position of the wall, around which it vibrates [118).

In the opinion of Fousek and Brezina [121], this may be related to
the fact that during the time of movement of the wall the charges on the
lateral facets of the crystal are compensated, •nd therefore the "regenera-

tive force" is diminished. The movement of the wall is of a relaxation
character and as the frequency increases its deviation decreases rapidly
(Figure 8.12a). A characteristic feature is the presence of a threshold
field, at which wall movement becomes notable, i.e., whet its deviation
exceeds 0.5 u. As the frequency increases, the threshol.: field strengthens
(Figure 8.12b).

When an electric field, perpendicular to spontaneous polarization, is
applied to a single-domain barium titanate crystal, wedge-shaped 900 domains
appear in the crystal, growing through the c-_s4.l, .nd in the case of an
alternating field, osciulating within it. Analysis of the formation and
growth of these domains, and also of their interaction uith 180' donmins,
was conducted by Little [43] and by Fousek and Brezina [122].

As the wedge-shaped domains grow -he Barkhausen jumps appear,
corresponding zo cota'ion of spontaneous polarization in volumes of

0"-9.-7cm (1231. It has been shnwn experimentally that some of !he
jumps correspond to sudden utovements of a wedg?, following some lag in its
growth. The Barkhausen jump also occurs when th.- wedge reaches the opposite
boundary of the crystal and is converted into a parallelpiped. Analysis of
the change in the thickness of a single a-domain in an alternating field
as a function of its amplitude and freque..cy was conducted by Borodin, et al
(116].

-298-



V.-
Is a

1oo

Frequenyc, kP Frequency, MY

Figure 8.12. Dependences characterizing motion of 90*
walls in barium titanate: a -- dependence of maximum
deviation of wall from frequency of applied voltage
at various amplitudes (V0); b -- frequency dependence

of threshold voltage, at which wall movement becomes
notable (deviation >0.5 v). (According to Fousek and
Brezina (1211).

§5. Repolrrization of Polycrystalline Ferroelectrics

A polycrystal consists of a set of crystals oriented in various
fashion, each of which has a complex domain structure. Therefore repolari-
zation of polycrystalline ferroelectrics is a complex process and formulation
of its theory involves insurmountable difficulties. Statistical examination,
of course, is possible. It is analogous to the examination made for poly-
crystalline ferromagnetics. Such calculations were done by Turik [124-1261,
who proposed distribution of domains according tc coercive and internal
fields and considered the chaotic distribution of the crystallographic
axes of individual crystals, examining only 180* repolarization of the
domains.

The maximum polarizations of polycrystalline ferroelectrics can be
achieved when the spontaneous polarization iT, each crystallite acquires one
of the possible directions that is closest of all to the direction of the
field. These polarization values can be calculated with consideration of
the symmetry of the crystal [127-1331.

The experimental polarizations of ceramics, obtained from hysteresis
loops, are always considerably smaller than the theoretical values. This
indicates that complete recrystallization is not achieved and it is wise to
assume "erc that the primary processes are those of 1800 repolarization,
since these processes do not involve deformation of the iudividaai
crystallites. 90° rotations nevertheless occur, as indicated by the
character of deformation of specimens during quasistatic polarization and
repolarization. According to Mason's data [1341, only 10% of rhe pr'ssibie
900 reorientations of tetragonal barium titanate occur in a field of
30 KY/cm. According to thc data of Suhbarao, et al (1351, the figure is
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12%, a.nd 17% according to Berlincourt and Krueger [136], and after removal
of the field the fraction of 900 reorientations decreases to 12%. In
tetragonal solid solutions of Pb(Ti, Zr)O 3 up to 53% of the 900 reorienta-

tions are achieved, but on removal of the field the number decreases 44%
[1361.

Uchida and Ikeda [137] also conducted similar investigations. These
researchers calculated the deformation and polarization of ferroelectric
ceramics in the assumption that all domains whose direction of spontaneous
polarization after reorientation makes with the direction of the field angles
smaller than 180 and 90, respectively, become repolarized in a given

polarizing field. The dependences of 0180 and 490 on the field were

calculated according to the experimental dependences of deformation and
polarization on the field. For barium titanate in a field of 20 kV/cm
(30-C) 90 = 16' and 4180 = 750.

The amount of polarization achieved with a given electric field
strength diminishes with time. So-called aging occurs, which consists in
the fact that as time passes the domain walls become attached in those
places where their energy is minimum. Aging also occurs in monocrystals.
Specimens can be "rejuvenated," by heating them above the Curie point or by
subjecting them to a strong variable electric field. Th'ý effect is
strongest in the latter case, since the so-cZIled aftereffect takes place,
attributed, according to Rzhaaov [138], to the formation of some texture
due to the fact that the fraction of the domains reoriented by 900 during
the first cycles of field alternation, is eventually more easily repolarized
1800.

El'gard's investigations [139] verify this point of view and show
that the processing of a specimen with a field parallel to the measurement
field produces a substant.ola.' greater effect compared to processing in
the perpendicular direction. Despite the fact that total polarization is
not reached in polycrystals, the change of the parameters of the hysteresis
loop (coercive field and total polarization) with temperature reflects the
temperature dependence of domain wall stability. As in monocrystals, the
coercive field decreases in polycrystallire barium titanate on transition
to a less symmetric phase [140-143].

The repolarization of polycrystalline specimens in the pulse mode
has been analyzed very little [144, 145], but there are numerous works per-
taining to analysis of nonlinear electric properties. It is obvious that
a ferroelectric capacitor in an electric circuit under sufficient voltage
b-hv-s like a nonli-ýar component. rhe concept of capacitance can be
used to describe it, assuming capacitance to be that of a linear capacilor
which has the same charge on its plates at the same voltage or, let us say,
charge amplitude at the same sinusoidal voltage, equal to the amplitude of
the first harmonic of the charge on the ferroclcctric cap~ci~o', etc.
Capacitances will obviously diffei under different conditions of equivalence.
Some effective permittivities can be calculated on thc basis of these
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capacitances and the geometric dimensions of the ferroelectric capacitor.

Extensive investigations of this type have been carried out
especially on polycrystalline perovskite. These include the works of Vul
[146], Bokov [147, 142], Verbitskaya [148-ISO], Khodakov (151], Sinyakov,
et al [153], El'gard [153-157, 139].

Usually two types of permittivity are measured -- the so-called total
or normal permittivity (e ) and first harmonic permititvity (e). The

total permittivity may be defined as the perm*ittivity of the linear
capacitor (Ct) with the geometry of the ferroelectric catpacitor which at a

given voltage has on its plates the same charge as the fterioelectric
capacitor. Ct can be found from the hysteresis loop foi any of its branches.

Usurlly Ct is defined as the total permittivity for the main branch of the

hysteresis loop. eI can be defined as the permittivity of the linear

capacitor (Ci)1 with the geometry of the ferroelectric capacitor which,

when sinusoidal voltage is applied to it, has on its plates a charge equal
to the first harmonic comp onent of the charge of the ferroelectric
capacitor under the same voltage.

At the same electric field intens-ty in the case when saturation has
an effect C+ < " This is related to the fact that with sinusoidal

voltage the change of the charge in a half-period due to saturation is of
"flattened" form, and therefore the maximum charge is less than the ampli-
tude of its first harmonic (147]. The curves of the dependence of E and

I on electric field strength pass through a maximum (Fig:ire 8.13). The

path of the curves depends here on the history of the specimen. Aging
plays a very important role. The highest values of ct and eI :an be

obtained after processing the specimen in a strong variable electric
field, when the aftereffect has an influence. The application of a stationary
field, which impedes repolarization, therefore leading to a reduction of

t and c,, has the greatest effect on E and EI (Figure 8.14). Since c

and eI are determined in rather strong fields principally by repolarization

processes, then, as demonstrated by Bokov [142, 147], their temperature
dependence reflects the change of domain wall mobility with temperature.

Maximum Et and cI occur in barium titanate and solid solutions

based on barium titanate after low-temperature phase transitions in ti-
ferroel=ctri.- phase. These maxinia are explaineG by the lact that on
transition to a less symmetric phase domai.n wall mobility, which mono-
tonically diminishes within each phase at low temperature, increases

IC is measured on ordinary bridge instruments.
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E.- = 4.0; 4 -- E_ = 6.8; 5 -- E_
after aging and broken curves -- 9 k
after heating above Curie point.
(According to Bokov [147]).

sharply. As the strength of the electric field increases, rt and cI increase

quite sharply near the Curie point, where wall mobility is especiilly high.
Here the maximum permittivity increases and is displaced toward low
temperatures. Especially great displacements occur in solid solutions with
"eroded" phase transition.

The displacement of maximum permittivity in this case is not related
to the displacement of the Curie point. In a weak electric field, after
cooling below the Curie point, the permitlivity drops rapidly due to the
saturati nr ef e'ý el, .•atie t e the .,;)p carance ard groith af sponr t; ,neo;.
polarization. in a strong field repolarization processes take place and
the permittivity is determined by che magnitude of spontaneous polarization
and the volume within which it changes its direction. At low temperature,
below Vic Curie point, on the ore hand, spontateous polarization increases,
which should lead to an increase in the perm.ittivity in a strong field, and
on the other hand, movement of the domain walls becomes more and more
difficult and, consequently, the volume within which spontaneou. polariza-
tion changes direction steadily shrinks. Just below the Curie point the
former process prevails and permittivity increases. As the temperature
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continues to drop, reduction of the repolarizing volume begins to prevail,
and this leads to lower permittivity. 11c stronger the field the lower the
temperature at which reluction of the repilarizing volume prevails over
higher spontaneous polarization. 7% ain e01ctric fiele; of sufficient
strength, when almost total saturat-on ;i -chieved in the entire ferro-
electric temperature rar.ne, the te;.pt :nau': dependences of ct and eI smooth

off, the maxima durin& phase transitie' s vanish and these dependences
actually follow the curve of change of spontaneous polarization with
temperature.

Great nonlinearity was discovered by Smolenskiy -.. d Isupov [1591 in
several solid solutions of Ba(Ti, Sn)O., and BaCTi, Zr)O 3. The high domain

wall mobility in specimens of these systems is apparently relat,,d to the
small distortion, af the elementa:' cell [159], rliombohedral :n~metry of
the ferroelectric phase and, for certain compou,,is, similarity of the two
structural phasc transitions and Cu- . points [1-2]. Also advanced is the
viewpoint that the nonlinearity of this type of solid solutions with "eroded"
phase transition near maximum c is caused by the transition of some of the
crystallites under the influence of the field into the ferroelectric state
[160]. Verzitskaya [1-,8-1.0, 161] developed perovskite ceramics with an
,specially high nonlinearity. These compounds are known as varicaps.
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CHAPTER 9. PERNIT:IVITY

§1. Dependence of Permittivity on Temperature

Examination of the behavior of ferroelectrics in the phase transition
region from the point of view of thermodynamics indicates that permittivity
above the Curie raint, measured in a weak electric field along the ferro-
electric axis, i.e., the axis on which may occur spontaneous Dolarizations,
should obey the Curie-Weiss law:

C/4%
' IL

Sinc6 usually c >> 1 and, thus, c = 4TrX, then

C"I =" - (9,7)

The temperature dependences of inverse susceptibility for first and
second order transitions are presented in Figure 1.1. For the first order
transition B < T and permittivity is discontinuous at the point of transi-

c
tion. In the case of the secon6 order transition e = Tc and permittivity

is theoretically infinite at the Curie point. The inverse permittivity
(0/0) below Tc in this case is a linear function of temperature with an

angular coefficient two times greater in absolute value than in che para-
electric phase (the so-called "pair law"). These derivations of thermo-
dynamic theory are valid for the case of a mechanically free crystal (o = 0)

andfo iotericnen~t viy T T
and for isothermic ernittivity X(e ), i.e., for susceptibility, the
magnitude of which is determined in such a way that the temperature of the
crystal remains constant during the measurement process. In many cases
the iatter condition is very important, since measurements are usually
made at such frequencies that changes in the temperature of the crystal,
which arc usually the result of the electrocaloric effect, cannot be
compensated by heat transfer from the Pmbient medium and, thus, the adiabatic

988
dielectric susceptibility x (E8) is measured.
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T T
Following (1-4], we will calculate the difference between XT and X

for ferroelectrics with the second order phase transitidn. Assuming
E = E(T, S, P) we may express dE through the partial derivatives and,
assuming dS = 0, readily obtain

I"EN = IdE\ + ~r\ for\, "(9.3)

For the differential of elastic enthalpy i = U + au in the case 9f a
mechanically free crystal we have

(iH- ris + EIIP. (9.4)

Hence

The right hand side of (9.5) caa be written in the form

"• . (9.6)

Recalling (9.5) and (9.6), (9.3) acquires the form

fir\ Tzý r~r(9.7)

or

Cr \"0- /P (9.8)

where c is heat capacity at constant polarization. Now we will turn to

equatiorn (3.,a) ani rec2l! that a .' a;(T - 6) =C(T ). Differentiating

(3.8a) with respect to r, we obtain

(9.9)
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Substituting (9.9) into (9.8), we obtain:

(9.10)

Differentiating (3.8a) with respect we P, we obtain

I ('JT 4 4r (T-a)_ _
C- (9.11)

Substituting this expression for l/xT into (9.10), we have:

(9.12)

Since c 4rX<, then

M- 4 r_ (9.13)

If the measurements are made in the same field, then above the Curie
point polarization will be extremely small and the terms that are functions
of polarization in (9.10), (9.11) and (9.13) can be discarded. Therefore

1 1 ?fi *-*" (9.14)

Thus, the difference between the adiabatic and isothermic permittivity
is negligible and both obey the Curie-Weiss law. Below the Curie point:
thanksto spontaneous polarization Ps, the correction for adiabaticity in

(9.10) may become substantial. 1 We will examine the deviation of angular
coefficients of tie dependence •.{T) above and below the Curie point.

1 2w
Expression (3.9a) for P after substitution of a' by ;- acquires the form

S

P, -r) (9.15)

Substituting this expression for P2 into (9.13) we obtain:
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Differentiating (9.16) with respect to T:

<F.X.=~i~~4J (9.17)

From (9.17), recalling (9.14). we obtain for the ratio of the slopes
of inverse susceptibilities for 'r 0:

(9.18)

Consideration of the co.crection for adiabaticity gives, for instance,
for triglycine sulfate, a theoretical ratio of angular coefficients equal to
2.4, which agrees satisfactorily with experimental values [4, S]. The
adiabatic correction is also large in the case of calemanite, where it is
of the order of 38% [3].

:t must be emphasized once again that it follcws from thermodynamic
theory that -. rmittivity is maximum only on the axis of spontaneous
polarization, i.e., the axis of the paraelectric phase on which spontaneous
polarization can occur. All the relations which we detived above for
dielectric susceptibility and permittivity are valid for a mechanically
free crystal (a = 0). Since crystals in the ferroelectric phase (more

precise, each domain) always display the piezoelectric effect, and some
ferroelectrics are piezoelectrics even above the Curie point, it must be
borne in .ind that for piezoelect'ics the difference between permittivities
measured at constant voltages and constant deformation may be very great.

If a crystal is freely deformed during measurements, then at electric
fie.d frequencies less than the frequency of mechanical resonance, the free
permittivity (a ) will be measured. At frequencies above the frequency of

mechanical resonance deformation of the crystal due to inertia will not be
able to follow the field, and therefore the clamped permittivity (e") will
he measured. The difference betweent these permittivities will depend on
the piezoelectric-moduli and elastic rigidity.constants:

?.,-,j- -4C4,,J,.uh., (9.19)

where d W and d mn are the tensor components of the piezoelectric-moduii

and ckZmn are the tensor components of the elastic rigidity constants.

One of the most characteristic representatives of ferroelectrics
with the second order phase transition is triglycine sulfate- Th e

'The derivation er this relation is given, for example, in [6].
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temperature dependence of the permittivity of triglycine sulfate, measured
in three crystallographic directions, is presented in Figure 9.1, and the
temperature dependence of I11% is shown in Figure 9.2. As seen in

Figure 9.1, permittivity is low on the a and c axes and has no anomaly at
the Curie point. Permittivity on the axis of spontaneous polarization
(e.) strictly obeys the Curie-,eiss law. The extremely rigorous investi-

gations of Gonzaio [5] and Craig [8] of the behavior of c near the Curie

point showed that in the paraelectric region deviations from this law occur
only when there are only a few hundredths of a degree to the Curie point.
No temperature hysteresis is noted. The Curie constant is 3.56"103 V1.
The maximum permittivity of triglycine sulfate is of the order of 10 , and
Sekido and Mitsui [9] found that %b max increases as crystal thickness

increases. They explained this dependence by the presence of a surf5Ace
layer 1.6o106 cm tnick with a low permittivity.

Figure 9.1. Temperature dependence
of permittivity of triglycine
sulfate crystal (According t0
Hoshino, et al [7]).

-fie -ro R -40 0 4 j•t

"be permittivity of K 9PO 4 on the axis of spontaneous polarization

(Ccc reaches l0s (Figure 9.3), but the spontaneous polarization of this

compound is also reflected by permittivity in the nonpolar direction (ca).

Starting at the Curie point, ca diminishes rapidly as the temperature falls.

For cc in the interval 50 above the Curie point the Citrie-Weiss law (9.1)

is satisfied wixth C = 3.25o I 3 deg [11]. Potassium aihhydrophosphate is
also a piezoelectric material above the Curie point, and therefore the
behavior of the clamped permittivity can be studied during measurements on
frequencies abcve the piezoelectric frequency in the paraelectric region.
In this case the Curie-Weiss law is also valid with the same Curie constant,
but with 0 40 lower thai that of the free crystal [111. The fact that the
Curie constant does not change indicates that the difference between the
inverse free and climped permittivities is independent of temperature.

with Seignette's salt occupies a special position am.ong ferroelectrics

with the second order phase transition, since iz has two Curie points, one
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Figure 9.3. Temperature dependence
Figure 9.2. Temperature dependence of permittivity of KH2 PO4 cMy;tal.
of l/1b of triglycine sulfate Frequency 800 Hz, E_ = 200 W/cm.

crystal (According to Triebwasser (According to Busch [10).
[4]).

at +240 and one at -18*C. Permittivity has an anomaly only on the ferro-
electric axis a (Ce a) (Figure 9.4). eb and ec are small and depend little on

temperature. Between 25 and 32C a obeys the Curie-Weiss law with C

- 2.24.103 deg and 0 = 23.0 ± 0.5°C, but between 34 ard 50'C the constants
are different: C = 1.71.103 deg and 6 = 25.3 ± O.S0 °C. 3elow the lower
Curie point in the -18 to -28'C interval the Curie-Weiss law is satisfied
less precisely [8]. At frequencies above the piezoelectric resonance
frequency in the ferroelectric regions the Curie-Weiss law is a..o satisfied
with the same Curie constants as in the case of a mechanically free crystal.

Thus, as in the case of KH2 PO4 , the difference between the inverse

permittivities df mechanically clamped and free crystalj does not depend on
temperature. In the case of the clamped crystal 0 decreases for the upper
transition and increases for the lower. Here the transition points nearly
coincide. This is-evidence that spontaneous polarization would not occur
in an absolutely clamped crystal [13]. In deuterated Seignette's salt
convergence of the Curie points leads simply to a narrowing of the
temperature range in. which spontaneous polarization exists.

Of the ferroele.trics with the first order phase transition, we will
examine %ere only the behavior of the permittivity of barium titanate.
Above the Curie point barium titanate is cubic, and consequently isotrcpic.
Therefore the anomaly of permittivity at the Curie point occurs in any
direction. Above the transition temperature the Curie-Weiss law is
satisfactorily obeyed. The Curie constant, according to various researchers
[14-18], varies in rather broad limits. Apparently the most correct data
were obtained on monocrystals by Merz (17] and Orougard and Young [18].
According to Merz C = l.S6 l0s deg, and according to Drougard and Young
C = 1.73-10s deg. 6 in the Curie-Weiss law is approximately 100 below
the Curie poir.t [18].
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Figure 9.4. Temperature dependence Figure 9.5. Temperature dependence
of permittivity of Seignette's salt of permittivity of barium titanate
crystal. Frequency 1 kHz. c a from crystal (according to Merz (21]).

-40°C to + 45WC measured for E_ =
4 V/cm. (According to Hablutzel
[121).

Permittivity drops sharply dt the Curie point (120°C), and here
temperature hysteresis is observed [18-20], which amounts to about 20 in
monocrystals [18]. The sharp drop of permittivity at the Curie point,
presence of temperature hysteresis and the fact that e < Tc, all agree with

the derivations of thermodynamic theory for the first order phase transi-
tion. in the tetragonal phase of the ferroelectric region, as s, c in
Figure 9.5, permittivity is very anisotropic, and in contrast to triglycine
sulfate. KH2 PO4 and Seignette's salt, the Dermittivity on the polar axis is

'such smaller than in the perpendicular directions. Drougard and Young [22]
demonstrated that Cc at frequencies below the piezeoelectric resonance

frequency depend substantially on whether or not the crystal is single-
domain or is divided into aittiparallel domains. In the former case the frec
permittivity is measured and Ec = 200. In the latter case the piezo-

electric deformation of adjacent antiparallel domains has different signs,
which inhibits their deformation in the direction of the thickness of the
crystal. Therefore the permittivity of a crystal "clamped with respect to
thickness" is actually measuired and c c 160.

The curves in Figure 9.5 were plotted for crystals, one of which in
the tetragonal phase was a-domain, and the other c-domain. On transition
to the rhombic and rhombohedral phases the domain structure becomes more
complex and the reduced permittivities in no way correspond to definite
crystallographic directions. The fact that different values of C are
obtained in the rhombic phase for different crystals is attributed to the
substantial difference in their domain strnctures. In the rhombohedrai
phase the character of the domain structure should have no effect on c,
and for this reason it was long unclear why c varies from crystal to
crystal. Doubts were even expressed concerning the rhombohedral symmetry
of this phase [23]. The investigations of Sawaguchi and Clharters [24],
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however, proved that the scattering of permittivity values is a result of
the effect of squeezing of domains [25].

In the ferroelectric region, even in a very weak electric field,
the domain walls may be shifted somewhat, and therefore polarization of the
crystal may change as a result of reorientation of spontaneous polarization
in some small volume. This part of polarization is known as orientation
polarization (Por), and the orientation not related to movement of the

domain walls and attributed only to the processes of elastic electron and
ion displacements, can be called induced polarization (Pi). Thus, for
summary polarization P we have

P = P. + Pot" (9.20)

Since usually c >> 1, permittivity may be written in the form of the
sum

= C. + or" (9.21)

Por can be reduced to zero if a sufficiently strong stationary field
is applied and the crystal is made single-domain. The greater the summary
area of the domain walls, other conditions being equal, the greater cor

should be. Therefore, for instance, one might expect that in the case of
polycrystalline barium titanate or will comprise a very large part of the

summary permittivity.

Several facts indicate that this is the case: 1) dielectric losses
in the ferroelectric. phase are much greater than in the paraelectric phase;

2) when a strong constant field is applied the permittivity and losses
drop sharply; 3) permittivity and losses diminish with time and aging
occurs. In order to determine experimentally or of a polycrystal the

orientation processes would have to be excluded and ei measured rather
accurately. This is difficult to do, however, since in the case of the
application of a constant field e. may also diminish as a result of 900

1
reorientation of the domains in the biasing field (see §2). It is very
difficult to calculate E.. of a polycrystal with sufficient accuracy.

1

Marutake [26], using Bruggeman's equation [27] for the permittivity
of a polycrystal consisting of piezoelect:ric crystallites, calculated c
frr cerzmic barium titanate according to data for a monocrystal. fie
obtained e = 2,500. This is substantially higher than the values usual!y
obtained at room temperature (E = 1,500-2,000). Therefore the calculation
was also done with consideration of the piezoele!tric effect, and each
crystallite was assumed to be single-domain and spherical [26]. In this
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case the answer was e 1,500. The assumptions made during the cglcuiation
are so coarse that serit-ts attention cannot be accorded the agreement with
the experimental value.

Turik [281, who used a crystallite with a regular 900 domain
structure and employed the perwittivity tensors calculated by Lezgints-1va
[29] for a crystal with the same domain structure, also calculated c.
Generalizing Odelevskiy's equation for the permittivity of a double-phase
heterogeneous mixture for a multiphase system and assiuming the distribution
of crystallites with respect to position in the space of their crystalline
axes to be equally probable, Turik obtained satisfactory agreem'!nt between
the theoretical and experimental permittivities for the tetragonal phase.

Orientation polarization was completely ignored in both these
calculaticns, although judging by the reduced permittivity as a result of
aging, Its contribution amounts to 10.-20%. Analysis of the dependence of
the permaittivity of polycrystalline barium titante on the amplitude of a
variable field shows that from 100 V/cm and below the permittivf.ty and
losses are practically independent of field strength [51). This indicates
that certain reversible displacements of the domain walls take place. The
question arises concerning the mechanisms of 21epolarization in weak fields.
No definite answer has been found, although there is an opinion that move-
ment of the 90* walls is the chief contributor [32].

Estimates-.made on the basis of experimfental data on the movement of
90* walls in manocrystals indicated that their reversible displacements
may produce an additive to permittivity not exceeding 200 (33]. Since the
losses are governed chiefly by movemtnt of the domain walls, the change of
their mobility with temperature within the limits of a single phase and
during low-temperature phase transitior.3 shou!d be reflected substantially
on the temperature curve of losses. Actoally, Bokov [34) showed that the
experimental temperature dependences of tan 6 of polycrystalline barium

= titanate in solid solutions based on it can he explained qualitatively
proceeding from the temnerature dependence of domain wall mobility. On
transition from the paraelect-,i.c phase to the ferroelectric phase tan 6
increases sha'rly due ti the appearance of P or and great losses associated

uith it. As the temperature falls the part of the volume of the crystal in
which the direction of spontaneous polarizazion cthanges aiminishes and
tan S decreases.

On transition. fromi the tetragonal phase to rhombic and from rhombic
to Thombohedral domain wall mobility- increases (this is valid not only for
manocrysrals, but also for cerainicE '55-381), aad consequently Pt or
inzreases. The increpse of P or leads to a sharp iiscrease in. tan 5, which

then decreases as the temper~tcre drop., and as P or decreases. Thu-, tan 6

passes through maxima in all phase tran~sitions (Fieuze 9.6). In tne
rhombon.edral phase, as a rule, tan 6 has a broad maximun, which is dis-
placed toward high temperatures %hen the frequency is in--reased (39].
There is no doubt that this maximum is also attributable to orientation
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polarization. As a result of the larger share of orientation polarization
during transition from the tetragonal phase to rhombic and from rhombic to
rhombohedral, n-ne of the sudden changes in permittivity that might be
expected judging by the behavior of the permittivity of the monocrystal
(Figure 9.5) occur in ceramics during these transitions. The application of
a strong stationary field considerably reduces losses, and there are no
ancmalies in tan 6 during the phase transitions (Figure 9.6). In the
rhombohedral phase, of course, losses remain high, and this apparently
indicates that in this case too there are some oscillations of the domain
walls.

it should be pointed out that polycrystalline barium titanate with
granularity less than I micron displays an exceptionally high permittivityof 3,000-3,500 (40-431. Two explanations have been offered for such high

values of e. The authors proceed from the fact that at such small
crystallite dimensions each of them should be single-domain. The first
explanation, advanced by Kniekamp and Heywang [40-42], and later examined
in greater detail by Goswami et al [44], is based on the fact that due to
the absence of domain structure a depolarizing field acts on the
crystallites, diminishing the effect of saturation, which leads to higher
permittivity.

J

Figure 9.6. ie,-perature depen,!ence n- nermittivity and t-an
cf solid solution, of BaTio0.p5Zr o.oOS3 in variable and sta-

tionary fields of different strengchs. Frequency 'a k~qz.
(Rokov [391). 1 -- 1ý for E_ = 3 Vicm, E. 0 ; 2 -- tan
for Eý = 3 Vicm, E_ z 0; 3 -- e; for E_ "-4 2•V/Ct, E_ = 0,
4/m r 8k/m -t• o -=2 /m-- tan 6 for E_ :-- 24 'V/cm, E_ = 0; 5 -- c for E_ =- 24'

= is kV.Tcm.

The x-st sarious objection against such interpretation is: why is
the depolarizing field rot compensated by free charges that- can ,Mgrate to
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boundaries of the crystallites due to the electrical conductivity of the
matter itself? In the second explan.tion, advanced by Buessem et al [45],
it is assumed that because of the absence of 900 domain walls in the
tetragonal phase strong mechanical stresses from the environment act on
each crystallite: compressive stresses on the c axis and tensile stresses
on the a axis. According to thermodynamic theory, such stresses lead to
an increase in permittivity.

The contribution of orientation polarization to permittivity and
losses can also be substantial in the case of triglycine sulfate mono-
crystals [46]. Fousek and Janousek [47] analyzed th,• dependence of e and
losses on the summary polarization of a ,ystal, which changed by degrees
from +P to -P . The permittivity and losses were maximum in the region
P = 0, where one might expect maximum summary area of domain walls. The
value of eor here is extremely high, amounting to 70-80 at a frequency of

I kHz. Hence the great scattering of the values of c obtained by various
researchers [7, 48, 49] is understandable. eor and losses in triglycine

sulfate depend strongl on frequency. Here theie are two refions of dis-
persion: one up to -10O Hz and the other at anproximately I0° Hz. Tt is
P:.umed that the high-frequency component of %r is related to vibration

of the domain walls attached to defects, and the low-frequency component is
attributed to vibrations of the walls that continually migrate during the
aging process, and di; inishes with the passing of time. cor of triglycine

sulfate varies with temperature. It is noteworthy here that ar -80°C
there is a maximum, the position of which depends on frequency [50].

Bornarel et -! [51] noted the important contribution of orientation
processes to the permittivity and losses of KH2 PO4 crystals.

§2. Nonlinea'Propeties in Paraelectric Region

Polarization of ferroelectrics in a weak electric field was exanined
in the preceding section. We will now examine the effect of strong electric
fields on the polarization of ferroelectrics. The dependence of the
polarization of all dielectric naterials on the field is, generally
speaking, nonlinear and can be written in the form of an exparnsion in terms
of the powers of E. If the field is applied in the direction of the
principal axis, so that polarization is parallel to the field, then for
centrcsyrmnetric crystals

(9.22)

and f',r non-centrosymetric

P-as+ 2+C --- f9.23)
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Hence, for permittivity we have, respectively:

*-- 1+4s (a+3E+. .4. (9.24a)

(9.24h)

The nonlinearity of the dependence of polarization on field strength

of practically all dielectric materials is impossible to detect all the way
up to break-through fields, but the fact that it does exist is shown by the
ele:tro-optic effect. Most ferroelectrics have high permittivity. Conse-
quently, roughly speaking, ions in the crystal lattice are displaced under
the influence of the electric fielc. for such comparatively great distances
that the nohlinear dependence of displacement and consequently of polariza--
tion on eiectric field strength, becomes substantial. We are speaking he'e,
of course, of induced polarization, not involving displacement of domain
walls.

We will examine the nonlinear properties of ferroelectric materials in
the paraelectric and ferroelectric thases individually.

In the paraelectric phase the relation between polarization and
field strength is expressed by formula (3.20), whence coefficient B in the
expansion of thermodynamic potential (3.7) can be determined on the basis
of experimental data. B should be positive for second order phase transi-
tions and negative for first order phase transitions.

Joseph and Silverman [52], proceeding from the Born-Karman dynamic
theory of the crystal lattice, theoreticAlly analyzed problems of non-
linearity in the paraelectric region and derived the relations between the
field and polarization, analogous tD (3.8a). As demonstrated, with
consideration of only thc first two terms in (3.7) the dependences of iso-
thermic and adiabatic susceptibilities on polarization are determined by
relations (9.11) and (9.12), respectively. The experimentaldetermination
of these dependences makes it possible to determine coefficient 8. It
should be pointed out that equations (9.11), (9.12) and (9.13) are valid
for differential dielectric susceptibility and permittivity. In the para-
electric region, in the frequency range where is no dispersion, differential
dielectric permittivity coincides with the reverse dielectric permittivity,
i.z., with the permittivity measurA.d in a weak high-frequency field with
the simultaneous application of a strong constant field to the specimen,
usually called thz biasing field,

The reverse permittivity can be measured both under static conditio';,
when the biasing field is constant, and under dynamic conditions, when the
biasing field is variable, but its frequency is much lower than that on
which the measurements are made. The prccedure for measuring the reverse
permittivity under dynamic conditions was developed by Drougard, et al [53],
and also by Kaczmarek [54]. Since the adiabatic permittivity is measured
and the polarization created by the biasing field is substantial, it is
necessary in the general case to consider the correction for adiabaticity
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and S is given by expression (9.13). The first term in the parentheses
gives the saturation effect an. the second the adiabatic correction. In
the case of barium t:itanate the latter is insignificant [53), and therefore
(9.13) can be rewritten in the form

;'.'J 2-o (9.25)

Thus the difference between the reverse susceptibilities is a linear
function of P2 , and the angular coefficient is determined only by 6, which
is a simple method for determining it. Expression (9.25) can be reduced
to another form, in which the dependence of the difference of permittivities
on biasing field strength is given in explicit form. If the biasing field
is not very strong we may assume P = XE and by substituting this expression
for polarization into (9.25) we readily obtain:

,(E)-- 0- -- (--r.)--3 El. (9.26)

Analyses of this type of dependences for triglycine sulfate were done
in the dynamic state by Triebwasser [4]. The experimental values of the
difference betw'en the reverse susceptibilities as a function of p2 lie
approximately on a straight line, the slope of which yields R = 4.6-10-
(el. stat. un.!cmn)-2. When the adiabatic correction, which is large for
triglycine sulfate, is taken into account, 3 = 3.81010 (el. stat. un.i
/cm )-2 . The latter value agrees satisfactorily with t.he value found £rom
the temperature dependence of spo~ntaneous polarization (see D1, Chapter 8).
Chapelie and Taurel [551, who discovered some change of 8 with temperature,
measured the dependence of permittivity of triglycine sulfate on polariza-
tion under static conditions. Whei, polarization in:rcases, i1.e., when
biasing field strength increases, pcrmittivity cf triglycine sulfate
decreases, which corresponds to R > 0, as should be expected for the second

order phase transition. The theoretical dependences of C are shown in
Figure 9.7 for three terpeiatures.

elf)

Figure 9.7. Theoretical dependencusSfI (F.)
f. of ratio - for triglycine sulfate

.€....".-" crystal (continuous curves) and• "" ""•...... bariium titanate crystal (broken* .:: :."........... ......... e d st e g h
curves) on biasing field strength.

o (According to Triehwwasser [41).
I -- T 2 --- T - T = 5°C;| c C

i T 18CC; 4 -- T

- C" -- T - = IOC; 6 -
E, kV, cm T-O= °
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Somewhat different investigations were undertaken by Bawngartner
%I] on potassivm dihydrophosphate crystals. First the dependence of
permittivity on field 'ntrength under static conditions was found. These
measurements yielded t.he adiabatic permittivity. Secondly, us.ng a
ballistic galvanomnter, the dependence of polarization on field strength
was obtained, differentiation of which makes it possible to determine iso-
thermic permittivity. :n the case of adiabPtic permittivity the dependence
on polarization is determined both by the saturation effect [first term in
the parentheses in (9.13)], and by the adiabatic correction [second term
in the parentheses in (9.13)]. Knowledge of both permittivities makes it
possible to estip.ate both corrections. it seems that the adiabatic
correction prevails first to a polarization of 2-10"-C/cm2 , but then the
correction for saturation becomes greater aad increases rapidly with
polarization.

After application of the biasing field in the case of the second
order phase transition the temperature dependence of polarization in the
general case has the form illustrated in Figure 3.10a. The dependence of
permittivity ozn temperature, as before, has a maximum, but as field strength
increases it is displaced toward higher temperatures, and its magnitude
diminishes.

The first order phase transition takes place in barium titanate.
Consequently 6 < 0 and as the biasing field strengthens permittivity should
increase. The theoretical curves are illustrated in Figure 9.7. "Ihe
investigations of Drougard, et al [53], and also of Kaczmarek and Pietrzak
[54] of barium titanate monocrystals in the dynamic state showed that in
,accordance with theory the experimental values of 8 are less than 0.

Immediately below the Curie point, according to data [53], 0 = -0.5810-'2
tel. stat. un./cw2 f*2 and at 144,C $ = -0.3l10-i (el. stat. un.,/cm2 )- 2,

and according tc data [541, at 744 0 C -= -0.37-10-2 (i. stat. un./c. t Y2 .
The temperature dependence of R was investigated in both works. Drougard,
et al [53] did their investigation in the 120-)500 C vemperature range and

found that S diminishes linearly as temperature increases. Extrapolation
of this dependence to temperatures abhve 1500 C shows that F passes through
zero at 17:;.C. According to the data of Kaczm..rek and Pietr:ak [531, the
temperature dependence of R is substantially nonlinear, and from extiapola-
tion of this dependence it can be expected that 9 vanishes in the 180*C
region.

Triebwasser [561 analyzed the effect of the electric field on the
permittivity of barium titanate monocrystals in the paraelectric region
tinder static conditions. Th.e results of these n.easurements are given in
Figure 9.8, where the broken -n.rves show the theoretical dependence derived
from thermodynamic theory. The 'heory and experiment Loincide only in a
comparatively narrow interval of fields. Triebwasse" attributes thiS
discrepancy to the formation of near-electrode layers of a space charge
under the influence of a constan- field, leading to reduced apparent
permittivity. This explanation is confirmed by the fbct That at the
initial moment after application of a constant electric field permitti'ity
increýases to tht value predicted by theory, '),,t as time goos by it
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diminishes. At the same time the electric field strength within the
crystal diminishes, as can be judged by observing the electro-optic effect.
It is assumed that the permittivity of the surface layers is less than
that of the mass. The crystal represents a triple-layer dielectric
material, and its apparent permittivity is determined by the permittivities
of all three layers. The thickness of the surface layer depends on the
voltage applied, and therefore the apparent permittivity is a function of
voltage.

Investigations of poly-
£' crystalline barium titanate, both

under static [54, 57, 58] and under
[ .dynamic [54] conditions, revealed

3- i . that the biasing fielo reduces
S i ." permittivity in both cases, i.e.,

B > 0. Kirillov and Isupov [58]
offer a possible explanation for
"this. It is based on the assumption

-0 -.q 0 * M 8 that the space charged layer isSesu formed not on17 on the electric,

Figure 9.8. Dependence of per- but also on the boundary of the
mittivity of barium titanate mono- crystallites comprising the poly-
crystal on biasing field strength crystalline specimen. h~en the
at temperature 100 higher than ferroelectric phase transition is
Curie point. Br9ken curves show a first order phase transition,
theoretical dependence. (Accord- according to thermodynamic theory,
ing to Triebwasser [56]). the dependence of polarization on

field strength in the region of the
Curie point has the form. illustrated in Figure 13.1. To the paraelectric
phase correspond the curves with t > 1. In the case when dP/dt < 0 the
crystal will be in an unstable state, and therefore there will an abrupt
transition to a new state.

Proceeding from the null field toward increasing values, then at
some field, strength polarization increases abruptly, which corresponds to
induced transition to-the ferroelectric state. In the reverse direction
the transition is back to the paraele.tric state. The so-called double
hysteresis loops wiil occur in a variable field. rhe problem of induced
phase transition is examined in greater detail in Cha'pter 13. Here we will
Foint out simply that as shown by the curves in Figure 13.2, the increase
of nolarization slows down in the ferroelectric state as the field increases,
i.e., permittivity decreases. To this region of fields correspond the
extreme left and right sections of the broken curve in Figure 9.8.

§3. Reverse Permittivity in the Verroelectric Region,

Th2 dependence of polarization on electric field strength in the
ferroelectric -egion iF determina principally by repolarization processes.
The Dnlinear electric properties of .erroelectiic materials attributed to
repolarization are discussed in Chapter 8. We ull discuss here the
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dependence of reverse permittivity, i.e., of dielectric permittivity,
measured in a weak variable field, on the strength of a biasing elctric
field.

A phenomenological analysis of the dependence of p. larization of a
single-domain crystal on the strength of an electric field applied alcng
the polar axis was done in the works of Lyagin and Geyvashovich [59],
Bogdanov (60]. Pasynkov [61]. By virtue of spontaneous polarization the
result of "-e electric field will differ in tqe direction of spontaneous
polarization and against it. Therefore it is necessary to consider in the
expansion of polarization in terms of the powers of electric field strength,terms with even powers of E. The expansion has the form:

P-, P. +,4E + tbE2,+ rV + .. (9.27)

and equation (9.24b) is valid for the differential permittivicy along the
polar axis.

We will note that in (9.27) IbE2 1 >> ICE3 1 in toler.ble fields. Th,,
expressions for b through the coefficients of expansion (3.7) and P were

5
found in [59]. b < 0, and therefore if field strength coincides with the
direction of spontaneous polarization, permittivity diminishes as field
strength increases, but increases when the field is in the opposite direc-
tion. The reverse and differential permittivities coincide for a single-
domain crystal at moderate frequencies (if, ef course, the amplitude of
the variable field is low). Therefore (9.24b) can be regarded also as
the expression for revers2 permittivity, in wifch E is biasing field
strength. If the crystal is not single-domaih, then the situation is more
complex.

In the case of triglycine sulfate, as mentioned in §5, permittivity
in a weak field, according to Fousck and Janousek [47], depends substantially
on the summary area of domain walls. The application of a biasing field
causes the domain stuctur2 to change, and therefore influences the orienta-
tion part of permittivity. The curve of the dependence of permittivitv on
biasing field strength is obviously governed by the initial state of the
crystal. In a rather strong field, when t;.e crystal becomet-s practically
single-domain, rever-e permittivity will equal differential permittivity,
zorresponding to the slope of the saturation branch.

In the case of the c-domain barium titanate crystal the presence of
180' domains, as demonstrated by Drougard and Young [2,], leads to a
reduction of permittivity on the polar axis by the virtue of the 'cfamping"
effect (sec "l). The dependences of reverse permittivity on field strength
in the quasistatic regime (the complete cycle of chanle of the field takes
3 hours) are shown in Figure 9.9. Iy tracing the curve of change of
permittivity we see that decreases substantially when field strength is

in the coereive region, and when many antiparailel domains are for-med. The
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dependence of reverse permittivity on the biasing field for polycrystalline
barium titanate is illustrated in Figure 8.14 (curve 1). The drop of
permittivity in this case is a result of reduction both of the orientation
and induction components of polarization.

Orientation polarization may decrease by virtue of considerable
reduction of the summary area of domain walls, chiefly thu 1800 walls, and
"clamping" of the remaining walls.

As regards induced polarization, its change may be related to the
fact that prccesses of 90' repolarization take place in the biasing field.
In this case, because e < ea, permittivity measured in the same direction

in which the biasing field (ell) is applied, will be less than the

permittivity measured in the perpendicular direction (cr). This effect

coula be detected experimentally on the basis of the anisotropy of E. It
is simply impossible to make measurements in crossed fields. Therefore the
anisotropy of polarized ceramics was analyzed [62-66]. The difference
between and c is small, amounting only to a few percent.

This result agrees with the
data of [67, 68], in which it was
established that the fraction of 90*

2D B reorientations is small and decreases
S* Cconsiderably after the field is

.jo D A r removed. Although all these investi-
gations do not afford a direct answer
to the question concerning the

-1000 E, •/L ,m importance of 90* repolarization in
the reduction of -everse permittivity,

Figure 9.9. Dependence of reverse they nevertheless show that it does
permittivity (c ) of barium not have a great effect. This is

c nalso verified by the fact that
titanete monocrystal on biasing according to Poplavkos data [691:
field strength. The sequence is the permittivity of ceramics is
change takes 3 hour. (According practically independent of the biasing
to Dro take a Young [Acrdn field at frequencies of 1010 liz, when
to Drougard and Young [22'.). the orientation part of polarization

is absent.

The effect of the biasing field which we have examined on permittivity
in the ferroelectric range peitains to the case when a constant or very
slowly variable field is applied (for instance, one cycle in 3 hours, as
in [22)- . It is noteworthy tl.at during change of the biasing field by
stages the measuremen~ts ar ieeahtm eginning at some specific time,s"•o"• he easremntsare m tde each •ime bgniga oeseii ie

so as to avoid nonstationary phenomena, which we will examine later.

Drougard, et al [701 eete~cted on barium titanate crystals a sharp
increase in permittivity and to!;ses during the time of the repolari:ation
process. This phenomenon wa:s later analy:ed by Prutton [71], ilusimi [72j,
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Fatuzzo r73, 74], Fouskova and Janousek (75, 7A 78-80], Stadler, et al
[77]. The investigations were conducted on mL _rystals of barium titanate
[70, 72, 74, 76, 78], triglycine sulfate (73-76, 79], Seignette's salt
[80]. guanidine aluminum sulfate [71], lithium selenate (73], triglycine
fluorberyllate (79]. The measurements were conducted in a weak alternating
field at frequencies of 10 Hz and above. The repolarizing field was
applied either as a low-frequency sinusoidal field or as rectangular
bipolar pulses.

The dependence of increments of permittivity and conductivity on
time (starting at the front of the repolarizing pulse) is illustrated in

Figure 9.10 for the barium titanate
crystal. Here we see that per-

L- mittivity is ambiguously related to
the repblarization current and has
a strong frequency dependence.

: I // f Ngz •8According to Fatuzzo's data [74],
1? . triglycine sulfate and barium

titanate have two regions of relaxa-
tion dispersion: low-frequency and

5 high-frequency. For barium titanate
one relaxation frequency is 29 kHz

z 1and the other lies above 2.109 Hz.
ti 50 J In the case of triglycine sulfate,

tPsec in contrast to barium titanate, the
b experimental data for low-frequency

0 • relaxation indicate that there is a
1~ set of relaxation times. The center

S\:of their distribution corresponds to
'•fMHz to t 6.8 kHz, Tht high-frequency disper-

1P J, sion region is located at a frequency
of 100 Nfffz. it is noteworthy that
for the given i the maximum1 Z7S p max

t, lisec relative increpse in permittivity is

Figure 9.10. Time dependence independent of temperature [771.

(Fcuskova and Janousek [76]). The reasons for the increase
a -- polarization current ip in permittivity during repolarization

and current of change of per- are discussed in a number of works.
mittivity (Ac); b -- change of Assuming that the high-frequency
equivalent parallel conductivity electric field has an effect on the
(Ao) during repolarization of number of nuclei and new domains
bariue titanate monocrystal by formed, then, as demonstrated by
rectangular pulses E = 784 W/cm. Landauer and coworkers [8)], this

model leads to an inductive rather
than capacitive character of resistance of the specimen. Allowance for the
effect of the alternating field on the formation of nuclei, adjacent to
existing domain walls, according t, Fouskova'i calculations [82], yields
qualitative agreement between the theoretical and experimenta! time
dependences of the changes of permittivity and conductivity. The effect,
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however, of a variable field on the development of isolated nuclei leads
t to time dependences absolutely different from the experimental. This
indicate3, in accordance with [81], that these processes are of minor
importance. In Fatuzzo's interpretation [73, 74], the increase in the
combined permittivity is attributed to strongly damped oscillations in ther high-frequertcy field of traveling dorr?in walls of the growing 1800 domains.
Here low-frequency dispersion is related to vibrations of the leading front
of the acicular domain, and high-frequency dispersion to vibrations of its
side walls.

Permittivity, after passage of the sharp maximum at the moment of
repolarization, if the latter is not complete, remains for a long time
above its initial value, gradually approaching it. If constant voltage is
changed step-by-step, even in small steps, permittivity increases with each
abrupt increase of the field and then, over a period of tens of minutes,
gradually drops. It is noteworthy that a burst of permittivity is observed
both during a sharp increase and reduction cf the field. 1his phenomenon
was investigated experimentally on polycrystals by Piekara and Fajak (83],
Lur'ye [84], Koch [85], and on barium titanate monorrystals by Borodin [861.
The higher the rate of change of the field, the greater the increase in
permittivity [86, 87]. For barium titanate monocrystals when the biasing
field is changed in the frequency range of 0.5-0.1 Hz, transition occurs
from an increase of peimittivity during repolarization to a reduction, when
the effect of piezoelectric clamping is manifested [86]. The prolonged
retention of high permittivity after partial rmpolarization is related to
the fact that domain boundaries removed from the positions 'n which they
had minimal energy and vere clamped to some extent, can now vibrate in the
weak field, thereby leading to an increase in the orientation component of
permittivity. As time passes the migrating domain v'alls "find" new loca-
tions, in which they have rather low energy, where they arc also clamped.
The fields of-space charges perhaps play an important part in stabilization
of the domain walls. At a low iate of change of the biasing field these
charges move together with the wall, continuously stabilizing its position.
Whcn the rate of change of the biasing field is great, the charges cannot
follow the wall, and its mobility in the high-frequency field and its
contribution to permittivity are thereby increased [86].

ý-4. Dispersion of Permittivity

The dispersion dependences of the per-mittivity of ferroelectrics of
the "bias" and "order-Jisorder" types differ substantially. Of the first
ty-e of ferroelectricn, we will examine here the properties of practically
the only well investigated representative -- barium titanate.

In the investigations of Benedict and Purand [88] ( 2 .4-I&WO I]:).
Nakamura and Furuichi 189 (3.3-,O1 I!z), Stern and lurio f901 (up to
2i0" li.), Ballantyne MI f -10" H!z), dispersion was not observed in
barium titanate monocrystaIs in the paraclectric region. Ballantyne f)1]
anal•;ed the reflection spectra in a wide raage of wavelengths and usedld
them to calculate the frequency dependlnce of pornittivity (Figure

S. ..ene o- prlt;iy Fgr "I



F On the basis of these data, dispersion begins only at IS1.501 11z (5 cm-l.
and the frequency of the "soft" mode, responsible for the hi~gh values of
perm~.ttivity, lies in the 6-11 cc, Irange (the spectrum is disciissed in

getrdetail ins Chapter 14)..

The irvestigations of Schmitt [921, Poplavko [93], Nekrasov, et al
94] of polycrystalline barium titanste showed that thiere is no dispeision
in the paraelectric ~h~.at least up to 2-0 Hiz. There is a notable
reduction of c, according to the data of Poplavko, et al [95], starting at
5-1010 14z. In this frequency region, naturally, wheze there is no disper-
sion, ever. nonline~ar propertie3 are recained. Losses increase in the parA-
electric phasec with increasing frequency by measure of approach to the

dispersion region. As regards the temperature dependence of losses, at
frequnciesabove 10' Hz it is quite strong. At the Curio point tan

passes through a maximun and dropfs sharply on transition to the fez ro-
electric pae90.Macreolossi eeriebytetemperature

depndece f he reqeil-yof h,?lowfrquecy odeofvibrations of the
crystal lattice. The frequency and temperature dependences of dielectric

los~s er anlyzd ost- torughy o ZJr~6- i th woksof Rupprecht
abd ,ýl (9, 91 ad Brke andrinham(98. Acoringto [971, fcr

tc a- ( - rý-i- ( +pr+ il).(9.28)

where a is deterwnined by crystal defectiveness and S ard y by the aiiharzrno-
nicity of vibrations of the crystal lattice. All threco parame.ters are
functions of frequency. 1h.1.s temperature dependencc of losses is
satisfactorily described from the viewpoint oF dynamic theory [49].

Barium titanate is a piezoelectric material in the ferrocle- -i
-phase. Therefore strong dispersion of permittivity occurs in the -quency

range of resonance mechanical vibrations of the crystal and at higher
frequencies clamped permittivity is measured. The investigation.-- of
aenedict and Durand (8]) and ballantyne ,9ll of single-domain crystals
showed that c on a frequency of' 2.4-10' Hz is approximately oise-half its

a
value on lcw frequencies, but dielectric dispersion is still not observed.
The results of these measurements are presented in Figure 9.12. According
to Ballantyne's data (911, ntotable dispersion begins only at freqjiencias
o011 lolHz, I.e., af the same order as in the paraelectric region. These
frequency dependences of c' and c" are presented in rigiure 9.13. cat

a aC
high frequencies was analyzed by Turik and Chernyshov f1001, who obtained
E, 60-30 at ýz'l(9 Hz, i.e., close to the clamped permittivity.

Historically "he firs-_ investigations of barium titanate at high
frequencies were conducted on polycrystalline specimens. in the works of
Vul (1011, Novosil'tsev and Kiiodakov [1021, measurements were mado up to
108 [1z and notable dispersion was not detected. Mash [10-31 observed so-ne
reduction of permittivity at a frequency s-f 1.7.0 I H. 1-ter ol Powles;
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observed in all three ferroelectric phases F94, 109, 1101. At room
temperature pernittivity from 1,200-1,500 decreases on low frequencies,
according to the latest data, to 500-600 at 1010 liz (Figure 9.14).

The studies of Murzin and Dcmeshina [1111 of the reflection spectra
shewed that strong dispersion resumes on 10 liz, which agrees with data
obtained on monocrystals. It is :oteworthy that a substantial reduction
of permittivity aof )olvdoriain monocrystals was observed in a number of

works in the 10 -100 Hz frequency range 112, 113, 89, 94]. The nature of
dispersion of the permittivity of ceramics in the 109-1010 liz range as yet
remains uncertain. Since a single-domain crystal does not display disper-

sion La this frequency range, the features of the macroscopic structure.
i.e., granularity of the moterial or presence of domains, are obviously
the reason.

f ty tg

tow Figure 9.14. Frequency dependence

Soo1  of peruittivity (1) and tan 6 (2)
W .6 of polycrystalline barium titanate.

SO•.t * Room temperature. £ = 1,350 at a

40o us4 frenuency of I klilt. (According to
9.O3 . Poplavko, et al [951).

iW A o 0 f1 g lol f. HZ

Essentially two dispersion mcchanisms have been advanced: one
relates the reduction of permittivity with trarsition at high frequencies
to the condition of piezoelectric clamping [114, 115], and the second states
that much of the pennittivity is caused by oriertation polarization and
dispersion is attrimnutd to the "irrtia ofr the domain wails [116]. Accord-
ing to Dev:,nshire [3141, the piezoelectric, mechanical vibrations of
individual donairs must be examined. There is also a transiticn to the
condition of complete piezoelectric c;acpinz at frequencies higher than
the resonance frequency of these vibrations. Approximation of the resonance
frequency on the basis of a domain dimension of several microns yields the
required order of magnitude. This mechaiism of dispersion is also dis-
cussed in [117-119].

ilippel [115], in contrast to Devonshire, feels that the resonance
vibrations of entire crystallites, rather than of individual dom.,ains,
should be examined. Appa-ently this mechanism is improbable, singe direct
observations show that crystallites have complex domain structure and it
is improbable that each of thcm as a whole would possess considerahle
piezoelectric activity.

Kittel (116], who ana:,-zed the equation of motion of 1SO walls
without consideration of damping, offered an explanation for the dispersion
of inertiz of the domain walls, The solution of the equation with very
approximate cciefficieits yielIs a resonance frequency of 2"i liz. The

- 53`:



*nr-I nrM -WW-

fact that dispersion is of a relaxation rithar tnan resonance character can
easily be explained by strong attenuation.

This mechanis was examined in greater detail and more rigorousl;- by
Sannikov [120]. In his model the domain wall vibrates within the limits
of its potential depression with an amplitude considerably smaller than the
effective wall thickness. In contrast to the Kittel.-Sannikov model,
Nettleton [121, 122] examined, rather than the notion of the 1800 dozmain
wall as a whole, the vibration of local protuberances adjacent to th3 wall.
with a thickness of one lattice constant. His numerical estimates showed
that this model can also explain microwave dispersion in polycrystalline
barium titanate. Thus, several mechanisms of dispersion have been offered,
but so far there are no sufficiently convincing data in favor of any one
of them.

Thus, the "clamppd" type of ferroelectrics is characterized by the
absence of dielectric dispersion in the paraelectric phase, and in the case
of the single-domain crystal, in the ferroelectric p'ase as well, all the
way up to the frequencies of vibrations of the crystal lattice; dispersion
on UHF frequencies occurs only in the presence of the domain structure.

We will turn now to ferroelectric materials with the order-disorder
type phase transitxin. The dielectric properties of triglycine sulfate in
the microwave region have been analyzed in a number of works [!23-i30
it has been established that strongest dispersion occurs in the regic.. of
th3 phase trar.sition, and only on the ferroclectric axis (b) (Figure 9.1
Sb decreases ar the Curie point even at frequencies of i0O7-10 Hz. cb

inversely proporcional to frequency in the dispersion region at a fixed
temperature. Hill znd Ichiki [127], analyzing experimental data from the
viewpoint of the classic Debye theory of dipole relaxation, concluded that
there is Gauss distribution of relaxation times. Here the most probable

r a t T I . In the ferroelectric region at frequenciesreaxtin im i 0 ~ T-T

of 101-106 Hz there is a reduction of permittivity in all three crystallo-
graphic directions, related to transition to the condition of piezoelectric
clamping [130]. The frequency of dielectric dispersion on the polar axis
increases rapidly by measure of distance from the Curie point. At room
temperature there is no reduction of c, until 2-101" 11z [130].

Several works [130-137] pertain to analysis of the pcrnittivity of
Seignette's salt at high frequencies. Seignette's salt possesses the
piezoelectric effect in the paraelectric region, and therefore at
frequencies above the frequency of piezoelectric resonance the mechanically
clarped permittivity is measured. As already mentioned, the Curie-Weiss
law is satisfied here and the difference between the inverse susceptibilities
is independent of temperature. At frequencies of 101 itz the permittivity
measured in the direction of the ferroelectric axis experiences dispersion,
particularly strong in the regions of the Curie temperatures [133-135, 130,
137]. The temperature dependences of permittivity at various frequencies

- 333 -
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Figure 9. !5. Dependence of permittivity and tan 6 of
triglycine sulfate crystal on temperature at different
frequencies (According to Poplavko and Snlormonovar130]). I -_ Eb and tan & b at 4 Hz; 2 -- eb and

tan 6 b at 5.106 1tz; 3 -- 1b1 and tan 6 b at 8.4!09 ltz;

4 -- at 4.7-104 5 -- c and tan 0 at 2.1070 1C.

a a a

all the way up to 1.3*1010 Hz, obtained by Sandy and ,Jones ýL137j, are pre-
sented i-.i Figure 9.16. Here we see that at rither high frequences
permittivity has maxima at the phase transition teaperatures. nelaxa "tn

is of a'Debye eharact-er with one ,'elaxation time. It is assumed t' t , s-
persifn in Seignette'isa o related to rotation of dip6nar hydro-
groups. Dispersion was not observed on the nonferaroetectrc axesl
measurements up to 2-1010 liz [130S.-

The dielectric properti.es of KHt2 PO 4 crystals at h•igh frequnencis
have been analyzed in a n.umber of borks [138-141b. It has alrea1ja been
mentioned in F1 that this ferroelectric possesses the pighfelectric effect

in he paraelectric phase and at ftrequencies higher than the frequency of
iechanica' resonance, as in the case of Seignette's salt, the Curic-Weiss
law is satisfied. Here transitior to the condition of piezoelectric

clamping does not lead to a change in the Curie constant. Dispersion of
a relaxation character wasn observed io [139t he nring measurerents at
frequencies up to 3.5-101" Hz in deutera[ed10rystals. The temper.ture

dependence of tan d in the paraelectric region cbeys law (9.28) anci can be
e bnpaained within the frameworks of dynawic theory [140 I ana not e y dipole
relaxation [1421. Dispersion of permittivcty in ps sshPOi above the Curie

point t as also analyzed from the point of vies" of tunne h r fransieion of a

proton along the hydrogen bond [1431.

Another characteristic representative of ferroslectrics of urhe

order-diserder ty•pe is .NaNO2. This ferrielectric mnateri.il 'i:,pla- - str-ing
dispersion of permittivity 1144-16to theiure 9.17) on the ferroel ctric
axis in the vicinity of tahe Curie oint According t a:ta 114rio of
who did r neasurements up twa 2.4ob0s r iz, inim d ermittivnim y is observea
fon hgh frequencies at the ferroilectric t hase transition temperature,

and it nispersiof depentence corresponds treg one reaxltiw n time. Near

en of di
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Figure 9.16. Tnmperat c ire dciendence of permittivi es of
Saignette's sar t crystal az various frequencies (according
to Sa n dy and Jonrs [rdia7Io): w 2.5.-1r 9 it:e-r 2 -i ti-it 11zt;1 - .9 -109 I! ; • - 5 .1 -!0 • I1: ; -- 7 .0 -5-10 9 tf --; , -
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the Crmsition temperatus e sae anare iquency is proportional to
teneratwhere Tw a 162%c .h o notable changes of pe-mittlvitye d ere notei

in a wide frequency range on the a and c axes. It d;s presumred that ds e
dispersaion ih.sarO, is reated to rotation of dipebar groups tll around
tthe a axis. "Ilheo:'etical worb-s [t147, 1,!131 are devoted to explanation of
dielectric di~spersion in this compound.

ý:5. Effect of irradiation

!rradlation his a con-,- derable "nflu-cnce on the properties of ferro-
electrcs, a-observd by t -al1.10 nn: Seignett~e's salt crystals.

ft turned out t,'.at a1fter ;.rradiation with "f-rays the permittivity maxirtia
-it the. Curic poi.nts become smallezr and are lisplacezi w'ith respect tG
tenperature toward eazch other. In ý,tditieon the so-called double loop ;.s
ob.•erved instead tof thie norma! h,:ztervsis loop, and after large dose" of
irradiation ...hN,•,"+-:m+. .eesi loc:s, are not olbserv2d at all .
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Figure 9.17. Temperature dependence of permittivity of
NaNO2 crystal on b axis at various frequencies.

(According to Ilatta [1461). 1 -- 5 Mthz; 2 -- 32 M1z;
3 -- 64 .M1Hz; 4 -- 130 '1Hz; 5 - 160 MHZ; 6 -- 350 MHz;
7 -- 600 .Iz; 8 -- 1,000 MD:; 9 -- 9,000 z; 10 --
2.. ''0 .Mz.

Subsequent investigations showed that irradi-tion with x-rays and
ultraviolet rays lead to the analogous effect. The effect of irradiation
on the properties of ferroelectrics has been analyzed chiefly on crystals
of Seignctte's salt and triglycine sulfate. These include the works of
Yurin, et al ,11.-1541, Eisner [155, 1561, Chynowetlh [1571, Okada 1158-160),
Starodubtsev :nd ?P•shikov [161-165, among other investigators (166-1761.

The restlts of the invcstigations show thc.t irradiation stabilizes
the dot.;aia strt'cture that exists at the mo~nent of irradiation. If during
irradiation a cristal i€ in the single-domain state, then the loan is
asymmetric and Jlsplac2d (Figure Q(,Sc); if it Is in the polydomain state
"it is a double !oop (Figure 9..hb). in the case when irradiation occurs
above the Curie point the loop is normal (!:igure 9 18a). The forut of the
hystere.is 'oop changes if the cr--t.l is held for a lo,'g time In the state
in which the domain structure ýiý'crs f'romi J.hat at the moment of irr.adia-
tion. If; for example, a crystal with a dlouble hysteresis loop is hid for
a long time at a temperature above "he Curie point, then its loop becomes
nornal. If, however, the same crystal is then held for a long time in the
polydomain state, the loop again becomes double.
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Quite the same pattern holds
true for Seignette's salt crystals
containing copper atoms as impurity,
introduced to the crystals during
the growth process [153, 177-179].
The action of radiation defects has
the equivalent effect of some
internal effective bias field, the
direction of which coincides in
each domain with spontaneous pelari-
_ation. In other words, unidirec-
tional anisotropy occurs. If thestabilizing state is the single-

domain state the internal biasing
field may be compensLted by a
constant electric field. It is
assumed that impurity ions 6r

Figure 9.18. Oscilligrams of radiolysis proaucts, as a iesult of
hysteresis loops of triglycine directional diffusion, occupy the
sulfate crystal, illustrating positions in the crystal lattice
the effect of y-irradiation. that stabilize the direction of
(According to Yurin, et al (1541). spontaneous polarization [1531.
a -- before irradiation; b --
after dose of 2,1C6 -; c -- The effect of radiation defects
after dose of 2"106 r; irradia- however, cannot be reduced simply tc
tion in this case in the presence the creation of an internal biasing
of constant field *E= > F at* field. Defe2cts, moreover, weaken
Maximum field strength E~ the forces of interaction, leading
2Maicmum fielqusengty 0 1zto the appearar.ne of spoataneous
2 kVicm, frequency 50 Hz, polarization. The position of the
tunperature 20*C. peak on the curve of the temperature

dependence of c is determined 1- the
rivalry of these two factors, acting in opposite directions: weakening ot
the forces of interaction leads to reduction of the Curie point, and the
appearance of an internal field, to displacement of maximum c toward higher
temperatures, and here maximum c is diminished. This notion of the effect
of defects is verified by experiments on compensation of the internal field
by a constant electric field f161-1651. A directional electric field
increases maximum c in the corresponding manner and simuitaneously dispiaces
the maximum toward lower t-mperatures, thereby compensating the action of
the incernal field.

Padiation effects have also h)en analyzed in barium titanate
jlz0-192], and all works, with the exception of (191, 1921, pertain to
analysis of the effect of irradiation w.th neutrons. h•ren the dose of
irraliation is increased to 101 neutron/ca• the processes of repo_ •rzation
proccd with greater difficulty, the Curie point drops and receptivity at
the Curie poiit also decreases. As a result of irradiation with a dose
exceeding 1020 neutron/cm2. permittivity has no maximum and, the crystal
lattice remains cubic. Here the elementary ce!l becomes larger. The
mechanism of the effect c, radiation defects on the ferroelecctric propert:ez
of barium titanate is unknoun at the present time,
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CHAPTER 10. ELECTROMECHANICAL PROPERTIES OF FERROELIICTRICS

51. Ferroelectrics That Are Not Piezoelectrics in Paranlectric Phase

By examining the ther-toJynami•c potential of a piezoelectric crystal
successively: as -a fnctiona of deformations ard polarization "u, P).
-mechanical stresses and polarization. (a, P), deformation and electric field
strength -u, F), mechanical stresses and field strength (c, E) and discardin71g
terms of high-r orders, we may derive the following equations:

From thse equations, 4ir substituting (10.2) int, - (OPJ) and (10.4)

into (10.3). we obtain relatioi.. zhat give the relationship betweeu the
,coefficients of electrostriction, or inverse pie,-.oeiectric effect, q and J,
v and c:

IF

S?-.~~fter replacingz in (10.1) and I,3" the polarization component hy
their exp•ression through susceptibilitzv and field strength (Pi -- :".')and

comparing '10 .1) with (10.i.) anti also -1(,.2, 'ith (16 .4 , we btain,

Devonshire [11 demonstr-ated that the clectrostrictional coe-;4icients,
also hive "-pother physical meaning. By differentiating (16,.22 tw'o ti.mes
with respect to the polarization components, we find:
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T W=q

dpg =ofi +1jaa2*,a:. (1o.b1)

On the other hand, Cie rclations

asj\ _ es,,N (10.-12)

are -valid. Hience
,, s _J•('XI.(113

baalogously we may derive

aqa.- flu)'" (10.14:'

Thus, coefficients X\ and ,9 mean the rate of change of susceptibility
and its inverse value, respectively, with pressure.

Ile will now find cut what will be the resul, at the Curie point of
spontaneous polarization, which can be treated as a unique type of "action,"
leading to a reduction of sytetry of the crystal. Then, according to the
Curie principle, a crystal (more accurately, domain) in the £--rroelectric
ohare will possess elements of symimetry, which are common to the crystal in
the paraelectric phase and to the polar vector. Here the inversion center
will be lost and the crystal will become a piezoel2ctric. Thus the piezo-
electric effect in such ferroelectrics may bce considered a morphic effect.
Strictly speaking, these considerations are valid only for second order
phase transitions, since in the case of the first order transition the
symmietries of both phases are unrelated. But siace during feioelectric
phase transitions there is no fundamental rearraligement of zhe crystal and
the distortions of the crystal lattice that do occur are very small, treat-
ment of spontaneous polarization as an "action" is always valid. Froin this
standpoint it might be expected that equations (le.!) and (10.21 wi.l also
be valid for the ferroelectric phase, with the same electrostricti3nal
coefficients? and q, and polarization will be defined as the sum of
spontaneous and induced polarization. Then equatzen (10.2), for the case
or a mechanically free crystal (o = 0),. will acquire the form:

( .inj N ijuk& (Pek + Ja) (P.1 + PA - &apatpa + VesioamPaP? + 101)
+ ;il,,ptispo + qai P,

The first term. in (10.1$) zorresponds to spcttaneous (ui )s, the
ii

second and third to piezoelectric (u.ij), and the- fourth to electrostric-
tional deformations:,

-J- -. -



S{sU•, •vtt,•P.( 10. 16)
In -P1 (10.17)

where

gj - JskPk. ((10.18)

On the other hand

(i O. 19)

Comparing (10.19) and (10.17), and recalling (10.18), we obtain:

di - g,,X*,, -2 1 -,.*P..',. (10. 2P)

It is clear from (10.17) that the piezoelectric effect in the ferro-
electric phase can be regarded in this case as electrostriction, linearized
by spontaneous polarization. We will note that (10.18) may be deried through
differentiation of (10.2) with respect to P7. Knowing the electrostrictional
coefficients ,9 for the paraelectric phase and the magnitude and direction of
spontaneous polarization, we can determine from (10.1S) all tensor
components of spontaneous deformation, and from (10.18) the piezoelecaric
coefficients g. In consideration of the terms of higher crders in (10.2)
in the expansion of free energy, there will be terms of the fourth, sixth,
etc. orders in terms of polarization. Consequently each term in (10.15)
will have an additive, although a small one from the practical point of view.
Moreover, in (10.15), in addiion to quadratic terms for Pin' with
coefficients 9, there will be other new quadratic terms. The coefficients
of these terms will correspond to the tensor components of the electro-
striction coefficients of the ferreelectric phase, which were the result of
reduction of crystal symmetry.

The coefficient, of elastic pliancy and rigidity in the ferroelcctric
phase, determined under conditions of constant polarization and constant
electric field, can differ substantially. In the general case we have for
deformation tensor components:

WfhenI

4 (10.212)

Substituting (10.22) into (10.21) and separating the terms with the
same mechanical stress tensor components, we obtain [I1:
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-01, , + ,..,1.. (0 01.23)

It foilows troin (10,23), recalling (10.20), that the behjvior )f
1:

certain elastic pliabilities sijk is determined by the behaviar of

dielectric -- sceptibiiity.

The examination presented here, naturally, is valid only for a single-
domain crystal. When a crystal is broken down into do,r.ains, as pointed out
in Chapter 7, according to the rule formulated by Zheludev and Shuvalov
[2, 3], the elements of symm ry of the initial nonferroelectric phase that
are lost on transition into ýhe ferroelectric phase become elements of
twinning. Therefore a multidomain crystal (not unipolar) displays macro-
syminetry in the nonferroelectric phase. ttence, if the latter is cent-oe.
symmetric it shoald not display the piezoelectric effect.

We will now examine the electrostrictioti, piezoelectric and elastic
properties of the two best known ferroelectrics that aie centrosnnmetric in
the paraclectric phase.

1. Barium Titanate

The matrix of electrostriction coefficient- Z fer, cubic bariun
tiranate has the form

a8' 83! 0" 0 0 0
01, ft; 012 0 1) 0

at, #I, &1, 0 0 0

o 0 0 4" 0 0 1110.24)
0 0 0 0 e 0
0 0 0 0 0 s,

Coefficients ). also have the analogous matrix. in the case of a
mechanically free crystal (o = 0) equations (10.2) and (10.4) are written
as follow3:

"u+.J•-- E&h ,. (10.26)

If jn the paraclectric phase, for instance, a fielJ is applied along
axis Y. t'en (10.25) ard (10.2.6 in matrix eotation will acquire tbe form:

5(00.28)
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fence coefficients 12' 1 and may be det-rmined according to the

experimental values of u1 anU u2. Schmidt [41 conducteý such experiment-.

Reldtion (10.16) may also be used and, if the magnitude of spontaneous
polarization ar.d spontaneous deformations are known coefficients I'l 12

and can be calculated. At room temperature, when symmetry is
S= P. = 9Z'~-l-" /cm2 vn. u1 = u, = -3 .h1"i" and u'=

tetragonal, using Ps = " 2A-10-1' 2 - U
7.5-10"- [6], we obtain i71:

_11 =

12 -0.56- 10"'e

In order to determine the coefficient it is neces'arv to take-

-the values u4 and P for the rhoihi,: phase. At O'C u. 4 z ?, 1

- 31ciCE8 orP = P 29A,,'l.- C/. 191. and for we obtnain ['l

4 7 ' esu 0.30)

Investigations of the effect of mechanical stresses on the ferrc,-
electric phase transition and the heha%,ior of dielectric susceptibility in
the n•raelectric region show (see Chapter 13, g2) that when mechanical
stresses are appl:ed the Curie-Weiss law (9.1) and (9.2) continues to be
valid, and here the Curie consta,.t remlins the same, while only " changes.

In other words, the s~ope of the straight line 7(T) remains the same. The

straight line is simply-!isrplaced on the tenperatt-re axis parallei to

it-elf. This means that - in view of (10.13) and J, is Independent of

temprrature. Thus, coefficients c in the naraelectric .hase are the "trUe,--"
crystal constants. Since relations (1n.9) and (l0.l:t nre valid, the
-e:trostriction coefficients and uv bey virtue of the strong temperature

,:end.!nce of susceptibility, increase rapidly as the Curie point is
tip)roached

The matrix of the piezoelectric noduli for the tetragona3 phase
corvesponds ro the point group of th'is ahase (,mm) and has the form:

0 0 0 0 dO
o 0 ') 00 (11.30)
dt d.' d.-* 0 0 0

= -~r?,5 --



Expressions (10.18) for piezoelectric coefficients g and (10.20) for
th? piezoelectric moduli in the case when spontaneous polarization is
directed on the z axis, are written in the form [10]:

tax- 24%., ( 10.32)
43-2"31,"o. (10.33)

- 44-- .Px. ( 10. 341)
,h)- •P~xl,(10.35)

in- 1.11zX. (10.36)
(10.37)

Using relations (10.32-10.37), wc may determine on the basis of piezo-
= electric measurements the electrostriction coefficients (ý. C.spari and

SMerz [11], Berlincourt and Jaffe [7], ttuibregtse, et al [121 nvestigatc•d
the piezoelectric properties of single-domain barium titanate monocrystals.
The coefficients g and d at 250 C, according to [71, are listed in Table 17.
Calculation of coefficients -on the basis of experimental values of the
piezuelectric coefficients gusing equations (10.32-10.34) yields:

Ii- 1.23.j-MIt esu
31 =-0.9,to-,2 esu (10.38)
St.,a 0.65. 90-t2;s e u

which agrees quite well with (IO._.) and (10.30).

Table 17. Elastic and Piezoelectric Coefficients of Barium
Titanate (Berlincourt and Jaffe [7])
I) Vui~ u* , .. w. .u ~ i

c-~tape n C) m. M "". ex

zl, 8.35 8,5,,, dig - 1( t 1.76 8.10

K$82 15.7 A.93 da,, -3 o -- 1t.04 -2.37
if, -Z.3a5 -2.6t di - 06 22.57 5173

as .- 5.24 .- 2.85 " 5.07 6.9 1

.S 18.4 Z3.3 31. .2
'6 A 22.3 UPlI( 1. 0.17 31 9

S2. Piezoelectric coefficients at 25 , esu

3. M•onocryst a!s
4. CerMmics
S. Elastic piiancis sf monocrystala at 100-, 10-" cm2/dyi/.-

2. P, e-



Calculations by both methods yield similar values of f. up to the
Curie point. On transition to the paraelectric phase the electrostriction
coefficients . remain practically constant (Figure 10.la). This most
convincingly shows that the coefficients d are the "true" crystal
constants. The temperature dependences of the piezoelectric moduli d

and d33 , according to (10.35) and (10.36), are determined by the dependence
a a

of X r3 ( rcc, on temperature, and therefore increase sharply in absolute

value s the Curie point is approached. The denendence of d31 on temperature
is illu rated in Figure 10.1h.

ah

( i n
V fx7T to f Go T. We

Figure 10.1. Electrostriction and piezoelectric properties
of barium titanate aenoerystal (lHuibregtse, et al [12)).
a -- temperature dependence of elect.ostriction coefficient
6 , determined as u!/P1 0-( ken curve), 2.,d /C 1)a

(continuous curve); b -- temperature dependence of piezo-
electric modulus d 1.

The entire discussion so far has concerned the single-domain mono-
crystal. If 180' repolarization processes, which occur under the influence
of a stifficiently strong electric field, are taken inta azcount, the
deformation pattern of a crystal becomes much more complex. The dielectric
hysteresis loop is illustrated schematically in Figure l0.2a, and also
shown in Figure 10.2b and c is the correspondi.g curve of change of crystal

deformation. It is assumed th.:t
b c only 1803 repolarization takes placz.

S w , •Piezoelectric deformation takes
place on segment 1-2-1. The tranisi-
tion from 3-4 is related to repolari-

. t• ,[-- zation and the sivn of piezoelectric
deformation changes. Cn segment
4-5, where the ctytci is again

single-domain, deformation once again
Figure 10.2. Schematic diagrams becomes a linear function of the
of: a -- dielectric hysteresis field. When the .ieid has the
loop; h -- hysteresis quadratic cnposite direction deformation
dependence of deformation on charnges in the sequc-nce 5-4-6-2-1.
electric field strength (ideal); Thus, the dependence Cf defornr. ion
c -- actual dependence of defor- or. fieli, strength r..sembles a butter-
mation on eieCtTiC field strength. fly.
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The elastic properties of ,arium titanate monocrystals in the cubic
and tetragonal phases were analyzed by Berlipcourt apd Jaffe 171 and
liuibregtse, et al [12, 153. The values of s.. and s.. at 25 and 150"C [7]ii 

P E S
are presented in Table 17, and the temperature dependences of SII 1 and

(2s!2 + S6) are shown in Figure 10.3). For the tetragonal phase, when

11PS is directed along the z axis, after substitution of coefficients g and d

according tc (l0.32-i0.37). (10.23) yields [101:
P P P • •

;nSPI: ' - ', + 4 LP
,S1 s, ' + 4• 4'hP .

-44 - 54+ t

It follows from (10.39) that the temwperature dependences of Sl' and

(2Sl2 S66 in the tetragonal phase should reflect t"ie change of x' :'h

the susceptibility temperature, which is observed experimentally (Figure T
For elastic pliancies, determined for P = const, we should expect a weal

1P
temperaturc dependence. This is true for (2s,2, + s66 The increase of
p
S in thz retragonal phase, observed experimentally, as the Curie point is

approached, is rot understood. The reason is perhaps the fact th t t near
the Curie point, despite the ,olarizing field applied during the measure-
ments, domains appear. Elastic phiancies in the cubic phasc ar Aenticalments,~~~¢ dc--n. aper "ati P

during constant polarization and constant field, ince here there is no
piezoelectric effect.

C,3

Figure 10.3- Temperature deperdence of elastic properties
of hariu~m titanate nonocry-sta' "Itluibreg-tse, et 31 [121).

a- lermera... le depend-ence of elastic -,Z.ancies s~l and
S- 1 _ t e . cn r a t - lr e d e ,n e n d e n ce, o f ( 2 s 6 6 p b r e n

i66

0
S~ a . . .. . . . . -. +

cuve ae cE ,o-nt n-uou, s curL1ec1 66
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Roberts [14] and kzhanov '15, 16] independently: discovered that poly-
UK crystalli-ne barium titanate, after polarization in a sufficiently strong

W ~constant electric field, displays great piezoelectric activity. Processes
of repolarizatio- occur in individual crystallites under the influence of
the pola~i;:ng field, with the result that a polar iaxis appears in a cerainic
specimnen, coinciding in direction with the f;bid. Such a ceramic is a

sn;cia case of D,!_-zoelectric textures, examined by Shubmikov [1", 181, andi
belongs to the point group -m ie, haik a rotation axis of in'initt- order
and art infinite number of planes of syvn:etry parallel to it. When, thle

IF ~polarizing field is applied along the z axis the matrix of piezzoeleectric
rviduli of this ceramic has the forn 1.3)

Bogdanov, et al [19, 2-0], Shuvalov [211, Kholodenko and ShirobokovI [p2], by averagi.ng, derived the expressions for the pjezoelecti-ic mcxluli of
ceramics through the piezcelectricl nioduli of a monocrystal. Is- thewe
calculation-, a certain Qkstrihution of orientations P after polarijzation

S
was assumed. "or simplicity the interaction between Individual grains was
not, taken into account and it was ;issuned that the electric field wafsI hcniogeneous in the entire specimeýn and equal to the average macroscopic
field, iL.e., tht! anisotropy of permittivity in the domains was not taken
into account. Thie question of orientationrs P F after polarization was

examined ia iS, Chapter S. We will recall simply that mainly 180' repolari-
zation takes place.

Mart~take and Jkc-da -'23, 24]1, who assumed that a ceramic consists of
unidomain sphericzal crystallites, used a somewhat diff.e-rent inethol' to

= ~~~determine the physical properties of ce.aic t -hrog h rpr so
monocrystal. In their cal-ulationz. they considered the anisotrap,, of the

-emittivity of the crystallites ardi their Piezoelectric int1craction. T1he
average piezoelectrie moquli of ce!amics calculated by both methods are
quite close to the experimental values, taking inrto account also that the
latter have greater scattering, since they depend on porosity. indw~trial
technology, etc.

'M1-son [2S], who examined nonpolarizeQd ceramic:s as a homogeneous
medium possttssing electrostriction, in which polariz-ation. occurs Under the
influence of a constant field, took a totally different approach to the

=problem of determining the physical properties of ceranics. Thlese notiTns-
are also developed by Baerwald [261. The pi.,zoelectric properties of poly-
crystalline barium titarnate have been analyzed experimentally by numerous
investigators [14416, 24, 25, 27-421, The influen-ce of the porosity or
specimens (37] and of the conditions of polari~zation [34. 38, 43] on
piezoelectric pro-)orties has beeil investigated. In addition to the mc
easily ineasu.-ed piezoelectric moduli d., and d., Rogdanov, et al (36, 441
determined piezoelectric modulus dI Thenc values of the piezoelectric

moduli are prdsented in Table 18. Polarized ceramics also 6isplays a
volumetric piezoelectric effect, and under the Influence of' hydrostatic
pressure p polarization appears:
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This effect is investigated by Jaffe [45], and also by Perls, et al
t[461.

It was pointcf; out above that the character of deform..ation of a
monocrystal under the influence of an electric field is determined not only
by the piezoelectric effect, but also by 1800 repolari aticn, 4ith the
result that the sign of deformaziun 5:s changed. The same is true for
ceramics, but here, as in the ca,;e of monocrvstais with 900 domaijs, there
is also the process of partial 90° repolarization (for example displacement
of 90* walls) under the influence of an electric field. By virtue ef the
tetragonality of the elementary cell, rotation of spontaneous polarization
by 900, even in a smail volume, ieads to substantizAl deformation of the
entireý specimen.

1-e dependence of the deform•ation of ceratmics on• the electric field

strength was investigated by several authors [17-491. It is of quadratic
character (Figure lO.2c), and therefore this effect is usually cailed
electrostriction. The dependence is quadratic by virtue bolh ef the fact
thaet 180 repolarization changes the sign of piezoelectric deformation and
of the fact that 90' repolarization occurs chiefly from a position nearly
perpendic-iar jo the field co a position nearly parallel to the field, The
fraction of reorientations from the direction antipaiallel to the field to
perpendicular is apparently small, since the processes are primarily those
of 180" reorientati-n. The fraction of 90' reorientations is determined
on the basis of the magnitude of deformation during polarizatlon [48, 491.

&0" reorientation may occur, apparently the result chiefly of the
motion of 90* domain walls between domains with spontaneous polareization
directed, roughly speaking, perpendicular and parallel to polarization, can
alao occur in pola *zed ceramics in *a field that is weak enough so as not
to reduce residual p;elarizatien. Such wall movement results in deformations
with the same sign as piezoelectric deformations. The contribution of these
deformations to the overall effective piezoelectric dcformation in barium
titanate is apparenily large only near the Curie print, in all likelihood
it is specifically 90* recrientations that are resgonsible for the maximum
experimentally observed piezoelcctric modulus Id.1| near the Curie point.

During measurements in a rather strong Polarizing field the temperature
dependence of Id31 in the tetragonal phase, as is to be expected, according

to calculatien formulas [19-221, is close to the temperature dependence of
d of the monocrystal [10] and practically no maximum, is observed near the
is

Curie poirt [501.

180I reorientation shOuld nat be expected to contribute greatly to
the effective piezoelectric deformation in the case of solid solutions of
BafTi, SWn)O( and Ba(Ti, Zr)03,, in which domain wall mobility is great.

Roy [511 and Bokov [S01 found that in certain of these solid solutions the
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dependence of piezoelectric moduli d__ and dd on polai.zing field intensity

passes through a maximum. This anomalous dependence can be explained on the
basis of the large contribution of processes other than 1800 reorientation
to the effective piezoelectric effect. The question of the dependence of
the piezoelec*cric modulus and losses on he 3trength of a variable
stimulating electric field, important the practical application of
piezoceramics, was investigated in s w •'"i works [52-56].

The piezoelectric moduli of polarized ceramics, like dielectric
polarization, diminish as time passes, and aging occurs. The most notable
drop occurs during the first hours after polarization, then it levels off
gradually [35, 53, 57]. At the same time the Q-factor of the ceramic
piezoelectric element increases [57]. Reduction of the piezoelectric
moduli is apparently related to slight depolarization as a result of
reverse 90* reorientations.

Thc piezoelectric properties of ceramic barium titanate have been
investigated in a number of works in the static mode in a strong electric
fieid or in the presence of large mechanical stresses. If piezoelectric
deformations, according to Kovalenko [58], increase linearly, at least up
to 5 kV/cm. as the strength of a stationary electric field increases, then
the dependence of polarization on mechanical stresses is nonlinear. The
direct piezoelectric effect has been investigated in numerous works [44, 48,
59-66]. Under compression in the direction of polarization, the depeidence
of the induced charge on mechanical stresses has a maximum [62, 661. If a
specimen is compressed in the direction perpendicular to polarization. tOis
dependence also has a maximum, and with stresses of 400-66•0 kg/cm2 the
sign of the induced charge changes [62, 63, 65, 66]. It ts notewor-,i her-
that the sign of change of polarization remains unchanged after the Temova,
of a small load [65]. The dependence of potarization on hydrostatic
pressure is linear, at least up to 1,000 kg/cm2 j65].

The unusual dependences of polarization on 1rechanical stresses can
be explained qualitatively by the 900 reorientation.. that occur under the
influence of pressure. Here, as sh-wn by tests, rather strong mechanical
stresses can lcad even to depolarization. That pressure actuaily causes
90g reorientation is verifted by the results of Subbarao, et al [67],
Berlincourt and Krueger '48], Belyu,!hanova, et al [68], Syrkin and El'gard
[69]. It was shown in these works that defcrmation in the ferroelectric
phase, occurring under the influence of mechanical stresses, is established
over a long period of time, reaching tens of minutes, which can be
explained only by rearrangement of domain structure.

These same processes explain m,•echanical nonlinearity in the prnsence
of dynamic Stresses, observed in the tests of Verlyukhamova, et al [68].
The elastic properties of ceramics under sm-ll loads depend subctantially
on the pol.arizing intensity. Young's modulus increases vs the field
increases (this effect is analogous to the so-called AE-effect in ferro-
magnetics), and the forward and reverse curves do not coincide, which leads
during cyclic change of the field to a "butterfly" type dependence [24, 25, 70].
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At the Curie temperature and at the temperatures of transition from a ferro-
electric phas6 with one synvnetry to a ferroelectric phase with another
symmetry Young's modulus has minima (2&, 31, 32, 50, 57, 70]. 11Te
dependence of thci elastic constants of barium titanate ceramics on porosity
was investigated by Marutake ani Ikeda [71],

2. Triglycine Sulfate

The matrix of electrostriction coefficints C' of triglycine sulfate
in the paraeiectric phase has the form:

Oil 01p "t3 0 b ,

an~ els 0 0,
*n 0, Ito 0 5's0

Spontaneous polarization on the v axis leads to hinearization of
czectrostrictioA, i.e., the appearance of the piezoelectric effect. The
piezoelectric ccefficients g can be determined acc.'rding to (10.18), whence
in the specific case:

g 2•-=.f+P, (Im= ., 2" 3 x 5). l
Es. == • 0P..

Cim N.. lI.(10.42)

The correspunding piezoelectric moduli d will be nonzero values. Here,
according to (10.20), only piezoelectric moduli d-,i should display anomalies

at the Curie point, since only they are related to anomalou:.h" izcreasing

susceptibility X•-

The electrostriction and piezoelectric properties of triglycinc
sulfate crystals have been investigated by many researchers, although
measurement results do not coincide satisfactorily. Konstantinova, et al
[72, 73], and also Hussimi and Kataoka [74], "were the first to derive the
complete matrices of piezoelectric moduli, and also of the coefficients of
elastic pliancy and rigldity. The results of these investigations do not
agree. Data (72, 73] weore subjected to critical review in [75]. Later on
Ikeda and coauthors [161 measured piezoelectric moduli d2 1 . l,2 a dr., d.,.
and Fotchenkov and Zayrseva [77] measured piezoelectric modulus d2 2 , hut

even in this case the values of d,2 do not coincide satisfactorily. The

basic cause of the discrepancy between the experimental data is apparently
the different degree of monodomainization of the crystals ir the various
tests.
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The relations between the coeffcients are readily found by substitu-
tion. Thus, by substituting (10.49) into (10.48) and comparing with (10.50)
we have:

+, (10.51)
Xb" tj x1+e,S,i~.. (10 .5S2)

Analogously, we obtain:

su,-nn,.4s,. (10.53)
d•j* t,, (10.54)
Oult,•- Al,,. (10.56)

- ,e +k- - (10.57)

(10.58)

All coefficients are related, which is particularly important for
crystals with the ferroelectric phase transition.

At least one of the tensor components of dielectric susceptibilities

f and X.CT h..s an anomaly at the Curie point. Therefore it follows from
(10.54) that either the piezoelectric mnduli d related to them, or piezzo-
electric coefficients g also have an anomaly. On the basis of (10.55) the
same can be said of coefficient.; e and h. As we will see later on, experi-

1nents show that coefficients d and e are anomalous, and piezoelectric
coefficients g remain practically constant during the phase transition.
This indicates that the spontaneous polarization that occurs is not
reflected on the relation between suct crystal pararete~s as deformation
and polarizat .i. Therefore spontaneous deformaticAn can he regarded as
a manifestation of the inverse pie:oelectric effect.

It follows from 1.0.57) and (10.58) that "y virtue of the anomalous
behavior of piezoelectric coefficients d azu e in the region of the ferro-
electric phase transition, the coefficients that describe elastic properties

s•hould also be arcmaious. Tests have shown that sE and cF also display an
anomaly. 7hus, by way of summary re will note that coefficients d, e,

$ an% c -ehavc anomaloasly during the ferroelectric phsc tranzition as

a consequence of an increhse of Y1 and x0.

In equations (10.43)-(10.50) we considered only the terms tha. are
itrewr with respect to P and r. Quadratic terms could' also be considered.
Then, for ermple, instead of equation (10.-S) %r a mechanically free
cr'stal wc will have
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If polarization in the ferroelectric phase is regarded as the sum of
spontaneous and induced polarizations, then equation (10.59) will become:

[[A m En ,. I&APA& +h iPn! + iq,,P.aP•- + 2,iqu:P.Pe + SqajsjuP.j. % 10.60)

herce

(sls - f&CM + tj,: ",t. (10.62)

Thus, spontaneous deformation should depend, strictly speaking, oil F.,

It follows from (10.62) that piezoelectric coefficients g acquire sow.e
correction. This means in practice, first of all, that piezoelectr-c
coefficients g, and consequently the corresponding piezoelectric m'jduli d,
which were equal in the paraelectric phase, Fecom.' unequal and, Vecondly,
new piezoelectric coefficients appear. Both the former and the !atter,
naturally, correspond to th:e reduction of symmetry of the crys.•ai. Al;
this pertains to a single-domain crystal.

R A crystal, breaking down into domains in the ferroelectric phase,
thereby reverts, with respect to its macrosymmetry. to the symmetry of the
paraelectric phase, and since the paraelectric phase is tiezoelectric, then
a pc-lydomain crystal will display the piezoelectric effect [2, 3]. This is
the chief difference between polvdomain crystals of ferroelectrics that
display and do not display the piezoelectric effect in the paraelectric
phase.

We will now discuss the piezoelectric and elastic properties of two
of the most thoroughly analyzed ferroelectrics that are acentrosy..rnetric
in the paraclectric phase -- potassium dihydrophosphate aaid Seignette's
salt.

1. Potassium Dihydrophosphate

Kit PO crystals are tetragonal in the paraelectric phase (point
2 24

group 42m). The matris of piezoelectric rmoduli for this pba;e is of the
form.

0 0 0 44 0 a
o 0 0 0 414 3(1 .so 0 0 0 0 • (l0.6J)

Spontaneous polarization occurs on the z axis. Susceptibility N3 on

this axis obeys the Curie-Weiss law, Therefore., according tc (10.54), we
can expect that piezoelectric moduius d 6 , relating polarization on the

- axis to mechanical shear stresses, acting in plane xy, will have an
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anomaly at the Curie point. As shown by the investigation of Bantle and
Caflish [88] of the direct and of Arx and Bantle [89] of inverse piezo-
electric effect, piezoelectric modulus d36 increases anomalously as it

approaches the Curie point 'Figure 10 4). 11te ter.pera'ure dependence
obeys the Curie-Weiss law:

14• 'F•• (10.64)

where A = 1.26-i0"0 esuand d360=f-,,- eu. Since dielectric

sus-:eptibility X also obeys t.he Curie-Weiss lau, then. according to (10.54),

33
piez.Nelectri-. coefficient 936' w'hich is equal te the ratio of shearing

defor.ation u,o for a = 0 to polarization P., is not anomalous at the Curie

point. It turns out, furthermore, that extrapolation of the temperature
dependence of g3 6 to the ferroelectric phase agrees satisfactorily with
the value obtained as t'e ratio of spontaneous deformation -6 to sportaneius
polarization [90]. Thi3 is illustrated in Figure 10.5. where the temperature

P_ P_

dependence of _ 2 -is gi-en. It is noteworthy that the ratio ---I is 3f
g3 6  u6 u6

tl-e same order of magi.itude aL tlht of cther niezoelectr.kc crystals.

SFigure 10.5. Temperature dependence

o.• ~Of 1- .for mechanically free

potassium dihydrophosphatc crystal.
Figure !ý0.4. Tempteraturtt dependenc- 1g6in the paraelectr~c phase are

potassir-.4 dihydrophcsLhate crystal. dacltdfo,-3 codn
I -- vslues (,btained by Bantle and - .
C!.flish [88] duluing measurement of to experimental value., of -13 and
direct piezoelectric eifect; 2 -- d 36 The point in the ferroelectric

values obtained by Arx iind Bantle[89] durirg measuremenis of phFse 1as found as the ratio of

spo)tassium diyrphosphati t crstal.

inverse piezoelectric effect cpo.latedouropolrizatio acsong
tanious deoormaation Mee s .ervainI - ~ue d~aine byRan Ic an

Cghs 8]d~n esrmn f toeprmna auso -. rn



Thus, we are convince.d by example of potassium dihydrophosphato that
piezoelectric coefficient g has no anomaiy at the Curie point, and the
anomaly of the piezoeiec-.ric modulus is a consequence of A... J: of the
corr_-sponding dielectric susceptibility, and that sponta::.ons deformations
can be viewed as the result of the inverse piezoelectri,: effect in the
presencr of spontaneous polarization. It was mentioned in Chapter 9 that

'U 0the difference between inverse susceptibilities in- - n¶) in the para-
V electric phase is ibdependent of temperature. "herefore, it follows from.

(10.56), recalling the weak temperature dependence of g36' that coefficient

b,, also Thanges little vith temp-erature. In other words, coefficients g

and h are the "true" crystal cinstancs.

For the mechanically free crystal, according to (10.45j u6 = g.(P 3.

Hence it is clear that near the Curie point, where polarization is a non-
linear function of field strength, the dependeanc4 of deformation on the
field should also be nonlinear. Furthermore, nonlinearity can alse be
caused by electrostriction, as seen in (10.61). Nonlineaiity of the
dependence of deformation on electric field strenfth Las been actually
observed experimentally D8]. Potassium dihydrophosphate at thc' C lrie
point displays a rathex large change of susceltibilities perpendicular to
the axis of sontaneous polarizati',n (Figure 9.33. Ilence, according to
(10.54), piezoelectric modulus d1 4 should al.so change. Stch change was

actually observed experimentally both in KMLP10, L141 and In c-vstals of

isomorphic compounds KD2PO4 and Rbil 9PO4 [921.

Spntaneous deformation in potassium dihydrophosphate, as already
mentioned- consists in displacement in the base plan:-, with the result
that sy-metry becomes rhombic. I.. the new coordinate system corresponding
to this s-mmetry orthogonal axes x' and y' extend along the diagonals of
the square face of the elementary tetragonai cell, and the dir,-ction of
the -. axis remains the same. The matrix of piezoelectric, moduli of th2
i'araclectric phase in the new coordinate system ha-z' the form:

0 0 ' 0 4j 0

o a -a;3 0 0 (10.6i)
a;, -as, P a 0 a

it can tle shown that dl = "/• ad ut +t 2 + u u = uc. Pieo-
electric modalus d-1 is anomalous at the Curie point. In tht Ferroelecrric

phase potassium dihaydrophosphate belongs to point group nim with the
fcllowing matrix of piezoelectric moduli:

o o o o tj, 0

dj 61 a d;, -

W 6

- ~ ~ ~ - - 6- -



Due to the reduction of symmetry, equality of the absolute values in
two pairs of piezoelectric moduli vanished and a .... modulus d__ appeared.

These changes can be interpreted as the result of electrostriction and
spontaneous polarization, and they follow directly from the general
examination presente" at the beginning of this section. The polydomain
crystal of potassium dihydrophosphate, as a ferroelectric crystal in the
paraelectric phase, retains pibzoelectric properties. Only piezoelectric
modulus d-.. is lost.

The elastic properties of potassium dihydrcphosphate are a good
illustration or the fetures that should be observco at the Curie point in
the behavior of certain elastic coefficient-: of ferroelectrics. The matrix
of th- coefficient, of elastic plicncv of potassiam dihvdronhosphate in the
paraelectric phase has the farm:

£4, 3j2 1 (II ; V

'It .jl '3 (I p' 0
I; ') (1 gtt i q t (10.67)
!I II ji !l li, (

Pie-ý,electric modulus d has an anomaly in the paraelectric phase
36

near the Curie point. hence, according to (10.'7) and (10.58), cocýficients

s66 and c'6 should change anomalcusl. i'ith temperature. The cause of the
66 (66nmlul
anomaly is the fo',loidng. The condition E = can'3t is realized in the experi-
meat is i= ). On the facet perpendic--lar to the z axis are attached
electrodes, which are sho-zteaed, ano therefore a crystal investigatcl under
t'ese conditions is often a "shorted" c:.ystal. If a shorted crystal is
acted upon by shejring stress o6t then polarization occu-s or the z axis.

By virtue k-,f the inverse piezoelectdic effect, this leads to an increase
in shearing ,eformatior, u6 . Tis e~fcct will be particularly preat nea.r the

Cur.- point, w--re ph.zoelectric modolus d_ increase. anomalously. Hence
i~l E ,sho:--ld

'.he pliancy of the crystal to shearing stresses _.• ~e , s6 s l
66'

increase anomalously as the Curie point i- approached. Tne Picture should
he quite different for F t const.(the so-c..Iled "isolated" Lrystal) Now
polaiizatinn F-, caused by stresses :;-' sho-:ld create depolarizing field

E- *.....P.... which reduces po!iý-.izat'ou almost to zero. Thus. :onditions

P 0, ,, special case of P = const, are satisfied. Since polarization does
not occur, theie is no rea!son for deformation u6 to increase, and the

coefficients s 6 6 p anu c6P d:spiay no anomalies at t-he Uaric po.int, ).e.,

they are the true crystal constants.

The elastic properties of potassiam dihydrophosphate and the
theriodynamic conditions under which measurements w-ere made by one method

30t;



or another, are discussed in the works of Zwicker [931], Mascn [94], Jona
[95], Baumgartner [96]. Experimeiutal results showed that the elastic
coefficients measured for E = 0 actually behave anomalously at the Curioi
point (Figure 10.6)_ The Curie-Welss law

"(10.68)I~E"P
where V = 4.6.10-'' cm2 -deg/dyne, is satisfied for (s - s6). This is not

66 66
s.urprising, r,ýecalling (10.15) and (10.12). The coefficients of elasUcity,
not related te shear In the xy plane, display no anomalies at che Curie
point (93].

As in the case of measurement
'12 of permittivity, during investigation

of elastic properties it is necessary
to distinguish to what conditions
the experimental data correspond -

o i1 isothermic or adiabatic [96].
U #1

.- 2. Seignette's Salt

" .- 0 ...... In nonpolar phases (above 240C
W - -s5 0 $ r,-C and below -18°C) Seignette's salt

belongs to rhombic acentros.mmetric
Figure 10.6. Temperature dependence class 222. The matr'x of piezo-
of coefficients of elastic rigldi;ty electric moduli for these phasos

E and P 
-c 

P 

f

c66 a 66 c6 6 ) of potas3ium appears as follows:

dihydrophesphate crystal (Mason , o ., o ,
0 000 0 J 0 (10.69)
o o 1 0 0 d36

Spontaneoas polarization occurs on the x axis. Therefore only pie::.-
elec'LAi4c modulus d1,, whicn relates polarization on the fzrroelectrl- axis

to shearing stress, should be anomalous at the Curie points. Piezoelectric
moduli d2 5 and d3 6 , like susceptibiliti-s, are not anomalous on the v and

axes, and are only slightly dependent on tmpcrature. At 25[C 197" d,5 =

-1.69-10-6 esA and d36 = 0.3S5'l0-6.esu. New piezoelcctric ,ioduli ap,)e:,r

in the ferroelectric phase, which has monozlinic -yri•r.e-ry b- virtue of
linearization of eiectrostriction, and the matrix lias the fo-rm:

drl d12 J1 ,j; 0 0

o . oo •. •.•(10.70")
.i 0 0 0 du dw

-365-
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The piezoelectric properties of Seignette's salt have been investi-
gated throughout the year- by ..any researchers [97-111j. T"•e first efforts
did not take into account ý-he fat2 that during measurement:, of piezoelectric
modulus d14 motion of domain walls may play ai, important part. When an

electric field is applied on the x axis movement of the walls can lead to
shetring :eformation in the ,z plane, i.e., coin:iding with piezoelectric
deformiation. Shearing stresses in the yz plane, in turn, change the
domaii, structure and if of sufficient -,agni aude, can make the crystal
singl e-do'ain.

The process of polarization and repolarization of Seignette's salt
crystals under the in~fluence of mechanical stresses was thoroughly investi-
gated by Zheludev and Romanvuk [112]. If for piezoelectric meisurements
the experiment is sct up -o that domain wall motion occurs, this may lead
to values of piezoeiectric modulus d 14 so overstated that anomalies will

not be observed near the Curie points [98]. Many investigators have
managpd to a considerable degree to avoid domain wall movement, finding
maxima on th? temperature dependence [97, 100, 101, 1071. In t'ie para-
electxic phase above the upper Curie point modulus d14 behaves like

dielectric susceptibility Xa (or ca). The temperature dependence of d

obeys the Curie-Weiss law

yrr (10.71")

where R = 8.67o!0-1 esu in the 25-34"C temperature range. B = 5.l7"10- esu
above 34*C. The analogous reduc:ion of the Curie constant also occurs in
the Cu.i-:-Weiss law for permittivity (see §1, Chapter 9). The ratio of
deformation to polarization (i.e., piezoelectric coefficient g14) lepends

little op, temperature [1073 and is about '!qia! to the ratio of spontaneous
defofmation to spontaneous polarization. Piezoelectric deforization,
particularly near the Curie paints, like polarization, displays saturation.
There is als.." disnersion of mnd.lus di14 . It is noteworthy here that the

ratio d1 4 /Ca does not depend on frequency l1081.

Fotchenkov (1101 and Schmidt [Ill] recewtly investigated monoclinic
piezoelectric moduli dll d12 and d.3 Eiectro-triction cocfficicnts 011,

2•1 aI c.1 we:e determined from measuremenLs in paraelectric phlises [1131,

and were conm-uted as the rý-io of spontanco"- deformations ul, u1 ant, u- to

the square of spont.Apeous polarization [1141, or were calculated on the
basis of eyperimenzal values of P and cnrresponding coefficients g [Ill].

In the polydomain scate• iot being uninolar, a Seignette's salt
crystal, according to the general rvle [2, 31, has the symmetry of the
parael-ctric phase, and therefore retains the corresponding piezoelectric
moduli. The applization of a -ur cj-ýtl, stro-g field or the x axis icad-

-.366 -



to repolarization, and in this case deformations ul, u. and u3 are quadratic

functions of the field. This phenomenon can be regarded as electrostriction
[115], although the quadratic dependence is a result only of repolarization.

The investigations of the elast-c properties of Seignette's salt are
rather numerous [97, '09, 116-124]. All coefficients of elastic pliancy s
and rigidity c, with the exception of s 1/c4  have a very w-ak
temperature dependence [1231. "oefficient s| is practically indepe" nt of

E
temperature and mechanical stresses, whereas s4-1 is anomalous at the Curie

point aad depends substantiall% on mechanical stresses. According to
Mueller's data [117], at tempeiatures above the top Curie point the

difference s4r - s4 4 obeys the :irl.e-Weiss law

4.0 -',- (10.72)

where D = 6.7-10-11 cm2 -deg/dyne. Application of a biasing field on the

ferroelectric axis leads to an increase in the coefficient of elastic
E 12

rigidity c4 4 [118, 120, 122]. In the paraelectric phase this can be the

consequence of reduction of dielectric susceptibility under the influence
cf a biasing field. The fact that adiabatic coefficients of elasticity,
which differ from the isomezric coefficients in the presence of a biasing
field [961, arv measured wlw, 'vnamic methods are used may also be
important. In thet ferroelectric phase the biasing field will have an
effect c:i elastic properties, zhiefly by virtue of ch.ange of the part
played by domain wall movemnnts in shearing deformations.

53. Absorption of Ultrasound and Internal Friction in Ferroelectrics

In the region of the Curie point ferroel-ctrics display anomalously
large scattering of energy during elastic vibra oits at sonic and ultrasor.ic
freouencies. This phenomenoa is usually investigý*ed by measuring the
absorption of ultrasound or b- investigatin~g the attenuation of free
vibrations of the mechanical iesonanto-. made of ferroelectric crystals.
These methods wcre used to investigate Seignette's salt crystals 185, 120,
122, 125-132], trir'vcine sulfate and compov ds isomar)hic to it [87, 127,
133-136]; KHPO, !1i37]. a.nd also certain ceranic ferroelectrics [138-1411.

All experimental works indicate that at the Cu-ie point the coefficient of
Tbsorption of ultrasound has an anomalously hi;gh peak (Figure 10.7).

The decrement of atzenuation of f. vibrati ons of mechanical
resonators made of ferroelectric crysta: 'ehaves similarlv. r"he anomalous
absorption of sound in the region of the k-Oric poiit i. Seignette's salt
crvstails is manifested most 5trong.y !uring s.eariný vibrations in the
plane perpendicular to the ferroelectric axis, i.e., -;hen the character
of deforaa ion during vibrations is the same as durinn, spontaneous
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Figure 10.7. Temperature dependence of ultrasound absorp-
tion coefficient (K) of triglycine sulfate crystal, AT =

= - Tc. Ultrasonic wave longitud-nal, piopagating on

axis (Minayeva, et al [1361).. 1 -- S .1ft-; 2 -- 10
.Mz ; 3 -- I5 Miz.

polarization. The ultrasound absorption coefficient in tie paraelectric
phase near the Curie point in the ferroelectric phase also' depends sbb-
stantially on the biasing field on the ferroelectric axis. In the ferro-
electric phase the absorption coefficient first increases when the shearing
stress is increased, and then diminishes. During cyclic change of the
field the absorption cefficient describes a butterfly-like curve. The
nature of great absorption ir. the ferroelectric phase is doubtless. It is
displacement of the dcmain walls.

The anaiogous phenomenon occurs also in ferromagnetics, where the
absorption of sound is also great. he absorption coefficient peaks at the
Curie point a.", -:n-.d ori the constant magnetic field anplied to -he
specimen. The dependences of the aosorption coefficient on temperature and
biasing ficld, experimentally observed in the ferroelectric phase, can be
easi ly interpreted, qualitatively, -is the domain mechanism. In this case
it is difficult to formulate any t'eory. Of greatest importance, obviously.
are investigations of ferroelectrts with the second order phaie transition
in the imnnediate vicinity of the Curie point.

The question of sound absorption near the second order phase transi-
tion was examined theoretically by Landau znd Khalatnikov [1421. They used
for the case of the second order phase transitior the generai theory of
relaxation absorption of sound [1433 and demonstrated t'lat the tempcrature
dependence of the sound al;sorption cocfficient i,. gove.- cd 1W the increas-'d
relaxation time of the transition parameter. For ferroelectrics the
parameter is spontaneou3 polarization. As a sot.nd wave propagate: it
becomes absorbed as a result of the relaxation mecharnism. by virtue of uh-e
fact that the deformations tlat occur alter the cquilibrit-,m value of
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polarization. Thle investigations of Kcssenikh, et al [1132] onl frequencies
of10-200 kil: show thlat Seignette's salt hars at le-ast two miechanisms of

sound absorption. One is deseribed by tile Landau-Khalatnikov theory, where
relaxation time is approximately io s/AT (A-1 is thle distance from thle Curite
point). The secoitd mec.hanism is frequency-indepcandent, and its nature is

When a linear relationship exists between the transition paramu-ter
ad deformation, anomalous absorption cannot be explainied from tliz stand-

point of the Landau-Khalatnikov theory. This pertains to the. paraieleetric
phase of all crystals which arý: centrosyomnetric in this phase, and al-, to
centrosymmectric crystals in the case when the nature of the vibration is
such that due to the absence of thý! corresponding piezoelectric coefficient
there is no linear relationship between deformation anj polarization. Some
consider that anomalocus abserption in this cz.se is the result of thle inter-
action of the sound wave with thermal fluctuations of the transition para-
meter 1144, 1451.

The fluctuation mechanism of absorrption is discussed by Levanyuk,
et al [136, 145, '146]. Also note:..orthy among the theoretical inv.Žstigations
pertaining tc the problem of the propagation and absorption of nound wavces
in Ferroelectrics is Sannikov's worl- 11471, who conducted a phrnomer.:alogi~cal
examination of the relationship between electromagnetic aind ac'istic Waves,
and also the work of Tani and Tsuda [1481. It is shown in the latter work
that the anomalzus behavior of one of the transverse optical modes near the
Curie point in ferz'oelectrics of the displacement type may also iead
through phonon-phonon intcract on to anomalous behavior of sound waves.

In the. single-domain state and far from th-ý Cutrie point tl~ere is
apparently no mechanism charactcristiL of ferroelectrics, which would lead
to great absorption. This is supported by investigations of the propaga-
tion of longitudinal hypersonic waves in single-domain LiNbO..- crystals.

It seems that these crystals display attenuation of elastic waves in the
UHF range by one order of mag-. tude less than in quart:, and the effez~tivo--
ness of the conversion of electromagn-etic vibrations into elastic vibra-
tions is greatcer [149-IS2]. It is noteworthy that elastic waves of such
high freqtlencies can be rather easily excited in a crystal by the method
proposed by Baranskiy [15;3]. One of the ends (-f the speýcimen is placed in
the loop of the electric -field of a coaxial resonator or in the loop of
the electric field at the end of i, closed coaxial line, and elastic
vibrations are exicted with the aid of the piezoeffect. As shown by the
investigations of Lemanov, et al 11521, attenuation in the 200-2,000 Muz:
range has a quadritic frequency dependence, which is in accord with thle
general theory o. attenuation of elastic~ waves, adva-nced by Akhi-yezer (154,

iss.'9
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CPHAPTER 11. FLECTROOPNIC AND CERTAIN, 0'11R NONLINEAR OPTICAL PIIFENOMENA IN
HF RROE LEC1 R I CS

Nonlinear optical phenomena -- generation of optic, harm-nics, the
electrooptic effect, optical detection and other phenomena are related to
the dependence of the refraction coefficient of a medium on the electric
field strength. They occur as a result of the nonlinear dependence of
polarization of the medium on the electric field.

it is clear from general considerations that ferro- and antiferro-
e&ectrics, which are characterized by high polari.zation capacities, should
also display substantial dependence oi polariz,'tion capacity on the field
and also great nonlinearity. The tiw,,e-averaged f:ree energy of unit of
volume F of the medium on which acts a light field with amplrtude 1; ank
low-frequency field (static field in the particular case) witi- amplitude
E can be represented, according to [1], in the form:

The coef-icients X, and 2 are liaear susceptibilitic" "or fields of

the corresponding frequencies. Coefficients of the type X1 aJ X_ are non-

linear Fusceptibilities, which describe the generaticn of optical h-rmonics.
Coefficients of the type X? anid X4 a*e nonlinear susceptibilities, which

describe linear and quacratic electrooptic effects, respectively (Pvckels'
effect and Kerr's effect). ) and X are tensors, the order of which corre-
spord to the nu.b',r -:f points. The letter F conditioaally denotes the
amplitud's of thv light fields of the various frequencies which are writter.
in the form:

,I-- (,¢" "+t-,, ,-, I+ ,, (11.2)

(here k is the wave vector, r i5 the radius vector, u is the frequency of
the light fi-Ids).
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oresNot all terms a'e written in j'.1; expression, even in the examined

orders of the expansion, and the pro'wsses of excitation of acoustical
and optical phonons. diffusion of light en acoustical and- optical phonons,
Faraday's effect, etc., are not taken into account. We will turn now to
the electrooptic effect.

§1. General Concept of the Electrooptic Effect in Ferroclectrcs

Under the corditions of investigation of the electrooptic effect
(Ei is snal, E0 is large) polari:ation of the medium will have the form:

PnpzEO X E 0 -X:FE+ 0. (113

The electrooptic effect is manifested in the dependence of birefrin-
gence of crystals on a strong stationary or variable ficld applied to the
specim en. Reviews r--] examine the electroopTiZ effect in ferroelectrics.

We will examine the general ly accepted description of the electro-
optic effect in crystals using the optic indicatrix, and then show how
the coefficientz. of the zlectroovtic effect are related to the corresponding
nonlinear susceptibilities. The optic indicati x or ellipsoid of reFraction
indices describes the dependence of the refractio, coefficients of a
crystal on lirection. Its equation has the form

.z,, t. (11.4)

where a.. are the polarization const',ts, xP, xi are coordinztes, /Ic =

i/n-, I is permittivity, n is ,he refraction Index. On the princ.nal
axes i = /E - 1in. a = Ir ln, a. = Il.: = l/n! whe. , n,

"Ii~ 'I ' 22 3322.n .

n,, n- are the principa refraation indlizes. !le clect-ecoptic effect is

described by the change of polirization constants when an electric fielo
is applied (the fremiencv- of %,hich iz below t!be freq';ency of the light).
which can be represented graphically as di ion of the ellipsoid of
refraction indices (optic iadicatrix,, redued to deformation irid rotation:

where La.. = a.. (M - a. (0) is the increment of polari:ation consýtants;

E E a rc the vc-tor components of electric field streAgth. The termn>

containing three and more high fief] strength powers :re usually ignored.
The first term charactrý-:es the lit-_ar electroontic effect, and the
second -- cuqadratlc electrooptic effect,; r.ik are the coefficients of tae
lin.,rr electrocptic effect, bheng third class tensor conmponents: P.. are

the coeff.cierts of thi -'iadratic electrooptic effect, bving fourth class
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tensor components. The coefficients of linear electrooptic effect r are
related to nonlinear susceptibilities X, which describe the linear electro-
optic effect. This relationship can be proved for the isotropic case by
the following simple niethod: without a Field n02 = 1 + 4rx, and when a
strong field is applied

!p t
to 4(11.6)

On the other hand, from equation (Il.S)

*-•• - - - • (11.7)

Consequently there exists between r and X a relation oi the type

A--; . (11 .8)

The analogous relation exists between the coefficients of the quadratic
electrooptic effect and the coefficients of nonlinear susceptibilities.

We will write the matrix form. of the coefficients of the linear
effect in two-index notation:

"all -- *t . . ! : ris

423 I . . rul -' r3l3
r. . ra ra

a s .e.c. . ra r: i ra

all . . . r t• r43

Here all, a.., a 3 3 are the p'.-incipal polarization constants in theil 2 30 0 0
absence of an electiic field (a2, = I- a1 a22 a3 a23

(a3  31 12 - 0) 11 ' .,, 22' 23
a3 1 , a 1 2 are the polarization constants in the pre.ence of an electric

field, the components of which on the axes ara E., E-, E.

The matrices of the coefficients of the linear optic effect are
quite analogous to the matrices of piezoelectric coefficients. and the
matrices of the coefficients of the quadratic effect -- to the matrices
of electrostriction coefficients.

The matrix notation of the coefficients of ti( quadratic -lectro-
optic effect has the form:

jq X1 ilE.Z Z. -
.............................. .. . ...............I 1  it, J, 3  A,, jl. PA,

Ag;. . . ... . . .. . I . . n 2 R " A' d

A. ..-... . R -1 J.
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Here two-index symbols are used for t, L' fourth class tensor and the
following definitions arn introduced: E E2 = El .

E E E2E_ E2 , ElE= E 1 = E2 , = -EE = 1 = a" al
32 2 4 1a3 3 =S aS I a II

Aa2  a22 - a 32, = a 3 3 -a30  a aa = a 32, = 3P2

The linear electrooptic effect coexists with the irvs5se piezo-
electric effect in a mechanically free crystal. As a result of the inverse
piezoelectric effect the electric field will cause deformation of the
crystal, which will lead, by virtue of the piezooptic effect, to a changw
in polarization constants. A change in polarization constants not related
to the inverse piezoelectric effect when a field is applied to a crystal
.s called the truc inear electrooptic effect. A change in polarization
constants caused by the inverse piezoelectric effect is cal~ed a false
electrooptic effect. The sumnary electrooptic effect is measured experi-
mentally. The first term of equation (11.5) can be written in the form:

'+ (11.9)

where rt. are the coefficients of the true electrooptc effect, P are

the tensor components of the elastooptic coefficients and dkzIm are the
piezoelectric coefficients.

The quadratic electrooptic effect is also divided into true and
false. The true quadratic electrooptic effect is not related to deforma-

tion of a crystal by electrostriction when a field is applied, and a false

quadratic electrooptic effect is determined by such deformation.

jo exclude a false electrooptic etfect ueasuremeats must be made

in a variable electric fielW, the frequency of which is greater than the

resonance frequencies of the specimen, so that the specimen can be regarded

as "clamped." Measurements may also be done by the static method and the

summary effect measured, after which the false one is excluded from it by

calculating it from measurement data of elastooptic and piezoelectric or
ele,.trostriction coefficients.

The equations of the electrooptic effect can also be written through

crystal polarization vector components instead of field strength. Such

notation is quite convenient for ferroelectric crystals. Actually, using

the coe:filients miij or M1.j, from relations

44J,•-mhja?+u J,p&Pi. (11 .10 )

where m are linear and Mijkl are quadratic electrooptic coefficients,

and P. are components of complete polarization of a crystal, we exclude the

effect of the temperature dependence of permittivity entering in P. In
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many cases, therefore, coeffirients mijk and M ijk display an extremely
weak temperature dependence.

The electrooptic coefficients are usually determined by measuring
the intensity of the light passing through a crystal placed between crossed
pola:izers, depending on the strength of the field applied to the 'rystal.
The birefringence of the crystal is determined from intensity measirements.
When the difference between the paths of the ordinary and extraorLinary
rays of some intensity is equal to X/2, then intensity is maximal. This
intensity VX/ 2 is called the half-wave intensity. it is related by means

of simple relations to the electrooptic coefficients.

All ferroelectrics display the linear electrooptic effect below the
Curie point, since they lack a center of symmetry. The quadratic electro-
optic effect is observed both in the para. and in the ferroelectric phases,
regardless of the presence or absence of a center of symm'etry. If a center
of symmetry exists in the paraelectric phase, there 'e only even electro-
optic effects in it. If such a crystal is separated into domains in the
ferroelectric phase, then too only even effects can be observed, since odd
effects are compensated in various domains (unipolarity is not considered).
If a crystal broken down into domains lacks a center of symmetry in the para-
electric phase, odd effects may occur, since the macrosymmetry of the crystal
when broken down into domains corresponds to the symmetry of the paraelectrie:
phase iS]. A crystal broken down into domains will lack the components of
odd effects that appeared as a result of linearization of the even effects
(see below).

The magnitude of the refraction coefficients of crystals depends
largely cn the electron energy levels -- their positions and probability of
transition between them. Therefore one of the most importa.it mechanisms of
the electrooptic effect and other optic nonlinear effects is related to
displacement of these levels in an electric field.

Several attempts have been made to tie in zonal structure with the
polarization of a crystal. The zonal structure of strontium titanate was
analyzed [6] and it was found that displacements of ions has a notable
influenc, on the magnitude of the smallest energy slot between the valence
zone forted by the 2p-electrons of oxygen, and the co:.ductance zone formed
by the 3d-electrons of titanium. The change in the width of the slot
change.i the electron polarization capacity. The electrooptic effect is
extmin4d in (7] and more completely in [8] on the basis of the results of
[6] as a result of change of zonal structure during polarization of the
pero,.skite type lattice.

It can be concluded on the basis of irvestigations of the dispersion
of electrooptic coefficients and electroreflection in crystals of the
perovsklte type that the strong absorption bands in the ultraviolet region,
corresponding to 4-6 eV [9-12] are the largest contributors to the refrac-
tion coefficients and electrooptic effect in the visible region of the
spectrum.
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The electrooptic effect can be described with the aid of the
phenomenological model proposed in [13]. Examination of the moticn of an
anharmonic ozcillator, used by Blombergen [14] to describe optical non-
linear properties, is based on this model. To an electric field of
optical frequency is added a stationary local field. The equation of motion
of an electron in the unidimensional case with consideration of anharmonic
perturbation then acquires the form:

9 +r# +*Z+ bz-f(E(U..),( (. . (11. + 1)

where r is the attenuation constant, fo0 is the resonance frequency, b is

the anharmonic force constant, e is charge, m is electron mass, E(W, t)
is the electric field of a light wave with frequency w, E(O) is an exte:-nal
statioaary electric field, 3 is a parameter of the local field.

This model yields an expression for linear electrooptic c'-efficient r:

dhere N is the number of oscillators per unit volume. After renla'ýing the

tvrm bx 2 with cx3 we obtain an expression for the quadratic electrooptic
coefficient. In either case the dependence of the electrooptic coefficients
on freque.icy contains the factor (n- _ 1) 2 /n4. This agrees very well with
experimental data on the dispersion of electrooptic coefficients in
crystals with the perovskite structure [15], and in lithium niobate [16].

On transition to the ferroelectric state the quadratic effect
becomes linearized in a manner analogous to the linearization of electro-
striction and the appearance of the piezoelectric effect. Actually, if
birefringence Is proportional to the square of polarization, in the ferro-
electric phase, where induced polarization P. is much less than s-:7taneous
Ps (Pin << Ps) I.

and A and B are certain constants, i.e., the linear electrooptic effect will
be observe. Its magnitude is proportional to spontaneous polarization.
It is this very phenomenon that takes place in ferroelectrics of the
peovskite structure, which do not display the linear electrooptic effect
in the paraelcctric phase. If the linear effect occurs in the paraelectric
phase, then on trans:tion to the ferroelectric state new components of the
linear effect will a-)ear as a result of linearization of the cuadratic
effc;z. (17, 18]. Tnz new tensor components of the linear electrooptic
coefficients rij appear to be proportional to the product of c (more

accurately, induced polarization) and spontaneous polarization. The new
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tensor component3 mi.. will be proportional to spontaneous polarization.

Components mi.., not being '.hL result of linearization, depend little on

temperature.

§2. Spontaneous Electrooptic Effece

Birefringencc! in barium titanate, as shown in [19, 201, is propor-
tional to the square of total polarization of a crystal. Analysis of
birefringence of barium titanate in the region of the Curie ooint during the
application of strong electric fields, carried out in [19], verified the
quadratic dependence of birefringence on polariz~tion during field-induced
(or forced) ferroelectric transitions. At the Curie point there is a sharp
change in birefringence. The temperature dependence of the birefringence
of bariu.¶ titanate according to [191 and of lead titanate according to [20]
is shown in Figures 11.1 and li.2.

a•a

0 o f 0 rC

Figure 11.1, Temperature dependence Figure 11.2. Temperature dependence
of birefringence of four barium of birefringence of lead titanate
titanate crystals (Meyerhofer [19]). (Shirane (20]).

The change of birefringencc at the Curie point can be regarded as a
spontaneous electrooptic effect caused by spontaneous polarization. There-
fore, in crystals of the perovskite type, for instance, the relation An =
= const P2 , where P is total polarizatior, including spontaneous and induced
po:arization, is satisfied in some temperature range near the Curie point,
for both birefraction in the absence of a field (natural birefraction) and
application of external electric fields [19, 21]. In particular, the
magnitude of linear coefficient m31 in barium titanate, determined by

measuring the natural birefringence and spontaneous polarization [221,
agrees satisfactorily with that obtained from analysis of an induced electro-
optic effect in tetrago;ial barium titanate [23].

The temperature dependence of the birefringencc of lithiui" niobate
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was recently analyzed [24, 25]. Tnis crystal is optically negative at room
temperature. As the temperature rises, negative birefringence diminishes,
vanishes near 880°C and then becomes positive, increasing almost up to the
Curie point itself. In the vicinity of the Curie point the increase of
A(ne - n 0 ) slows down (ne is the index ef extraordinary refraction and nI is the index of the ordinary ray), related to the disappearance of

spontaneous polari:.ation.

Repeated attempts have been made to compute the birefringence of
barium titanate and certain other ferroelec~rics with the perovskite
structure, resulting irom the spontLneous electrooptic effect, on the basis
of a model of point polarized ions in the assumption of isotropic polariza-
tion [26-30]. The results of these works disagree with each other and with
experimental data. According to experimental data [19, 31, 32], barium
titanate is an optically negative crystal. Certain calculations, however,
have produced a positive value. In the latest works [27, 30] a value close
to zero has been found. This discrepancy between theoretical and experi-
mental data is usually explained at the present time by the need to take
into account the anisotropy of the polarization of oxygen ions.

Polarization anisotropy should be the result of large internal fields
that act in ferroelectrics, which can lead to saturation of electron polari-
zation due to overlapping of electron shells during large displacements of
ions. The complex temperature dependence of the birefringence of PbTiO3

(Figure 11.2) is perhaps related to the influence of the polarization aniso-
trcpy of oxygen. This explains the failure of attempts to correlate the
temperature dependence of the birefringence of perovskite type ferro-
electrics far from the Curie point with only the temperature dependence of
lattice distoe:tions which, in turn, are presumably proportional to the
square of spontaneous polarization. The effects of saturation of optic
dielectric permittivity in the direction of spontaneous polarization
possibly play a lesser role in ferroelectrics of the groups potassium
dihydrophosphate, Seignette's salt, triglycine sulfate and others, than
in ferroelectrics of the perovskite type, due to the smaller refraction
indices and complex configuration of internal fields, not parallel, to the
resulting polarization [33].

§3. Electrooptic Properties ot Certain Ferroelectrics

We will now examine the eiectrooptic properties of certain ferro-
ele=trics in greater detail.

The matrix of quadratic electrooptic coefficients for the cubic
phase of peiovskite type crystals (point group of svnunetry m3m) has the form:

n El q S,
"I .. ,, I ,3 a,, j:

onjr:t. Jt r, 2 ),,A, , 0 0 0

-• ............ II 0 ( I J I* (j qI2 R11 0 U4  0.0 0 0 0 0 1
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'hu.- there are three different, nonzero electrooptic coefficients
P.ll. Ri 2 and R4 4 .

: optic indicatrix for such crystals in the absence of an external
field if Jescribed by the equation

00+0(10.114)

0 02
-there a = 1/n

When a field is applied in direction <100> the optic indicatrix
deforms and its equation acquires the form

(0 + JRIE) S2 + (0+,)(vi+s t ).t. (11.15)

The crystal becomes uniaxial. The principal axes of the deformed
indicatrix coincide with the principal axes of the nondeformed ind;icatrix.

Induced birefringence duringpropagation of light in direction <001>
is related in this case to field intensity by the equation

,-- -- ,--1 ( E--R ). (11.16)

For determination of R44 the field must be applied in direction <110>,

and the light should propagate in direction <001>. Then birefringence will
be

(11.17)

The analogous relations are also derived for coefficients M4...13

The magnitude o-. electrooptic coefficients R.. of barium titanate in
13

the paraelectric phace diminishes as temperature rises approximatel', in
correspondence with the reduction of permittivity [341.

Coefficients M.. for many compounds of the verovskite class, on the
13

other hand, are practically independent of temperature. lHere Mt.. for such

crystals as BaTiO3 , KTaO 3 , SrTiO3 , KTa 0 .75Nb 0 . 25 03 (KTN) differ very little

from each other [10] (Table 19). This is an argument in favor of z general
mechanism of the electrooptic effect in these crystals, related to the
effect of the field on interzone transitions between the 2p-valence zone and
the nd-conductance zore (n = 3, 4, 5 for titanium, niobium and tantalum ions)
(9-12].

Electrooptic analyses in a wide range of wavelengths are very
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important for investigations of the relationship between electron zonal
structure of crystals and the magnitude of the electrooptic effect.
Coefficients M.. in crystals of the perovskite type have recently been found

to increase as wavelength decreases, starting with wavelengths of -0.4
[10]. Here the experimental data conform with the dispersion theory in
single-oscillator approximation.

It was recently shown that certain perovskite type crystals of
complex composition, in particular PbMg 3 No2 !0 i35-581, display a large

electrooptic effect and low half-wave intensities. The temperature
dependence of R! - R in the PbMg!3Nb"2/303 crystal [36] is illustrared
in Figure 11.3. This great magnitude of coefficients R.. is related [361

ij
to features of eioded phase transitlan3, by virtue of which domain orienta-
tion and induction of th- ferrielectric phase contribute to the electro-
optic effect in a broad temperature range.

(Rf-,- 3)*1o'Crc3

300 50 .110 r. Or

Figure 11.4. Temperature dependence
of linear electrooptic coefficient

N_ rc compared to £c and product

c P in relative units for
- o 90 fZ0 7.1c tetragonal barium titanate

(.Johnston and Weingart [23]).
Figure 11.3. Temrerature dependence
of (R1 1 - R1 2 ) for lead magnesium The temperature dependence of

niobate (Smolenskiy. et al [36]). the electrooptic effect in tetragonal
barium titanate in the ferroelectric
phase was analyzed [23]. The

temperature dependence of linear electrooptic coefficients r.. in barium

titanate is illustrated in Figure 11.4 [231. It is clear from the figure
that the character of the temperature dependence of r.- cor: ,sponds approxi-

mately to the temperature dependence of the product of dielectric permittivity
and polarization. This satisfactorily agrees with the concepts of lineariza-
tion of the quadratic electrooptic effect in the Ferroelectric phase.
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Above the Curie point triglycine sulfate (TGS) belongs to the centro-
symmetric point group 2/m. In the paraelectric phase, therefore, it does
not display a linear electrooptic '.fect, and the linear effect in the
ferroelectric phase is not the result of linearization of the quadratic
effect. The electrooptic properties of TGS were analyzed in [39-45I, and
in f39. 40 2-44] only the electrooptic coefficients that determined
defor-,ation of the indicatrix were investigated, while in [41, 45] rotation
of ndicatrix was analyzed. ')ata are presented in [411 concerning the
temp'.,ture dependence of indicatrix rotation, occurring as a result of
thermooptic and spontaneous electrooptic ap' elastoontic effects. The
effect of the application of a field along ferroelectric axis b on
indicatrix orientation was investigated in [45].

Analysis of the tpmperature dependence of certain electrooptic
coefficients of TGV [39] showed that a linear effect still occurs 2-3*
above t'le Curie point, although coefficients r.. dcrease, which may be

1)
explair•c by the "erosion" of the second order phase transition in the

L'2ctri- field. ,'are minimal nonlinearity is observed on ferroelectric
x;- ), whereas permittivity, "en~ured on radio frequencies, is maximal in

", '. rection. It iE theorized in this connection [39] that polarization
tical frequen Kes is caused bazically by other structural elements of

"crystal lattice than cn lower frequencies. Such components may be

groups of SO- ions, which agrees with the results of [46].

The linear effect in TGS in the ferroelectric phase, as in barium
titanate, is by its nature a linearized quadratic effect. Therefore the
temperature dependence of r.. is governed by the product cP . In particular,

1j s
accoiding to [45], the temperature de-endence of coefficient r 5 2 is propor-A A 5

tional to E ~T T) The temperature dependeil:e of linear

coefficients m.. is analogous to the temperature dependence of polarization13
[44], as should be the case for the linearized quadratic ,ffect. In the
paraelectric phase TGS displays a quadratic electrooptic ffuct, and the
Quadratic electrooptic coefficients diminish as temperature increases
ac 'irding to the Curie-Weiss law, analogously to e [39] (Figure 11.5).

Figure 11.5. Temperature dependence
of quadratic electroontic cc!ffi-
cients in triglycine sulfate
(Vasilevskaya, et al [39]).
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["K Potassium dihydrophosphate
(KDIP) in the paraeiectric phase dis-

-g plays a linear electrooptic effect.
It was the first ferroelectric
crystal i-i which electrooptic prop-
erties were carefully inv stigated

The equation of the indicatrix
of KDP, according to (47], has tho
form:IS + + x$j +

rkk Figure 11.6. Te-uperat-ire dependence
of coeffici -nt r63 for KHI2PO (1) (the variables pertain to the
and K02 P6 4 (2) i4n paraelectric principal axes al, a2, c of the

crystal),

phase (Zwicker and Scherrer (47]).
In the case of application of

an electric field on the tetragonal
axis c and use of a coordinate system connected to a nonprimitive tetragonal
nucleus, the edges of which are al = v7-al, where a1 is the edge of the

primitive tetragonal nucleus, the indicatrix is described by the equation:

a,1. a• (11. 19)

It follows from this equat;.on that AhcT, light propagates parallel to
electric field E3 , induced birefringence (longitudinal electrooptic effect)

is equal to.

(;1.20)

When light propagates rlong al and al, perpendicular to E3 (lateral
3

effect) !-he following relations are satisfied:

",#1X ft ft -Ad + "4VUE" (11.21)

In this case the litiear lateral electrooptiL effect is superimposed
on natural birefringence, equal te n 3 n1 .

63Thus the coefficient r6 3 can be determine.• by several methods. The
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temperature dependence of the electrooptic ctefficient r6 3 is shown in

Figure 11.6 for KDP. For coefficient r 6 3 , as for permittivity, the Curie-

Weiss law is satisfied. Coefficient m 63' as :might be expected, is

practically independent of temperature. The linear electrooptic effect in
KDP was also investigated in [48, 49]. The spontaneous electrooptic effect
in .<DP %as examined in [47, 50, 51]. The results of investigaticn of the
quadratic electroptic effect in KDP are summarized in [52].

When the electric field and light are orienttd in certain directions
KDP does not display a linear eleftroo.Jic effect and qnly the quadratic
effect occurs [53]. These directions are:

liirection of field Direction of light

'(01

The optical indicatrix for the case when the field is applied in
-Anrection <001> has the form

(QI + V, w- a) +

(11.23)

For the case of a field applied along axis <l00> the optical indiza-
trix can be expressed as follows:

( RI+\1 , S2+(Ii + )u+ A+ R.,A)i1-1. (11.24)

During inves':igation of induced birefringence in directions not
characterized by the linear effect it is possible to determine the following
quadratic electroptic coefficients:

R--Rn-- ,). n,-- . J (11.25)

The quadratic clectroptic effect of the KPP group of ferroelectrics
in the paraelectric phase has the usual maximum when the field is applied
along optical axis c (the indicatrix is described by equation (11.25); see
coefficients R in Table 19).

Works appeared raccrtly [54, 55] on the investigation of the electro-
optic effect in Seignette's salt. The results of investiga.ion in the
temnerature range including both pl, se transitions are presented in [54].
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The electrooptic properties of lithium niobate crystals are investi-
gated in [56-S91. Nonlinearity was found to increase as wavelength
decreases, analognus to the case of ferroelectrics witti the perovskite
structure (10].

Solid solutions of the system (Sr.8ai ~)'Nb3O with the structure ofx ii2
tetragonall potassium-tuflgsten bronze [60], the fcrroelectric properties of

which are discussed in (611, display extrurtely high electrooptic coeffi-
cients. Several new promising electroopti: crysials with this structure
have been grown recently, which also possess ferroelectric properties -

2~ 5b 0 [62], K Li fib10 0  [631, BaNaNbrOlS [641. The electrooptic
effect in Ba Na1NrbO0 in particular, iB about twice as 'ar~at as that of

lithium niobate. The electrooptic effect i~n crystals with this strileture
in the tetragonal ferroelectric phase (point group 4mim) is characterized
by three independent electrooptic coefficients: r 13 `r 23 , r.2 = r 5 1 , r..3 ,

and in the rhonibic phase (mm2) -- by five (r13' r 23 ' r 42  r51 1 r 33

'Me magnitudes of sonzc electrooptic coefficýients of a number of
ferroelectrics are listed in Tables 19 and 20.

Table 20. Lin'ýar Electrooptic Coefficients of Certain
Ferroelectrics and Antiferrc'electrics at R~oom Temperature

Name ot
crystal tji~c mjWCC

K112P04  - -W; r~i 2 6 Jul.-2.3j
IRhPC -e~79 ; -41 -26.4 107. "

URINVIA 70

i(N~cd4 O1 .tI~O r41 -, - rj,-.5; r6 .. 9f. ' DCa2 tt
LI~~~~bO3 rt -1 111 ~ &6 .O 't-~ ~

Ng~aNbg~j ~ P43. : In): 6O ~~~' ~I~I (oaino

r,_j~-rthe sign o
I - OIT11.invest141 t941-

field in lithiu-

q4.ptOpticyActivity



crystal, characterized by high optic activity. The directions of rotation
of the two optic axes have different sivns, while the forces of rotatiun
are equal in absolute value. The crystal is a uniaxial ferroelectric and
in the absence of a field breaks down into 180° domains. When the crystal
is repolarized b, an electric field the optic axes interact and therefore
the sign of rotation of the plane of polarization of light propagating on
the optic axes changes.

More complete and accurate data were obtained in (731 concerning the
optic activity of lithium hydroselenite; in particular, the rotation of the
plane of polarization due to the electrooptic effect, occuring with the
application of an electric field, was taken into account.

Crystallographic examination of the possibility of ch.,nge of the
sign and magnitude of optic activity during electrical and mechanical
repolarization of ferroelectrics, carried out by Shuvalov and Iv.nov [74],
showed that optic activity and change of sign are possible in enantiomorphic
classes 1, 2, 3, 4, 6 and in planal classes m and 2,mn.

§S. Ferroelectric Materials in Nonlinear Optics

We will proceed now to examine certain optic properties of ferro-
electrics in strong light fields.

During the years following the discovery of lasers by Basov,
Prokhorov and Townes it became possible to produce powerful light beams in
which the intensity of the electric field of the light wave reached
- 1 0 s V/cm and more. In our discussion of eleczrooptic phenomena we assumed

that the electron polarization of a medium does not depend on the light
field intensity. With respect to the propagation of a laser beam it is
essential to conrider the norlinearity of a ii,?dium in relation to the light
wave, since the intensity of the light field Lacomes comparable with
iI.ternal fields in the substance. As a result of nonlinearity of the
medium the light waves become distorted, the superposition principle is
violated, the generation of higher harmonics, summary and difference
frequencies become possible during the interaction of strong light and
radio waves and stationary polarization may occur in the crystal due to
the action of a strong electric field of optic frequency (optic detection),
"etc. [14, 75, 76J.

Gener'ation oC tihe scunA h.cnic, lei'elo-ent c'• -tationarv polariza-
tion in a crystal during the action of a strong electric field of optical
frequency, and the linear electrooptic effect can be described with the
aid of th2 analogous relations, derived from differentiation of the
expression for free energy with re.nect to the fields (11.1): generation
of tbO second harmonic:

30, _ -(11.26)
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onset of stationary polarization

• -'•"•:(11.27)

linear electrooptic effect

r,- h.:jE•. (11.28)

where Pi are polarization components, Ej, Ek are components of the electric

field, Xijk are components of the coefficienc of nonlinear susceptibility,
being third class tensors. The superscripts denote the £r~quency of tf,e
electric field [9"].

All three of these effects, by considerations of symmetry, are

possible only in noncentrosymmetric crystals. The tensor Xijk may have 18

independent components. Tn the case of generation of the second harmonic,
however, according to Kliinman [77], for crystals in which dispersion and
Iobses can be ignored the additional conditions of synmetry

X%•, 50 .1--1,All (11.29)

are satisfied.

Consequently the number of independent components decreases to 10.
!n this case the matrix of the coefficients of nonlinear susceptibility in
two-index notation acquires the following form:

jr zq qJ MCSr 2S,16 2.e,P,= ... Xr Xt!, Ytt x11 x•r xlf
PS....Xfr Xj; it X Ir Xif X17

P3 - _ -xlr XL_ Xh XT~ Xjt X I,P...xjr x• x• r• x•j x•

Kleinman's conditions (equatir, (11.29)) are valid within the limits
of e-rror for all investigated crystals [78-82].

The generation of the second haimoonic and linear electrooptic effect

should obviousiy be related to each other. In the simplest case, when
,.ssriptica 771 .1 -at-'-fied and the tensor components are related t( the
principt.l axes of the teAnor of inverse permittivities, the :ollowli,,r e a-
rion wi,1 exist between these effects (cf. equation (11.8)):

r•--..4,,LX,•'(11.30)

where A,-•, A,-
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Thic reiation, strictly speaking, should be valid in the case when

the frequency of the electric field in which the electrooptic effect is
measured is sufficiently close to the frequency of the light field generating
the second harmonic.

The coefficients of nonlinear susceptibility Xijk differ among the
various crystals by more than two orders of magnitude. Miller [781 intro-
duced another coefficient (6), characterizing the nonlinearity o)f the

crystals. From the expression for free energy, describing the generation
of the secorid harmonic through polarization, he derived an expression that
relates the coefficients of nonlinear susceptibility to the product of the
corresponding linear susceptibilities:

[ , ,Dth--(11.31 )

Here a, 8, y correspond to frequencies w a , w,, Wy, W = W -+ t ;

Xii is linear susceptibility on frequency w on the principal a-is i, etc.

(polariz-tior P.a = XiiE E _L

For generation of the second harmonic this relation acquires the
form:

S~(11 I.321.

Coefficient of nonlinearity Lijk differs little for the various non-

linear effects in the same crystal and for various crystals (Table 21).
This is evidence that formulation of the laws of optic nonlinear phenomena
through polarization is preferable to field strength: since the parameters
obtained better characterize the crystal. Coefficient of nonlinearity 6
for the electrooptic effect is proportional to the electrooptic coefficient
m. As already pointed out, electrooptic -oefficients m.. and M.. are

characterized by great constancy compared to ccefficients r... and R...
13 13

Coefficients S.. are the standiro nonlinear su3ceptibilities and can be
13

regarded ? a measure of nonlinearity due to electron processes. The
determinat-ion cf these coffi-i7.:t. fr'w ,,..-nic oscixiator w.el [!4]
indicated that they are proport.onal to anha•moroic forec co:;stant b []31
(cf. equation (11.11)). An attempt was made j83] to determine these
coefficients on the basis of the change of zonal structure in the electric
field, using the results of [6-9]. As in [7], it is assumed that

Ar () 1 ,0()1 P,. (1.33 )
4j

where AW"(k) is the energy displtcement of the n-zone at the k-point of
the Brillouin zpre, c"(k) is the tensor of the polarization potential,
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Pis P. are lattice polarization components. The effective polarization

potential g is introduced. It is found by averaging the cnefficients a.n.

for various directions of light polarization. As a result of the calcula-
"tion it is possible to deri.- an expression that relates the electrooptic
coeffizients with ;, and coisequently expressions for 6 through C. It

is assumed here that r are the same for all frequencies, i.e., zonal dis-
placement is identical with respect to ion and oleo|tron polarization.
Calculation of a for a number of crystals, presented in (83], gives over-
stated values compared to the experimental Consequently, as indicated in
[83], C is indeed smaller on optical frequencies than in the static case.

Table 21. Nonlinear Susceptibiliiy during Generation of Second

Harmonic X 2w and Nonlinear Coefficients 6 for CertainI j
Nonlinear Effects in a Number of Ferro- and

Antiferrockctrics (6.. for the Generation of Second

ilarmonic, 6. . for Stationary Polarization and 6 . for
13 llectrooptic Effect)

Crystal _____________1OIJsIr l~~
KILP-3, Xx, I•.W1 0.5 0.2610i 0.15

XI .o 6 0.25 - 0.35 }1,1

KD2PO, X3 I= 0.99 - I 0.l31,,=.85 0PIO51•- 0.391211

KAb Po. X3 .- f. I'"l 0.51 j - --K"b,•lFoO x-, t.01 102 0.231 t1
Klas6 X3 t4 o M • o.56 116l -- . T

X3O.70 ["I - - -

Rbd1AiO, Xg-0O.G4 |t| 0.23 1-1 - -

CsM1 AO 4  X34=0.
5

3 IN) 0.17 1I5 - -

N1ltiPO . I -- 0.24 -08-o 9 11 -~m - 0.45 11

ND 4DPO# X14-1.( Ip 10 0.51 1"1 -

LINbO3  Xt,,-6,3; 1•t.. LOSSw wk

LIT0I,• -3..-

X' - 4P I A.1 3.5 ^_ 11

B&t1O, X ,1* 0.02 - 0.2O |81

X.,.-,- jU.l WJ 0.39 jl8 l

Bal'aNk ,1  X , - 23 0.77 -

X13 - 18.9 -O

Commnent. For x O4 the value X is used as the unit Xil. The

absolute value of X = 3-10-9 Cgs electrostatic system [961. For

quartz Xll and 672w/(4P) are used [81).
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In order to determine the large nonlinear effects in addition to
great nonlinearity it is necessary that the conditions of synchronism be
satisfied. The essence of these conditions consists in the following. A

powerful light wave modulates the permittivity of a medium according to
the traveling wave law. If within the medium waves of three frequencies
w1' w2' w3 interact (foa instance, 1 + L2 = w 3), the strong nonlinear

interaction among the waves and accumulation of the energy of the waves by
measure of their propagation within the medium are possible only if the
phase relations among the propagating waves remain constant over the
entire distance, i.e.,

kIn +k-- 4". (11.34)

where k is the wave vector.

For second harmonic generation the condition of synchronism has the

form

2k 1 = k2,

or

For a boundea medium the accumulation of energy is possible also
when A # 0, but A should! net be exceedingly large. The iength of speci-

2 2
mens for which accumulation of energy during second harmoiat generation is
still possible is determined by the relation

124 j-=• (11.36)

The condition of synchronism may be satisfied if the coefficients of
refraction of the wave of initial frequency and of the second harmonic for
the corresponding direztion of propagation of the waves are equal (we will
recall that lk= n- , where n .s the refraction index, w is frequency, c is

c
the speed of light). The conditions of synchronism can be satisfied only
for various combinations of waves of different polarizatior; for instance,
tWO ordinr- incidJnt waves in combinntion :!t e n e.tra-.!..ary ;..va of
the second harmonic, the condition of synchronism has the form

b+k?-k1. (11.37)
O e

This case is realized in M.P04, since here nI > nl, and even
_0

Angle 00 between the direction in which the condition of synchronism
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is satisfied and the optic axis is called the angle of synchronic-n. The
direction of synchronism Oz in a KDP crystal is shown schematically in
Figure 11.7. For the ordinary and extraordinary waves of the original
radiation and extraordinary wave of the second harmonic the condition of
synchronism has the form Ik:+ I--kZ'" (11.38)

This case may also be satisfied in a uniaxial negative crystal.

An extremely important value characterizing 'ae nonlinear properties
of a crystal is the so-called mismatch gradient. The mismatch gradient
determines the rate of change of mismatch A during deviation from angle of
synchronism 80, i.e., is equal to dA/d6 in the vicinity of 0"

A great advantage of crystals when used in nonlinear optics is the
possibility of noncritical generation of the second harmonic, i.e., they
satisfy the conditions of synchronism for angle of synchronism 00 = 900.

Here the velocities of the waves of polarization of the second order and
the emissions which they produce are different, birefringence does not
occur and the coherent path of the specimen on which energy can accumulate
during second harmonic generation is determined only by the divergence of
the laser beam.

The conditions of synchronism are of analogous form for various
versions of parametric amplification (for instance, amplification of two
weak waves with frequencies w1 and w2 using high-frequency pumping w =

1 2 p
= w1 + w2 or parametric frequency conversion w1 + W W2, where w is

p p
the pumping frequency).

If a mirror is used to return to a crystal operating as a para-
metric amplifier the required part of the energy of waves oi the required
frequency, the parametric amplifier may become a generator.

Figure 11.7. Indicat~iceB of
refraction indices n1 , n ,
e efon1, n2 of KH2 PO crystal for

X e Ltwu optical freqaencies z and
" 2w in plane z'xl, where z' is

4 - the optic axis, 00 is the angle

for which the condition of
CN 1  synchronism is satisfied.

Mhe most eirecti;c uyfZals used at th,. present time in nonhinrar
optics are ferro- and antiferroelectrics, in particular ferroelectrics with
the KH2 PO4 , tetragotal potassium-tungsten bronze and lithium niobate

structures (Table 21). These crystals can satisfy the conditions of
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synchronism, and in certain cases (at certain temperatures and with certain

electric fields) noncritical second harmonic generation is possible.

In the case of the RbH2PO4 crystal, noncritical second harmonic

generation is possible due to temperature adjustment of dispersion
characteristics [84]. In the case of KH2PO4 noncritical second harmonic

generation can be achieved through adjustment of dispersion characteristics
with the aid of an electric field near the Curie point [85]. The condition
of noncritical second harmonic generation for lithium niobate is the rela-
tio1n:

W. (11.39)

Thiz relation may be satisfied by varying wavelength and temperature
(temperatu-: adjustment of dispersion characteristics). The temperatures
at which it is posrhble to obtain in lithium obate summary frequencies
of varios lasers under conditions of noncritical phase matching, and also
frequencies one-half the original frequency, were calculated in [24]. The
temperature adjustment of dispersion characteristics for obtaining non-
critical phase matching is easily accomplished in crystals with the
potassium-tungsten bronze structure [62-64]. The directions of synchronism
and magn udes of mismatch gradients are calculated in [87] for KDP, ADP
and :itýLum niobate crystals.

Great stability with respect to large light flux pulse capacities
(up to several hundred 16t/cm

2) is noted in cr.ystals of the KDP group.
Certain crystals, however, cannot operate under conditions of irradiation
with laser beams of considerable power. Fluctuations of the refraction
index occur in lithium niobate, for instance, during irradiation (optic
aging). This phenomenon occurs to a lesser extent in lithium tantalate

Scrystals [88]. It occurs in KTN crystals under the simultaneous effect of
a laser beam and stationary biasing field [89]. The causes of this
phenomenon are not completely clear. Presumably, in particular [89], it
is related to the formation of a space charge as a result of photoexcita-
tion of current carriers from traps. This charge, in turn, leads to
irregularities in the refraction coefficient due to a great electrooptic
effect. It is possible that the magnitude of this charge is related to
the nunber of free lattice nodes capable of serving as traps for current
carriers and, consequently, are sources of photo electrons [63]. Attempts
are being made to create new materials in uhich fluctuations of the
refraction index will not take pla-.. in particulai, .nalysis of th:
optical nonlinear properties of niobium ccmpounds with the tetragonal
Dpotassium-tungsten bronze structure with filled catioi, positions in the
lattice showed that some of them display less optical aging than lithium
niobate. These include K6 Li4 % 100o with filled positions in the

pentagonal, tetragonal and triangular lattice channels [631, K2Sr4 Nb 0

.62] and N-2 a42.Mb 100 50 ..J -rtls .:!. f.-.. d posiOS .n tu..

and tetragonal channels.
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The results of the estimate ot nonlinear optic properties with the
aid of the powder method, not requiring gooi crystals, are presented for
several materials in [90]. The following ferroelectrics are characterized
[90] by great optic nonlinearity in combination with the possibility of

= phase matching: KIO., PbTiO3, KNb0e, ecc. BaTiO3, Gd(NO4 ),, etc. are

characterized by great optic nonlincarity, btt without phase matching.

Noteworthy are attempts to cicate sonrces of coherent emission on
the basis of ferroelectric matricts, si•-ce '-he direct action of the electric
field on the laser beam is possible in such sources.

'The generatioi, -1 coherent light emir ;ion using the ferroelectric
Gd2(MoO4 ) 3 , containing a mixture of neodymium, was reported in [91].

Induced emission of lithium niobate crystals with neodymium impurity was
achieved in 1921.

For the parameters of nonlinear optic materials the reader is
referred to overviews [14, 93, 94] and Table 21.
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CHAPTER 12. THERML PROPERTIES JF FERROELECTRICS

§1. Thermal Capacity

In order to understand the nature and character of the ferroelectric
phase transition it is particularly important to know the dependence of
thermal capacity on temperature in the region of the transition.

According to thernodynamic theory, as we know, first order phase
transitions occur with latent heat of transition, and for secord order phase
transitions thermal capacity must change abruptly. Ferroelectric phase
transitions are exceptions in this sense and, as s!,hNw in Chapter 3, the
expressions for the thermal anomalies can be derived by using the expansion
of the thermodynamic potential in terms of degrees of polarization. Equa-
tion (3.5) can be written for entropy change (AS) in the form:

S(12.1)

In the case of the first order phase transition we haie for latent
heat of transition AQ:

4Q- - r l., (12.2)

where P is the jump of spontaneous p3larization at the Curie point. The
s

jump of thermal capacity for the second order phase tiansition can also be
determined from (12.1):

• •''• r'#T"(12.3)

Recalling (3.9a), or making the crnrresponding substitution in (3.10),
we can find another, often more convenient formula for Ac"

6(12.4)
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Fi
"The thermal anomalies at the Curie point have been analyzed most

thoroughly for ferroelectrics with the second order phase transition.
Hosh'no, et al [1] and Strukov, et al [2-5] analyzed the temperaturedependences of thermal cap-,city of triglycine sulf-te and isomorphic com-

pounds. The curve plotted by Strukov, et al [2] for the triglycine sulfate
crystal is illustrated in Figure 12.1. The experimental values of entropy
change (AS) of this group of ferroelectrics are presented in Table 23.
The discrepancy between the theory and experiment has the form of the curve
c(T) in the region of transition. The theoretical dependence of thermal
capacity on temperature can be calculated according to equation (12.3).
This dependence has an abrupt change at the point of transition, but it
does not have a sharp peak [1]. The peak of thermal capacity at the Curie
point is observed in trigly.ire selenate [4], triglycine fluorberyllate [5],
and NH4 HSO4 [6] crystals. The reasons for the discrepancy b,•twecn the

theoretical and experimental dependences are not known at this time.

Figure 12.1. Temperature dependence of thermal
capacity of shorted triglycine sulfate crystal
(Strukov [2]).

El I
-I I

Soo

I eI

*-3

o-- -1r,- 9'

Figure 12.2. Temperature-deDendence of thermal
capacity of shorted potassit-a. dihydrophosphate
crystai. 1 -- according to St!ukov, et al [13';
2 -- accarding to Stephenson and Hooley [11,]

It should be pointed out that if terms that take into account the
fluctuating heterogeneity of polarization are inttrodu:ed in the expression
for the thermodynamic potential, then near the Curie point 1 ilnIT - O]f

for axial ferroelectrics ani c 6 )T ) -1/2 for ferroelectrics withi two

- 407 -

-_- =



and three ferroelectri, axes [7]. The experimental results for triglycine
sulfate [8, 3] and triglycine fluorberyllate [3] in a narrow temperature
range near the Curie point, in the opinion of the authors of these works,L satisfy the logarithmic function. Thus, it has been found theoretically
aand by processing experimental data that the thermal capacity at the Curie
polnt has a logarithmic feature.

This coincidence, however, appareatly cannot be regarded as the
complete theoretical explanation of the anomaly. The fact is that considera-
tion of fluctuations may yield only a very narrow peak of thermal capacity,
whereas the experimentally observed maximum is asymmetric and quite broad.
Strukov, et al [9] and also Baumberger, et al [10]. analyzed the influ-nce
of a stationary field on the anomalous change of thermal capacity of
triglycine sulfate crystals. On application of an electric field the
thermal capacity peak vanishes and no abrupt Jump is noted. The greater
the strength of the field the more "eroded" the thermal capacity anomaly
becomes, This transformation is not surprising. The change of thermal
capacity caused by a change of polarization is determined, as before, by
relation (12.3), but now P is not spontaneous polarization, but the
equilibrium polarization in the external field. Temperature dependences oF
polarization in the presence of an electric field for the case of the
second order phase transition are given in Figure 3.10b. The character of
these dependences is such that dP/dT and the product P(dP/dT), which deter-
mines the behavior of thermal capacity, changc monotonically with
temperature, without abrupt jumps. Thus, the electric field leads to
smoothing of the thermal capacity peak.

The thermal capacity anomaly at the Curie point was quite carefuliy
analyzed on potassium dihydrophosphate crystals. These studies were
conducted by Stephenson and Hloley ['1A, Reese and May [12], Strukov, et al
[19]. The peak of thermal capacity of potassium dihydrophosphate is naxrow
and high (Figure 12.12). In the paracectric phase, just 0.5° above the
Curie point, thermal capacity is again normal [13]. This all 'ndicotes
that the phase transitiop it potassium dihydrophosphate is a second order
phase transition, and possibly first order near the critical point.

The analytical form of the function c(Te - T) apparently c..nnzt be

regarded accurately established. In the farroelectric phase, according to

the data of Strukov, et al [13, 141, c - (T - T)-, where 6 0.5. The

results of Reese and May [12] are in better agreement with the logarithmic
law, although they also satisfy the power function, albeit at somewhat
greater distance from the maxinum. Ihere 6 = 0.5 below the transition and
A = 1.0 above the traosition. Even the sane experimental result.; of
Stephenson and Hooley [11], according to Teaney's calculations [i4],
satisfy the power law with S = 0.5, and according to Grindlay's calcula-
tions [15), are in better accord with the logarithmic dependence. The
application of an electric field, Just as in the case of triglycinc sulfate,
leads to a reduction and erosion of the thermal capacity anomaly [13]. The

&" -- Mw



thermal capacity peak at the Curie point is also diLplayed by RbH2 PO4 [16].

In contrast to the preceding two phosphates, the thermal capacity peak of
KDPOV4 , isomorphic to them, is so high and narrow that experimental data

can be explained only in the assumption of latent heat of transition [13,17, 18].

Table 22. Heat (AQ) and Entropy (AS) of Transition of
Several Ferroelectrics

Compound cal/mole-g

Triglycine sulfate { t 0.4

Triglycine selenate - 0.57Triglycqne flugo•- 4oI tt
erygo o,!la e ! -i 0.74

2.000.02

XD^ f0 _ or o d.cqo

0.0?4

roin cubic to ,7 0.3 t:I

etragonal 4f o.1 2I
tetetragona 85| o0 Zi8

o rhombic t 45& 0.2
to tetragonal| 12 0.0
Irom cubic to. 19o:LO 0.2 Val
tetragonal 13* 0. 19 eel
f•rom tetragonaL 85:0o 0.17 10

mO to rhombic
[from rhombic 0t ± 0 a~ .12 in)

rhombohedrai

The thermal capacity of Seignette's salt has been investigated by
numerous researchers [19-23], but these works are comparatively old and
their results differ greatly from each other. It can be said only that the
heats of transition at the Curie points are low. According to Wilson's
data [22], the thermal capacity anomaly at the top Curie poi it is positive
and at the bottom Curie point ix is negative.

The ferroelectric phase transition of barium titanate, in contrast to
the preceding ferroelectrics, is a second order-transition and should take
place with latent heat. During calorimetric measurements, however, by
virtue of defects, internal stresses, etc., only a thermal capacity peak is
observed (Figure 12.3). The heat of transition can be determined by
integrating AQ = f AcdT. AQ and AS, obtained by various authors [24-271,
are listed in Table 22. Presented here also are AQ and AS for low-temperature
phase transitLons of barium titanate, and also for all three phase transi-
tions of KINb 3 , which by its properties is the analog to barium titanate.
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It is noteworthy that relation (12.2) is satisfied with good accuracy for
"barium titanate.

b

Afn

M 
'4RE 0o anui~

I -40 VC
U 00 1ff

it 9V 5 M 2NW 4C - QV -W40 T,-C

Figure 12.3. Temperature dependence of thermal capacity
of polycrystalline barium titanate. a -- according to
Todd and Lorenson [27]; b -- according to Shirane and
Takeda (25).

§2. Thermal Conductivity

The thermal conductivity of ferroelectrics has not yet been analyzed
to an exy.nt sufficient to permit discussion of any general principles.
Data are available only for phosphates and certain perovskites.

The thermal conductivity of phosphate crystals was analyzed by
Suemune [30, 31], who detected in all isomorphic compounds strong anomaly
at the Curie point (Figure 12.4). In ordinary crystalline dielectrics at
moderatel:. low temperatures the dependence of thermal conductivity on T at
high temperatures is a power function of T", and at lower temperatures it
is exponential. In the case of ferroelectrics with hydrogen bonds, inS~Suemune's opinion [31], the unordered position of hydrogen in the paraelectric

phase leads to limitation of the mean free path of the phonon by the dimen-
stons of the el.mentary nucleus and the temperature dependence of thermal
conductivity is determined by the temperature curve of thermal capacity,
which drops with temperature. Thus, there is presumably a forml analogy
with glass, where the mean free phcnon path is limited by the dimensions of
the crystallite.

Below the Curie point the hydrogen becomes ordered and thermAl
conductivity increases sharply. The height of the thermal conductivity peak
at temperaturcs belcr 10°K is proportional in a number of phosphates to TZ.

c
The experimentz.l data for the thermal conductivity of ferroelectrics with

- -
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Figure 12.4. Temperature dependence
of thermal conductivity of KH2PO

. o KD2PO and KII2 AsO4 crystals (Suemune

..* [31]). Theoretical curve: in
>? regions A and B the thermal resist-

S4ance is attributed to scatter
processes, in range C to pointa -

o defects, in D to dislocations and
0 • in E to the crystal surface. The

O . drop of thermal capacity in region
F is related to the unordered dis-
tribution of hydrogen atoms. I --•siF/KD2 P04; 2 -- KHP0 4; 3 -- I2 AsO4.

the perovskite type structure, obtained by different authors, disagree con-
siderably. Thus, polycrystalline specimens of barium titanate, lead titanate
and certain solid solutions based on barium titanate display at the Curie
point small thermal conductivity peaks [32-361. Barium titanate mono-
crystals, according to some data [37] display no anomalies at all during
phase transition, whereas according to other investigators [38], thermal
conductivity passes through minima at the Curie point during low-temperature
phase transitions.

The latter results may be explained from the viewpoint of dynamic
theory, according to which the energies of the acoustic and iateral optic
branches of oscillation converge near phase transitions for low wave numbers.
By virtue of the closeness of the energies of two types of vibrations the
number of scattering events in which optical phonons participate may increase,
and consequently thermal conductivity may decrease [38, 39]. That such a
scattering mechanism actually occurs is verified by Steigmeier's studies
[40] of SrTiO.3 monocrystals. He discovered that the application of a

stationary electric field in the direction 7erpendicular to the temperature
gradient results in a substantial increase in thermal conductivity at
temperatures below SO0 K. The effect of the electric field on thermal
conductivity, in Steigmeier's opinion, is related to displacement of the
optical branch with respect to frequency.

§3. Electrocaloric Effect

The electrocaloric effect is an effect connected with the pyroelectric
effect, consisting in a 'hange of entropy of a system when placed in an
electric field. in the general case
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Recalling that

F (12.6)

and

(12.7)

we obtain from (12.5) with the condition dS = 0:

i (12.8)

Thus, under adiabatic conditions a change in electric field strength
leads .o a change in temperature of the body. Since the change of
temperature is proportional to (3P/dT), we should expect the effect to be
strongest specifically in ferroelectrics, and near the phase transition,
where the dependence of spontaneous polarization and dielectric suscepti-
bility on temperature is especially strong. For comparison with the experi-
meat it is often convenient to use another expression for the electrocaloric
effect, which can be derived by regarding entropy as a function of P rather
than of E. Then

-)dp + kY)j' dr. (12.9)

Recalling that

(•,k),_•(12.10)

and the relation of the Maxwell type

VP ((12.11)

we have for adiabatic conditions from (12.9)

"(12.12)

Then, using the equation of state (3.8a), (12.12) can be reduced to
the form

" P (12.13)
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After integration of (12.13) we obtain

Nr
Ar (12.14)

Thus, in the case of the second order phase transition the change of
temperature is directly proportional to the change of the square of polariza-
tion.

a b

# A

& fW fs" 2939 0 5 .0
EVicM Pf ,()C/cm2) 2

Figure 12.5. Dependences illustrating electrocaloric
effect on triglycine sulfate crystals (Strukov [43]).
a -- dependence of change of temperature of crystal on
electric field strength at various distance- from Curie
point (T - Tc). 1 -- -0.041°C; 2 -- +0.147 C; 3 --

-0.289-C; 4 -- -0.535*C; S -- +0.04120 C; 6 -- -1.375°C;
7 -- -2.6370 C; 8 -- +1.240°C; 9 -- -8.0040 C; 10 --
+1.784*C; 11 -- +3.1760C. b -- dependence of change of
temperature of crystal on p2 at various distances from
Curie point (T - T c). I -- +0.147*C; II -- +0.412cC;

III -- ÷1.240*C; 1 -- 0.005C; 2 -- -0.2900 C; 3 --
-0.387*C; 4 -- -0.663°C; S -- -1.190*C; 6 -- -1.570*C;
7 -- -2.1880 C.

The electrocaloric effect of ferroelectrics was first discovered
exp,.rimentally by Kobeko and Kurchatov [41] on Seignette's salt crystals.
Latvr on Seignette's salt [42], triglycine sulfate [43, 44, 10], triglycine
selenate [45, 46], tr-glycine fluorberyllate [46] crystals, polycrystalline
barium ti~anate (47], strontium titanate [48, 491, were analyzed. The
experimental data for the first four ferroelectrics agree satisfactorily
with equation (12.14). The dependences of AT on F and p2 are shown in
Figure 12.5 for triglycine sulfate crystals. Above the Curie point the
straight line AT = f(P2 ) passes through the origin of the coordinate system.
Below the Curie point the straight lines cut on the abscissa segments equal
to'P2. Thus, electrocaloric measurements make it possible to determine the

magnitude of spontaneous polarization, and more accurately, apparently, near
the Curie point than from the hysteresis loops.
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Measurements of the electrocaloric effect on strontium titanate were
aimed at investigating the possibility of reaching low temperatures through
adiabatic depolarization. Hegenbarth (48] brought about maximum change of
temperature of polycrystalline specimens in the 16-18*K range, where AT
~ 0.1K for E = 10 kV/cm. Kikuchi and Sawaguchi [49] produced the maximum
effect of AT = 0.28°K (E = 7 kV/cm) at 1l.5°K on monocrystals. AT rapidly
diminishes as the temperature approaches the liquid helium temperature [48].
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CHAPTER 13. EFFECT OF ELECTRIC FIELD AND MECHANICAL STREF:SES ON THE

FERROELECTRIC PHASE TRANSITION

51. Effect of Electric Field

The effect of an electric field on the ferroelectric phase transition
%;an b Aiaiiug" oni the basis of thermodynamic theory [1-3j. We will assume
that an electric field is applied on the ferroelectric axis and we will
examine the equation 3/3P = 0, which considering terms P6 in the expansion
of the thermodynamic potential, has the form

-, -P2P++ J1". (13.1)

In the case of the second order phase transition only coefficient a
can be negative. Therefore, when E > 0 there is only one positive solution
for P. When E = const, P is a continuous function of temperatuye and is a
nonzero value at all temperatures (Figure 3.lOa). Thus the resIlt of the
application of the electric is that there is no phase transition as such.
The temperature dependence of permittivity, however, has, as before, a peak.
As biasing field intensity increases, the peak decreases and is displaced
toward higher teneratures. Wieder (4] demonstrated that the shift (AT) of
the peak, according to thermodynamic theory, should obey tie law

.T-•.•E'h. (13.2)

Investigations of colemanite [4] and triglycine sulfate (normal and
deuterated) [S] showed that the experimental values of AT agree satisfactorily
with equation (13.2).

For the first order phase transition 6 < 0. In examiui:ng the
dependence of polarization on the field it is convenient to introduce
standard values of polarization (p), electric field strength (e) and
temperature (t), related linearly through the coefficients of the expansion
of (3.12) with P, E and T, respectively [2]. Equation (13.1) is written in
new variables in the form [2]:

- 417 -



(13.3)

Thle theoretical dependences of polarization on field e for various

R temperatures t are given in Figure 13.1. Only those segments on the curves,
where dplde > 0, correspond to stable states. Therefore, when dp/de becomes
negative an abrupt transition takes place on the vei'tical line into the
stable state. The transition occuzrs at the points wheze

S.•,;•+s-o.(13.4)

Equation (13,4) has two Teal roots for P2, when

if a < 0, then one va•ot is
af•,•,rpositive and the other is nigative.

too If a > 0, then both roots are posi-
tive. The temperature rvnge above
the Curie point (t > 1 in Figure 13.1)

0.1 I -. , ccrresplnds ta the latter case. As
6 V / seen from the curves in Figure 13.1,

in some interval of values t > 1 anS• ¢'•,-., . 'abrupt change in polarization should
u• • /:' "'"•; J .- occur as field strength changes.

1 Y #hen change is cyclic the field will
0.I. L- " be described as the so-called double

Sn -r i Jd e0 hysteresis loops. An abrupt increasestandard U.eld, e in polarization corresponds to a
transition from the paraelectric to

Figure 13.1. Dependence of sxaneard the ferroelectric state, induced by
polarization (p) on standard eleo- the electric field. "h.e temperature
tric field strength (e) for several ,ependence of polarization for E =
,tandard temperatures (t) near the const are illustrated in Figure 3.10b.

Curie point (Merz [2]). The temperature above which the
induced phase transition will not
occur can be determined from condition

(13.5), since equation (13.4) will not have real roots. The displacement of
the transitiou temperature uith electric field strength is related to the
si.e of the jump of polarization (AP) and change of entropy (AS) by an
equation of tne Clapeyron-Clausius type (11:

Th. dependence of polarization on electric field strength is
conveniently observed on an oscillograkh scope with the aid of the same
circuit used for observing dielectric hysteresis (see S1, Chapter 8). Such
investigations were conducted by Merz [21, Cross 161, Drougard [7] on
barium titanate crystals with the field applied in direction [100].

4A8
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According to theory, directly above the Curie point in the t;mperature
interval of approximately 80 the dependence of polarization on electric
field strength has the form of a double hysteresis loop (Figure 13.2).

Figure 13.2. Double hysteresis loops observed on barium
titanate monocrystals in some temperature range
i-ediately above the Curie point. The electric field
is applied in direction [100]. (According to Drougard
and Huibregtse [8]).

The abrupt, field induced transition from. the paraelectric state to

the ferroelectric state can also be observed by investigating the pyroelec-
tric effect by the dynamic method. Chyznoweth [9] discovered that in some
temperature range above the Curie point pyroelectric current, depending on
the stationary field applied, first increases rapidly, and then drops
abruptly, and slowly diminishes as the field continues to increase. The

jump corresponds to transition to the ferroelectric state. At great
distances from the Curie point the pyroelectric current peaks smoothly
without abrupt changes. The observed dependence of pyroelectric current on
electric field strength agrees with the theoretical dependence.

Polarization jumps lead to jumps in birefringence. Investigation of
the electioptic effect in the vicinity of the Curie point was done by
Meyerhofer [10]. His dependences of An on the strength of the field,
applied in directions [100] and [110], are shown in Figure 13.3. The
phases, induced in this case, are tetragonal and rhombic, respectively.
If the electric field is applied in direction [110], then near the Curie
poirt there is a mixture of tetragonal and rhombic domains. At higher
temperatures the induced phase is completely rhombic. There is less
birefringence in this phase than in the tet.agonal phase.

The ratio P?/An is considerably greater in tie induced rhombic phase
than in the rho'abic phase stable below S5C. This shows that these phases
are not identical. In certain crystals with the field applied in direction
[II0] Meyerhofer [101 observed a transition first into rhombic and then,
in a stronger field, into a new phase with greater polarization on [11"],
but with legs birefringence. What phase this was could not be established
on the basis of electrical and optic measurementg. In the presence of two

- 4L~1A
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Figure 13.3. Dependence of birefringence of barium
titanate crystal on electric field strength in vicinity
of Curie point. a -- field applied in direction [1001;
b -- field applied in direction [1101l. (According to
M•eyerhofer [10) ).

consecutive induced transitions the dependence of polarization on field
strength has the farm of the so-called quadrupole hysteresis loop (Figure
13.4a). Jn barium titanate crystals the transition to the induced phase

occurs through the formation of nuclei of the new phase, i.e., the same as
in the case of the absence of a field,

14

Figure 13.4. Deysteresis loops observed in barium titante

crystals at temperatures close to the points of phase
transitions: a -- quadrupole hysteresis loop obtiined in
barium titanate crystal near Curie point. olect.ric field
applied in direction [1101 (0;eyerhofer [101); b -- triple
hysteresis loop in barium titanate crystal in rhombic
phase at temperatue clot e dto temperature of transition

into tegragonal pha~e. 'Electric field applied in pseudo-
trnt cubh e direction t clle) (Drougurd and Iluibregtse ilo().

13 An ebactric field ta so has an effect on the phase transition between

2 two ferroelectric phases f iti different directions of spontaneous polariza-

tiont Thus, Huibregtse and Young [11c, investigating the effect of an

S~electric field on the transition from the te*.ragonal to the orthorhombic
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phase, observed that a field in the direction [100] lowers the transition
temperature. Thus, the range of the tetragonal phase is exý,anded. This is
natural, since an external electric field on [100] favors tae direction of
polarization corresponding to the tetragonal phase. The dependence of
polarizatio't on the strength of an electric field applied in direction [100]
at a temperature somewhat below the transition temperature (range of thermal
hysteresis) has the form of a triple hysteresis loop (Figure 13.4b). This
is related to the fac i that the component of spontaneous polarization in
dircction [100] is smaller in the rhombic phase than in the tetragonal phase.

Triple hysZeresis loops can be observed only at frequencies below
5 liz. At higher frequencies the crystal i? destroyed. Fuibregtse and Young

(111 snowed that the presence of the triple hysteresis loop follows from
thermodynasiic theory. Comparison of thermodynamic theory with the results
of dielectric measurements makes it possible to determine many coefficients
in the expaiision of the thermodynamic potential by degrees of polarization.
If this expansion is written in the form

fe * + A (I", + P' + J" + B (J", + P,' + P,) + D) (PI P + PP'J" + P!P,) +C1PP+(i~P~~...(37+ C M. + M,+ P.)+ G(I P, + J.• +, .l (13.7)

then coefficient A can be determined from Curie-Weiss law (9.1), B and C
from measurements of the dielectric constant and spontaneous polarization
in the tetragonal phase, and D and C from comparison of theoretical and
experimental triple hysteresis loops [11]. These methods yielded the
following coefficients in the expansion cf thermodynamic potential (13.7)
for barium t-,tanate (according to Drougard and Huibregtse [8]):

Coefficient Values (in esul
A ¢... 3. 09 (r Tq.ra e- o

a. 4. 6.0(G -15

C... 9.•iO-•

Coefficient B is a linear function of temperature. That the value of
B f:or S°C lies on the same straight line with values obtained from measure-
ments 3f dielectric nonlinearity In the paraelectric phase [12] is a remark-
able fact (see §2, Chapter 9).

§2. Effect of Mechanical Stresses

All mechanical stress tensor comronents can, in principle, have an
effect on the ferroelectric phase transition. In practice, however,
investigations with large strebses, yielding a substantial effece, can be
done only with hydrostatic compression. In this section, therefore, we
will examine almost exclusively the action of such a type of pressure.

In the case of the first order phase transition the change of
transition temperature -'1th pressure (p) is determined by the Clapeyron-
Clausius two-phase equilibrium equation:



4% V
V-'p ' (13.8)

where AV is the change in volume during phase transition and AQ is latent
heat of transition.

rFor the second order phase transition displacement of the Curie point
r with pressure can be determined from the Ernfest relation:

I X* (13.9)

where a and a, are the coefficients of volumetric expansion of the top and
bottom transitions, respectively, c and c' are the correspnnding thermal

P P
capacities at constarnt pressure and p is density, Thermodynamic investiga-
tion of the effect of hydrostati'c pressure on the sezond order ferroelectric
phase transition in the centrosymmetric nonpolar phase was conducted by
Kholodenko and Shirobokov [13], Smolensk<iy and Pasynkov (141, Devonshire [1].

For dTc /dp the following expression was obtained:

- * ,(13.10)

where it is assumed that spontaneous polarization occurs on the i-th axis;
_cli + A.) is the same as the coefficient of volumetric electro-

Oli+2i 31
striction. We will note that i. is easy to derive (13.8) from (13.10) by
multiplying the numerator and thi denominator of the right hand side by
Tc and Ps at the transition poirt- and by tusing (12.2).

Equations (13.S) and (13.10) show that if in the presence of
spontaneous polarization the volume of the ferroelectric increases, the
Curie point dec;?eases as pressure increases and conversely.

The effect of pre.sure on the ferroelectric phase transitinn has
been moat thoroughly analyzed for barium titanalc. These investigatiens tsere
done by Merz '1], Klimovski [16-19;. Minomura, et al [201, Leonidova and
Volk [21], Samara [22], Polandov. et al [23]. The data of several
researchers are presented in Figure 1T.S. Most restilts coincide qulte well.
The value of dTc/dp lies within the range (4.8-t,.3)*10-3 deg-atm" , which

is close to 7,10-3 deg'atm- 1 , computed according to (13.8). Reduction of
the tran~sition temperature leads to a reduction of spontaneous polarization
at room temperature and of tetragonality of the elementary nucleus (24].

The coefficit t a' in the expansion of the thermodynamic potential

and, consequently, Curie constant C depend little on pressure. The
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T;*C Curie-Weiss temperature 0 drops with

,V IX pressure, and more slowly than Tc in

too . monocrystals [22, 231. This indi-
cates that tie phase transition by19-0.j its nature is close to tfie critical

"point. Accordingly the permittivity
M at the Curie point increases [22],

[ and the jump in polarfzation
diminishes [231. In the paraelec-
tric phase the dependence of
permittivity on pressure obeys s~ne
form of the Curi,--iWci3s law [221

0 C I- f6 9 , '(Figure 13.6):
Pressure, 103afam

Figure 13.5. Dependence of Curie ,--, (13.11)
point of bariuma titanate on hydro-

static pressure according to the where C* - k-.8-2.9).104 atm, and pO
data of several researchers: I and
2 -- Samara [22] (1 -- monocrystals; varies from crystal to crystal.
2 -- c i -Values from 1.8103 to 5.103 atm"cerm ics)1; 35[151;4 -- •inora t have been determined. In contrast[20] ; 6 -- S and Volk et1al to monocrystals, ceramic specimens of

[20at th Curi pointv increases [22],
barium titante display a decreasing
value of permittivity at the Curie

point with increasing pressure. The reasons for this are not known. How
the low-temperature phase transitions will behave when pressure is increased
can be predicted on the basis of Clapeyron-Clausius equation (13.8). As
pressure increases, the temperature of transition fron tke tctraggital phase
to rhombic should decrease with the coefficient 2.6-10-3 deg-atm-1, anj
the temperature of transition from the rhombic phase to rhombohedral shoulu
increase with the coefficient 2-10-i deg-atm-C. Only the first transition
has been investigated experimentally, for which 'linomura, et al [201 found
a linear decrease io the transition temperature with the coefficient
2.8-10-W deg-at1 c-.

"Figure 13.6. Dependence of

permittivity of barium t:tanate
M,1 V 1 monocrystal on hydrostatic

[• -tpressure for three temperatures.
'r- - I Measurements made on axis c.

* ~ K(According to Samiara [2Z.,?

Press-ire, lO It&

' l W-=----- -



The effect of hydrostatic pressure on the dielectric properties of

certain polycrystalline solid solutions based on barium titanate (Ba, Sr)TiO3

[251, Ba(Ti, Sn)O 3 [26, ]7 and Ba(Ti, Zr)0 3 [28, 29], has been investigated

in several works. The temperature of the peak permittivity decreases with
increasing pressure in all these systems, and c at the peak, as in poly-
crystalline barium titanate, decreases. The decrease is quite substantial
in the case of the last two systems.

In contrast to hydrostatic pressure, two-dimensional [30, 31] and
unidimensional [32-35] mechanical compression of monocrystals and ceramics
of barium titanate, causing distortion of the elementary nucleus, increase
the temperature of the ferroelectric phase transition. As shown by
Sinyakov, et al [35], unidimensional pressure has an effect on the field
induced (in direction [100]) transition from the paraelectric to the ferro-
electric state. If the field and the pressure coincide in direction, then
the field of transition increases with pressure, and if the pressure is
perpendicular to the field, then it decreases. Uniaxial pressure also
changes the temperatures of transition from the tetragonal to the rhombic
and from the rhombic to rhombohedral phases. As pressure increases, the
temperature of the first transition increases, and that of the second
decreases [35], i.e., the temperature range in which the rhombic phase is
stable is expanded.

The effect of hydrostatic pressure on the ferroelectric phase transi-
tion in triglycine sulfate was investigated by Jona and Shirane [36],
Zheludev, et al [37]) Leonidova, et al [38-40]. The coefficient of
volumetric electrostriction in triglycine sulfate is negative and in
accordance with (13.10) the transition temperature increases with pressure.
this increase is linear up to 3*10- atm with tb- coefficient 2.610 deg'atm-
[3A, 38]. if the coefficients a and 8 in the expansion of thermodynamic

potential (Z.71 are independent of pressure, then P2 should be a lir.ears
function of temperature and pressure. Experimental results for triglydine
sulfate in the range of temperatures close to the Curie point show that

PF is actually a linear function of T and p [361. The linear depende.-.e of

P s on temperature at various pressures was also observed in the case of

triglycine fluorberyllate [411.

It was reported [42] that at pressures up to 23-103 atm two phase
transitions occur in triglycine sulfate. The nature of the new phases is
presently unknown. Perhaps the behavior of triglycine sulfate at such
pressures is analogous to that of triglycine selenate. Polandov, et a'
[43] noted that triglycine selenate crystals under sufficiently high
pressures change into a nonferroelectric phase, different from the para-
electric phase, stable at atmospheric pressure,

The effect &f hydrostatic pressure on the Curie temperature of



KH2P0 4 and KD2 P04 was investigated by "'uebayashi, et al [44]. The Curie point

decreases with increasing pressure L,. ooth compounds with the coefficient
(-4.52 ± 0.06)*10" deg-atm-1 for K112 PO4 and (-2.63 ± O.OS).l0- deg~atm- 1

for KD2 PO4. In the opinion of the authors [44], such dependence of the

phase transition temperature on pressure is substantiation of the tunnel
model of these ferroelectrics. According to this model the transition
temperature is determined by the distance between two potential minimas ofthe hydrogen bond and correlation energy of the four protons (or deuterons)
surrounding each PO4 -group [45]. It can be expected that both these factors

decrease with pressure. Therefore the Curie point decreases as the pressure
increases. The probability of tunneling is greater for protons than for a
deuteron, hence the effect of pressure is greater in the case of KH 2 PO4 .

Novakovic [46] established that the tunnel model agrees not only qualita-
tively, but also quantitatively with experimental results on the effect of
pressure on the transition temperature.

Seignette's salt crystal under hydrostatic prespure were first
investigated by Yeremeyev [47] who established that when pressure is
increased the upper Curie point is displaced toward higher temperatures.
Then Bancroft [48] performed detailed analyses up to a pressure of 10-103 atm
and Samara [49] tip to 20I0O atm. According to the data of these authors,
the top Curie pcint increases linearly with pressure with the coefficient
11-10- degeatm"1. This dependence can be measured only up to 5.103 atm,
since at higher pressures the Curie point becomes higher than the decomposi-
tion temperature. The lower Curie point also increases with increasing
pressure up to 10-103 atm with the coefficient 3.8.10-3 deg-atm"1, and from
10.103 to 20.103 atm with the coefficient 4.4.10"3 deg-atm-'. Since the
bottom Curie point increases with pressure more slowly than the top, the
temperature range in which spontaneous polarization exists is expanded,
but the maximum spontaneous polarization remains practically unchanged'[49].
The Curie constants C in the Curie-Weiss law (9.1) for che top and bottom
Curie points increase approximately 1% per 1 atm increase of pressure. The
isotherms for Ea, as in the case of barium citanate, obey a law of the type

(13.11) in the paraelectric phase. Spontaneous polarization increases and
decreases with pressure near the phase transitions in accordance with
thermodynamic theory, and p2 is a linear function of pressure.
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CHAPTFR 14. RADIOSPECTROSCOPIC ANALYSES AND INVESTIGATIONS OF THE MESSBAUER
EFFECT IN FERROELECTRICS

Radiospectroscon ic methods yield valuable information concerning the
symmetry of the crystl lattice, local magnetic and electric fields of the
lattice, character of the chemical bond, lattice dynamics, etc. Therefore
these models are used extensively in the study of ferroelectrics.

Analyses of the spectra of the resonance absorption of gamma-rays
(the Messbauer effect) yield information physically similar to the informa-
tion extracted by radiospectroscopic methods. in this chapter, therefore,
we will examine also the results of studies of the Messbauer effect in
ferroelectrics.

Analyses of the electroparamagnetic resonance (EPR) and nuclear
magnetic rzsonance (NMR) are usually done in the presence of an external
stationary magnetic field. In NR it alsa largely determines the resonance
frequency w. In the simplest case of free spin: w = yl0 (t0 is the external

magnetic field, y is the gyromagnetic ratio). The EPR spectrim is deter-
mined both by the external magnetic field and ty the internal crystal fields
of the lattice. Analyses of nuclear quadrupole reso,•ance do not require
the application of a magnetic field, and the spectrum is determined entirely
by intracrystalline fields.

U1. Electron Paramagnetic Resonance

In the HPR method the magncL-; dipole moments of electrons of the
shell of paramagnetic ions are used is probes that yield information
concerning the crystal lattice. This method is extremely sensitive to
details of the structure and changes in it. It yields information con-
cerning the character of phase transitions and related changes in symmetry,
motion of ions and reorientation of dipole groups, etc. [1].

EPR spectra are interpreted with the aid of the concepts of static
intracrystalline field, acting on the electrons. The theory of point
chargesý and dioles and perturbation theory are usually employed here for
comparison of theory with experiment. The phenomenological method of the



r]

so-called spin Hamiltonian, which is the energy operator, is used most
frequently for describing the EPR spectrum. The Hamiltonian usually consists
of a Zeemann term, describing the separation of energy levels in a magnetic
field, and terms that describe the interaction of the electron spin of an
ion with the intracrystalline field acting upon it. The EPR spectrum can be
described if the parameters entering in the HamiltoniLn arp known.

The fine structure of EPR spectra is determined basically by the
local symmetry of the crystalline field at the point where the paramagnetic
ion is located. One or another form of spin Hamiltonian is used for
describing the spectrum in accordance with the character of symmetry of the
surroundings, since the spin Hamiltonian should be invariant in relation to
all element' of synmetry of a given point group.

For example, for the case of an i(n in the S-state with spin S - 5/2

and tetragonal symmetry (groups C4 , S,4P C4v, C4 h, D4 , D2 d, and D4h), the

spin Hamiltonian can be represented in the form:

X--P1, #s. + • (haS, + 11,4, 4 + •;• + ,o + ,o; (14.1 )

for trigonal, symmetry (groups C , C3 v,, D3, D3 d, S6

•r. r~pS s, + r011'30 s+ #s}+ Ae. + 'PO +; .0": 14.2)

for rhombic and other cases of symmetry, lower than axial

X =C,5S,+ y,7,S, + eoII.s, + r + BO•0 +M6 + * + e.O!. (14.3)

Here the following symbols are used:9 -- energy operator Nspin Hamiltonian);
first two terms in equations (14.1) and (14.2) and the first three terms
in equation (14.3) describe the Zeemann separation of the basic state in
magnetic field H with consideration of the anisotropy of the g-factor; a is
the Bohr magneton; S is the electron spin operator of the ion. The other
terms describe the interaction of ion spin with the crystalline field.

The indic.es Bk denote the Hamiltonian constants, determination of which is

the purpose of the experiment. The symbols Ok denote the operators of the

spin variables of the corresponding orders, specifically:

C.- (s• + s!).

0- Is, -.+S!)+fW.+S!)SA
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where

If the spin of the paramagnetic ion differs from 5/2, then the
number of terms in the spin-Hamiltonian may change. For S = 7/2, for

instance, operators of the 6th order should be taken into account. In the
case of tetragonal symmetry terms B000 + B 4 04 should be added to Hamilto;Iian
(14.1), ithere 6 6 6 6

-- 5S3 (S + 1)3 + 40ss (S + ip -- 60S (s + t).
(it• {[SI- 8 (S + t) - 38 (51 + S!) + (St + SI) l13a: -.- S (S + 1) - 381).

In addition to the examined terms, the Hamiltonian should include
those that describe the superfine interaction between spins of nucleus I
and electron shell S of the paramagnetic ion. These terms, which should be
added to (14.1)-(14.3), have the form:

1., + B (S,!. + S,I,) (14.4)

for axial symmetry and

•,SID+ L'sIt, + vsl (14.5)

for rhombic symmetry. To determine the character of sylmetry of the
surroundings of a paramagnetic ion it is necessary to anTalyze the angular
dependence of the EPR spectrum. The spin-Itamiltonian constants are found
from data concerning the positions of the EPR lines at certain angles
between the axes of the crystal and external magnetic field (see, for
instance, (1-3] on general EPR problems). Such an EPR dependence in lithium
niobate is given by way of example of the angular dependence of the EPR
spectrum in Figure 14.1 according to data [4]. The five observed lines per-

! 3 atain to transitions between states with spin projections: , "7'27 '
i t 1 3 3 5T"--T,--T*'--T and -- T-*--i- The spectrum is described by the following

H4aiiltonian parameters for the case o the trigonal sy-mmetry 'ihich lithium
niobate po;sesses (see expressions (14.25) and (14.4)): c0 b0 40
- 3B2 = 760 e, b = 60BO = -9 e, A = B = 87 ± e. It i- assumed that .• 2n

'-4 4
ions replace Nb. ions.

EPR investigations are conducted in ferroelectrics on impurities of
certain paramagnetic ions found in the crystal lattice (the impurity con-
centration Is usually a fraction of a prrcent) just like analyses of
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paramagnetic defects of the crystal lattice, occurring, for instance, during
irradiation of ferroelectrics, and also during reduction of a number of
oxygen-containing ferroelectrics.

Ions with a half-field d- or f-shell, in the S-state are most often
used as the paramagne•£c impurity, since the zlectron resonance spectra of
these ions can be detected even at high temperatures by virtue of the weak
interaction of their electron shells with the crystal lattice and, conse-
quently, rather long time of spin-lattice relaxation and relatively narrow
line width. These ions are most often Fe or Mn , the basic state of
which is 6s or Gd or Eu ions in the 8S state.

5/2' 7/2
The Ef'R has been analyzed most thoroughly in ferroelE:trics with the

perovskite stiicture. We will illustrate, therefore, the capability of the
EPR method by wvay uf example of barium titanate. Hornig, et al [5] first
observed the EPR spectrum in barium titanaM+. rystals. It was found that
the spectrum is caused by impurity ions Fe in the basic state 655/2'

sub';tituting Ti.... ions. The EPR in the tetragonal and cubic phases on

Fe... was investigated in [5, 6].

The following form of iHamiltonian was used in [5] for describing the
EPR in the tetragonal phase:

-- us + D* +as, + • + s.(14.6)

The parameter 1) is the axial field parameter. In the cubic phase
a =b, D = 0.

It was bhown [5, 6] that the crystalline field in the positions
occupied by Fe... ions possesses axial symmetry and the z axis of the
axial field coincides with the tetragonal axis of the crystal.

T1hus the symnme-cry of the imarediate surrouyndings of Fe... ions and,

consequently, presumably of Ti+* ions, coincid(s with the tetragonal
symmetry of the lattice. Anisotropy of the g-factor was not noted.

The spin Hamiltonian parameters for Fe+++ according to [51, in the
cubic phase (+160"C) are: g = 2.0036 t- 0.002, a - 0.0102 ± 0.001 cm- ,
D = 0; in the tetragonal phase (+27°C): g = 2.0036 t 0.002; a = 0.0091 ±
t 0.002, 1) = 0.0929 cm-

The EPR spectrum on Fe+++ in the rhombic and rhombohedral phases
of barium titanate is investigated in [7]. It turned out in the rhombic
phase that the axial axis is perpendicular to spontaneous polarization.

The EPR spe'trum of barium titanate crystals doped with Gd+++ ions
was investigated [8, 91. Gd ++* ions replace chiefly Ba ions in thelattice, and therefore, naturally, the crystalline field in the tetragonal

S-,s '. t - ".32 - -



Iigure 14.1. Angular 4pendence
f.oof EPR spectrum of Mn in

LiNbO at room temperature (X
f 2 MM8 mm) [4]. • -- angle between

trigonal axis and external
**m magnetic field H.

phase, acting on , possesses axial symmetry and the axial axis coincides
with the tetragonal axis c. It should be pointed out 4 however, that in
addition to the lines of GA in the positions of Ba , there is also a
cubic spectrum, whizh in [9] is ascribed to Gd in the positions of Ti ,
since the larger GA ions, extending into the octahedron, should move
oxygen ions apart, and therefore the axial component of the field may
vanish.

Analyses of EPR on Mn i ons were done in [lO-12]. The crystalline
field in the tetragonal phase, acting onNn , has axial symmetry. It is
proposed [12] that Mn ions replace Ba faster than Ti , but this can
hardly be considered conclusively proved.

M~any works contain an analysis of the temperature dependence oF the
EPR spectrum [6-81. Shown in Figure 14.2, For example, is the temperaure
dependence of the resonance magnetic fields of BaTiO3 , doped with Gd*0

in the tetragonal phase [18]. The greatest temperature dependence is
observed for the axial field D or b2 .

Of great importance are attempts to connect the spin Hamilitonian
pars,'-ters with the coefficients of the crystalline field potential, which
-,z -z represented, as we know, in the form of expansion in terms of

spherical harmonics:

~ ~'i r[Y-6 + +Y). (14.7)

The first term describes the axial field and is denoted through Vax,

aand the second term describes the cubic field and is denoted through Vcu

The problem of determining the amount ot separation of the basic
S-state under the influence of the crystalline field is quite complex.
The S-state should be separated neither by 'the crystalline field nor by
spin-orbital interaction, and the separation observed in tests is evidence
of the need to take into account the admixture of various nerturbed .2tates.
The problem of separation of the 6 S /2-stat- was first examined by
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Van Vleck and Penney [13]. The problem was also discussl.later [14-17].
Vnrious schemes of perturbation of the basic state of Gd have been con-
sidered [18].

'The conuributions of the
* •various mechanisms of axial separa-

S. -tion are proportional either to the
first or second powe:' of the axial
potential of the crystalline field.
According to [13]

U

• 2
D - V. (14.8)

a), ax

20 60 80 fiO W20 T, *C Calculation on the basis of
a model of point charges and dipoles

Figure 14.2. Temperature dependence [s;] shows that the change of axial
of resonance magnetic fields in potential Vax in position Ba or
tetragonal phase of BaTiO3 doped Ti+4++ on transition to the tetragonal

with Gd÷÷÷. (According to Rimai phase depends in the case of the
and De Mars [8]). barium titanate lattice on distortion

of the cubic lattice Sa/a, where a is
the lattice constant, and also on

terms of the type (6zi/a) 2 , where oz. is displacement of "il type ions from

positions • Lne cubic phase. Here the amount of deformation 6a/a of the
lattice is noportional to the square spontaneous polarization, stnce the
deforms- of the iatticein barium titanate is by its nature th• result of
electrost -tion (barium titanate lacks the piezoeleciric effect in the
paraelectric phase). The terms (6z /a) 2 are also proportional to P2.

An experiment for tetragonal barium titahate yielded a linear
dependence betweer axia" field parameter D or b,.0 and square spontaneous

polarization, and also &a/a (Figure 14.3) witich, apparently, testifies to
the small contribution of the quadratic term. of the axial potential to
axial fid parameter D or 2.o (see equation (14.8)) (thc symbol D is

usually employed in the Hamiltonian for Fe÷+÷, and b2.0 for Gd ). In the

case at hand, consequently, axial pa~zameter (L or b2.0 ) is proportional to

the electric fild gradient, since the field gradient is p-oportional to
the coefficient of the axial crystalline field poteptial A, (see equation
(14.7;).

Qnadrupole separation in several compz)unds was mcasured on Fe57 [16]
with the aid of the Messbaver effect and the field gradieni obtained from
separation was compared with the axial field parameter r known froin EPR
analyses. In other words, an attempt was made to measur expe'imentally
the relationshin between D aid V in several compounds. The great scatte.-

ing of points, however, hardly permits the reaching of any generai conclu-
siens concerning the validity of present theories.
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SArAn attempt was made [19] to
correlate theoretically the
temperature dependence of separation
of the crystalline field in SrTiO3

on Gd+ with the presence of the
I' CdJ" "soft" ferroactive mode, which,

according to [19], should apparently
.WO contribute to the temperaturedependence of parameter b4. 0 (b 4 . 0

= 608 ) (see equ,.tionF (14.1)-(14.3)).Figure 14,35. Dependence of axial4

field pavameter b /2gR and also EPR analyses on Gd.. in KTaO.. [201,

of ia/a on P4 in BaTiO. doped however, did not reveal much change
.. s 3 in the parameter b although

with Gd+÷ and Fe÷÷÷. (According 4.0,
to Rimai and De Mars [8]). a -- SrTiO3 and KTaO3 are similar from the
cubic lattice parameter, P -- point of view of crystal lattice
spontaneous polarization. dynamics. Therefore the question of

the influenc• of the ferroctive mode

on the temperature dependence of b4.0
remains unanswered.

Another interesting direction of the EPR analyses of ferroelectrics
is investigation of crystal lattice defects. Many attenpts have been made
to analyze crystal lattice defects of barium titanate by means of EPR. EPR
signals in reduced barium titanate containing certain impurities, ascribed
to F-centers (negative ion vacancies of the crystal lattice, capturing one
electron), have been detected iU a.number of works [21-23]. No signals
corresponding to single-charge vacancies here observed, however in [24-261.
Therefore the question of the existence of such vacancies in barium titanate
remains unansw-red.

It has also been shown through EPR analyses that finely dispersed
barium titanate Dowder with granularity reduced to 1,000 X does not show
a change in the intracrystalline field, i.e., spontaneous polarization is
not reduced under these c"-ditions.[27].

EPR apalyses a-c less developed in ferroelectrics with lower symmetry
than in the case of perovskites. This is apparently the result of the
difficulty in deciphering the spectra. Development of analyses of perov-
skites was also facilitated by the ability to observe the clearly distinct
temperature dpendence of separation after eliminating degeneration as the
result of pha3e transition from the cubic phase to a phase with lower
symmetry, making it possible to determine small deviationsin cubic syrmetry.
In the case, however, cf phase transition between phases with lower symmetry,
there is much less change in separation.

The free radicals that appear as a result of irradiation in many
ferroelectrics with lowcr symmetry have been analyzed with the aid of ER.
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These analyses established the number of nonequivalent free radical positions,
and consequently the number of groups of atoms associated with them in the
elementary nucleus, change ef this nunber on transition to the Curie point,
form and dyvnamics of free radical forma.tion, etc. EPR analyses were con-
ducted [28, 29] in irradiated Seignette's salt in which, as it turned cut,
three types of free radicals formed. They were identified and their
behavior was investigated as a function of tine and temperature. EPRanalyses on impurity ions in triglycine sulfate and Seignette's salt
[30, 311 yields some Information concerning the causes of "fixing" of
spontaneous polarization in these ferroolectrics by the Introduction of Cu+÷,
which is manifested in the appearance o' double hysteresis loops, increased
coercive force, etc. [32-35]. It turned out that glycine groups related to
various elementary nuclei are bonded! to each other by the copper ion. This
also impedes repolarization of the crystal.

It should be pointed out in conc;usion that EPR anaiyses in ferro-
electrics yield valuable informa'.ion con.erning lattice symmetry at the
location of paramagnetic impurit, and cconcerning changes in symmetry during
phase transitions, aid in-determiLing the character of impurity substitu-
tion (its location in the lattice), etc.

§2. Nuclear Magnetic Resonance !NMR)

The greatest successes in MR analyses in ferroelectrics have been
achieved as a result of investigat4.ng ferroelectrics with hydrogen bonds,
to which are devoted most work.,. Analyses have also been done on other
nuclei. NMR analyses made it lossible in many cases to clarify crystalline
structure, determine the positions of resonating nuclei, analyze the
character of ferroelectric phaie transitioa, etc.

We will discuss briefly the parameters that are determined with the
aid ý,f NMR. The position of resonance linus and chemical dispiacement
yield information concerning the chemical bond and its changes at the Curie
point. We will recall that chemical displa;-ement is A41/H1 100, where All0

is the difference between the resonance magnetic fields of a given nucleus
for the investigated crystal and the cc.Tesponding standard at some fixed
frequency of the N1.R signal. H0 is the resonance field on the same frequency

for the corresponding standard. The chemicai displacement is related to
change in electron density near the nucleus and distortion of spherical
symmetry of the closed electron shell, leading to a change in the screening
effect of the electron cloud in relation to the nucleus.

Valuable inforraticn concerning crystalline structure and molecular
motion is also derived from analysis of the second moment of the resonance
line. The second moment S2 of the absorpticn :ir-, the contour of which is

some function of the external magnetic field f(H - 1 is

TO 1N-HYt•l- dli (14.9)
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where H is the external field, H0 is some fixed external field, in particular,

corresponding to the center of the line. This value depends on the mutual
location and mobility of nuclei, on which resonance is observed. In
particular, according to Van Vleck [36]1, for a polycrystal containing
identical nuclei, without consideration of molecular motion

wher'e I is the spin of resonating nucleus, g is the speatroscopic separationfactor, .nu is the nuclear nagneton, N is the total number of nuclei in the

crystal, r,. is the vector connecting nuclei i and j. Comparison of the
experimental and theoretical values of the second moment makes it possible
to clarify the position of resonating nuclei in the crystal lattice, and

also to make conclusions concerning the mobility of certain groups of atoms.
Analysis of spin lattice -elaxation time T, yields information concerning

the motion dynamics of nuclei. The temperature dependence of the spectrum
in the vicinity of the Curie point yields information concerning the nature
ard character of the phase transition. Finally, analysis of the quadrupale
separation of the spectrum and especially analysis of the purely quadrupole
resonance makes it possible to measure the electric field gradient tensor
and to datermine with great accuracy the structure and character of the
internal motion. Nuclear quadrupole resonance will be discussed at length
below. We will illustrate 'he capabilities oF the N.MR method lsy way of
several examples.

The first to measure the second moment in tie ferroelectric phase
transition was Losche [37] at the upper Curie point of Seignettz's salt,
It was shown later [38] that Seignette's salt displays n. notable change
of the second moment at the bottom Curie point, which indicates that these
two phase transitions have a different character. Analyses of changes of
the second moments made it possible to refine the nature of the ferro-
electric transition in many ferroelectrics. Lundin, et al [39], for example,
reported about aschange of the second moment in potassi. ferrocyanide and
showed that its ferrqalectric properties are closely related to the
ordering of dipolar molecules of the water of crystallization [40-42]. NMR
analyses ir dicalcium strontium propionate [43] led to the conclusion that
spontaneous polarization in this compound is related to the disruption of
the plane structure of the propionic acid ica. (CH3 CH2COO), which is, to

some degree, analogous to the mechanism of spontaneous polarizption in
triglycine sulfate.

In certain cases it is very useful to do NMR analyses in deuterated
crystals, The mechanism of ferroelectric transition related to the ordering
of NH4 groups was proposed as a resuit of .MR analvses in ammonium sulfate

(K442 S04 and deuterated ammonium sulfate (44]. Particularly interesting
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results were obtained from analysis of deuterated crystals of the potassium
dihydrophosphate and triglycine sulfate groups. Analysis of proton
resonance in potassium dihydrophosphate [44], as is well known, did not
turn up substantial changes of the second moment at the Curie point.
kAalogous results were obtained from analysis of the form of W. lines on
protons arid nuclei of fluorine in ferroelectrics of the triglycine sulfate
group [46-48]. These results contradict present notions concerning the
great role of hydrogen bonds in spontaneous polarization in these compounds.

M analyses on deuterons with quadrupole moments yield much informa-
tion concerning the character of notion of hydrogen ions and changes in
crystal structure and also produ -e information concerning change in the
character of motion of hydrogen. A sudden change was noted (50] in
quadrupole dist-ibution of WR lines on deuterons in deuterated potassium
dihydrophosphate at the Curie point. Above the Curie point was observed a
spectrum corresponding to one value of the electric field gradient tensor,
and below the Curie point, to two different tensor values. The reason for
this could be that above the Curie point the deuterons "jump" back and
forth on the O-D.. .0 bond at a higher frequency than the frequency of
quadrupole separation (see below), and the electric field gradient tensor
corresponding to two equilibrium positions is moderated. As the temperature
falls below the Curie point the time between jumps increases sharply, and
therefore, instead of one line there will be two lines corresponding to two

electric field gradients in two different equilibrium positions. In a
narrow temperature range near the Curie point coexist a high-temperature
spectrum and a low-temperature spectrum, indicating that a first order
phase transition takes place. It turned out here that the electric field
gradient tensor does not experience considerable change on transition through
the Curie point.

Data concerning the electric field gradient tensor in two equilibrium
positions of deuterons [50] in combination with data concerning the
t•nperature dependence of spin-lattice relaxation time t52] made it possible
to evaluate the tem•rLrature dependence of the time between the skips of
deuterons on the 0-•...0 bond (49] (Figure 14.4). It is clear from Figure
14.4 that wihen a potassium dihydrophosphate crystal is cooled the time
between skips. of deuterons increases at the Curie point by at least 8 orders
of magnitude. Whether the motion of deuterons on the line above the Curie
point is truly a tunnel effect or represents thermally activated jumps
through a barrier has not yet been established.

Interesting results were also obtained from analysis of H!MR in
deuterated trigiycine sulfate [49, SO. Analysis of the spectrum of ND3

groups [50], and also of the total spectrum of the deuterons of triglycine
sulfate, including the spectra of deuterons forming the bond O-O...0 [49],
made it possible to clarify the role of each of the three glycine groups
found in the triglycine sulfate molecule during the ferroelectric phase
transition. As was shown in (S1], the planar glycine group GIllI and non-
planar group GII are connected by a short hydrogen bond. The proton is
located in planar group GIII. If the proton jumps into group GII, the
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nitrogen of this group returns to the plane and the nitrogen in the previously
planar group leaves the plane. Thus groups GII and GIII 6hange roles. NMR
analyses [49] made it possible to establish that the deuterons of groups
GII and GIII in the paraelectric phase jump back and forth on the bond at a
frequency greater than the frequency of quadrupole separation, and "freeze"
in group GIII below the Curie point.

r Inve.tigations [SO] show,
-l r) , •T< r , furthermore, that GI glycine groups

•-, LP in the paraelectric phase are
O statistically not distributed above

•"I __ and below the mirror plane, as was
proposed in [S1], but lie in this
plane [49, 50]. Large, but gradualfor •changes in the field gradient tensor
at the location of the deuteron of

•fi •group GI on cooling below the Curiefps point are evidence of a gradual dis-q 6 0 AF.• 6 1 •

placement of the GI group from the
mirror plane into its low-temperature

Figure 14.4. Temperature dependence position, found in [51]. Thus, NMR
of deuteron skipping time on hydro- data show that the ferroelectric
gen bond in KD2 PO4 according to transition in trigiycine sulfate
Bjorkstam (figure taken from 1491). should be regarded as a combination

on of the order-disorder transition of
protons 01II-H-OIl and glycine

groups GII and GIII and transition of the displacement type for group GI.

Analogous results were recently obtained from analysis of deuteron
resonance in the antiferroelectric N D42PO4 [531. The extra separation of

the NM.R lines in the ferroelectric phase is interpreted as the result of
ordering of deuterons in the hydrogen bonds between the phosphate ions.

One of the interesting questions of the physics of ferroelectricity
is that of the influence of the character of the chemical bond on spontaneous
polarization. It is important to determine, in particular, whether there is
a change in the degree of covalence of the bond at the point of transition
in a number of ferroelectrics and antiferroelectrics of the perovskite type.
The magnitude of the chemical displacement (-1.2') observed in compounds of
the perovskite type on Pb2 07 nuclei is evidence for substantial covalent
character of the chemical bond of the lead ions in these compounds [$4].
Lead zirconate and one of its solid solutions do not display change in
chemical displacement at the Curie point. This indicates that the ferro-
or antiierroelectric phase transition is not related to substantial change
in the covalence of the bonds of lead ions.

Noteworthy of the works en *MR analyses for various nuclei are
(55, S61.. The NMR of Seignette's salt on Na2 ions was analyzed in ;S5].
Work [56] pertains to analysis of quadrupole separation of NMR on Li
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Snucite in several ferroelectrics containing lithium ions (lithium ammonium
and lithium potassium tartrates, lithium niobate and lithium tantalate).
We will examine briefly kMR analyses in lithium niobate and lithium tantalate.
NMR on Li 7 nuclei in lithium niobate was examined in [56-59]. It was shown
that the asymmetry parameter n = 0 in lithium niobate and lithium tantalate
(determination of the various parameters describing the interaction between
the quadrupolo moment of the nuclei and the crystalline field of the lattice
is described in the following section).

NMR analyses substantiate x-ray and neutronographic data concerning
the rhombohedral symmetry of these crystals, to which correspond n = 0.
The quadrupole bond constants in lithium tantalate increase in the vicinity
of 300*C. The quadrupole bond constant of Li 7 in lithium niobate, according
to [59], is S3 kHz. The second moment of the resonance curve was determined
in [58]. The mechanism of spin-lattice relaxation is discussed in [58, 59],
but a universally accepted point of view has not yet been developed. The
opinion that the mechanism of relaxation in the investigated crystals is
primarily quadrupole is propounded in [59]. Comparison of the results of
experimental and theoretical determination of the electric field gradients
with the aid of the point ion model suggests that there is substantial
covalence of the chemical bonds of Li in these compounds.

Some interesting results were obtained from N14R analysis on Na2 3

nuclei in sodium nitrate. Anomalies in the temperature dependence of
quadrupole separation vere discovered at the ferroelectric Curie point near
1635C and also at 378*C, corresponding to phase transitions [60-62]. Accord-
ing to r62], there are two different electric field gradients in the range
of the antiferroelectric phase (-I1C above the ferroelectric region). This
is not in accord with the model of the sinusoidal antiferroelectric phase
(see Chapter 17). Analysis of the orientation and temperature dependences
of the second moment of the central comporent of the spectrum [63] revealed
a plateau in the temperature dependence at 165-180°C with the magnetic
field oriented parallel to the a axis, which is possibly related to the
retention of a certain amount of ordering at these temperatures in the
paraelectric region.

The NM on Nb93 nuclei in potassium niobate was analyzed [64], but
since the basic results of this work were obtained from analysis of the
quadrupole separation of NMR lines and from investigation of the quadrapole
resonance, this work is discussed below.

A report appeared recently concerning observation of the NMR spectra
on Nb"1 nuclei in lithium niobate (65]. The quadrupole bond constant at
room temperature was 22.02 ± 0.04 Ml!z and the assymetry parameter n = 0.

53. Nuclear Quadrupole Resonance

Nuclear quadrupole resonance (NQR) may occur in the absence of a
stationary magnetic field, The magnetic vector of a variable field inter-
acts with the magnetic moment of the nucleus, which is "rigidly" attached to
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the electric quadrupole moment of the nucleus. The electric quadrupole
moment interacts, in turn, with the internal crystalline field gradient of
the lattice. There are also transitions between the energy levels
corresponding to this latter interaction under NQR conditions.

The Hamiltonian describing the interaction of the electric quadrupu'e
moment of the nucleus with the field gradient at the location of the
nucleus, disregarding terms of higher order according to [66, 671 has the
form

"(14.31)

where Q is the tensor operator describing the quadrupole distribution cf
charge in the nucleus, VE is the electric field gradient in the position
of the nucleus.

The tensor components of the quadrupole charge have the form:

S• ' - € •-• ( ? - 2_j -1').P r
rQ d-6

Q,' -ZTjT- ,i rI,(t. * tp) +(I±•*I,I II,. (14.12)
i4T j•-t} (to *I+A

where e is electron charge, I is nucleus spin operator, Q is the scalar
quadrupole moment of the rAcleus. Here Q is found from the relation:

where Pi is charge ,Jensity in volume dT. in the nucleus at distance r. from

the center and 0., is the angle between radius r. and the axis of nuclear
spin I. 1

The tenscr compor.nts of the internal field gradient have the form:

S ,IE.
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tor the principal coordinate axes X, Y, Z of the symmetric fieldgradient tensor, assuming the Laplace relation

+r +  -'o

to be valid, where V is the crystalline field potential, the Hlamiltonian
of quadrupole interaction will have the form:

'W 31-I! T (14.14)

Here 02V PIV)

The value n is called the asymmetry parameter. For the case of
axial symuetry (n-= 0) the matrix elements have the form!

where m and ml are the magnetic quantum numbers of nuclear spin corresponding
to the different states, 6 are Kronecker's irdices (6., 0 , when

m 0 m' and 6, = 1, when m - m). Then the energy levels of quadrupole

interaction W are determined by the expression:
m

The quadrupole resonance frequency is determined by tVic difference
between the energy levels, bett-een which there is a transition, hV = W -

-W a. The sampling rule JIml = 1 is valid here. When n ý J, hcwever,

transitions become possibie between states with a differ.n, by more than

one. The value - is called tCe quadrupole bond copstant.

In the case of n. different from 0, the quadrupole interacti.cr, energy
levels depend on n, and when field gridient asymmetry is great they are
calculated by solving graphically the scalar equations for the ent.rgy or
by tables of their numerical values found with the aid of computers.

Kno-ledge of the quadrupole resonance frequencies, &1ong -ith
analysis of the orientation dependences of line Intensity and Zeemann
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separation of quadrupole levels with a weak external magnetic field makes
it possible to determine the electric field gradient tensor in the position
of the nuclei (magnitude and orientation of its components) and asymmetry
parameter n.

Due to deviation in the distribution of charges of the electron
shell of the ions from spherical symmetry, however, tl.e field gradient in
the positions of the nuclei is not equal to the field gradient due to all
other ioMs of the crystal lattice. In order to convert from the field
gradient on the nucleus to the "external" gradient qeX the following
relation is often used:

Sq = qex(l -y"), (14.17)

where y. is the so-called Sternheimex's antiscreening factor (68). It

reaches -102 for heavy nuclei. it is obvious that y., generally speaking.

is not constant and may depend on the character of chemical bond, distanca
between ions, etc.

NM4R analysis of nuclei with quadrnpole moments makes it possible to
determine the quadrupole separation of NMR lines, from which the as)nmetry
parameter and field gr3dient can be found f.,6]. Some of the findings of
analysis of the quadrupole separation of NIR were given in the preceding
section.

NQR analyses and analysis of quadrupole separat'or. yield information
on the symmet'y of the crystal structure, presence cf nonequivalent posi-
tions of atom3, their mutual distribution, form of chemical bond, etc.
Analysis of NQR relaxation times makes it Wssible to judge the character
of internal motien in crystals. By virtue of the fact that NQR frequencies
are determined by the electric field gradient, this method is particularly
sensitive to any type of change of crystalline fields and therefore yields
valuable information concerning the conditions of occurrence of the ferro-
electric state and character of ferroelectric phase transitions. The
reader is referred to [66, 67, 69, 70] concerning general questions of NQR.

Very little woik has been done on NQR in ferýtiectrics. The chief
reason for this is difficulty in growing large crystals of quality good
enough to ensure NQR signals. Quadrupole separation of NNR and NQR in
KNbO3 on Nb93 nuclei was studied in (64]. The temperature dependence of

the NQR spectrum in potassium niobate was analy:ed in detail in [71]. The
quadrupole bend constant at -40 0C (rhombic phase) was e2 qQ/h = 23.1 MUz,
the asymmetry parameter n = 0.806. In the rhombic phase the asymmetry
parameter 1 = 0 and the quadrupole bond constant e qQ/h = 16 %Uz. The
principal axis of the electric field gradient In the rhombic phase was not
accurately determined. It was shown only that it is oriented at an angle
about 20o to. the polar axis of the crystal. One interesting result of
the work was the conclusion that the phase transitions between the cubic,
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tetraglinal, rhombic and rhombohedral phases are first order phase transitions,
but the different regions of the crystal display phase transitions at several
different temperatures, and here the higher the transition temperature the
narrower the range of the transition.

L The temperature dependence of the quadrupole bond constant of KNbO3

in different phases is shown according to (71] in Figure 14.S.

The temperature dependence of NQR frcquencies, as we know, is related
to moderation of the electric field gradient as a result of thermal motion
(as occurs, for instance, in deuterated potasiuv dihydrophosphate and
triglycine sulfate, as mentioned above), and also to strictly the temperature
dependence of the electric field gradient due to change in the distances

Er between atoms as thL temperature is changed. "liese contributions can be
distinguished by measuring the dependence of the gradient determined from
NQR frequencies not only on temperature, but also on pressure. Evaluation
of the various possible contributions to the temperature dependence of
frequencies for KN.bO 3 [71] showed that the temperature dependence can be

disregarded due to moderation of the gradient and the observed temperature
dependence is related chiekly to the "true" change of the gradient.

N b.

9 .0O 21 T,°K to to go Ico ZV ,r

Figure 14.S. Temperature dependence of quadrupole bond
constant of *&b03 in three phases (according to Hewitt
[71]). a -- rhombohedral; b -- rhombic; c -- tetragonal.

Comparison of the :omputed electric field gradient for various
temperatures in the tetragonal phase using the point ion lattice model and
experimental value showed that the temperatore dependence of NQR frequencies
is explained satisfactorily when the temperature dependence of the lattice
parameters and ion displacements is taken into account.

Satisfactory agreement between the theoretical and experimental
data may mean that the ion mode) is valid for KMO , although the roughness
of this type of calculation should be borne in mini.
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The temperature dependence of the NQR spectrum on As 7 5 nuclei in
crystal% of the KH2 AsO4 group were analyzed in [72, 73]. A sharp increase

of frequencies was noted during phase transition to the spontaneous-polarized
state. One of the reasons for this may be localization of protons in oneof the pot~nltial minima near the "top" or "bottom" oxygen, leading to 3n

iicrease in the measured field gradient on As7 s nuclei. There is such a
great expansion of the lines in the region of the transition that resonance
could not be detected. In CsH 2 AsO4 crystals, furthermore, the signal

vanished ax temperatures somewhat lower than the Curie point, possibly
because the temperatures of the frequencies of proton tia sf6r and investi-
gated quadrupole resonance coincide in this region. The temperature
dependence of NQR frequencies in the paraelectric phase favors the rotation
of the AsO4 groups in this phase.

a fi

j . 0
2-.0 t€op 0 too T, "r

S~Figure 14.6. Temperature dependence of quadrupole

"38,,,, P12 1

:•bonc: constants of Sb 11and Sb12, asymme ry para-
i meter n ind p2 in antimony sulfiodide (according

sso.
S*I

to Popov, et al [76]).

NQR signals were recently discovered with the aid of a pulsed
;• spectrometer 174] arid their temperature dependence was examined in antimonysulfiodide and sulfbrovide [71, 761. The temperature dependence of the

quadrupole bond constants of SbI 2 1 and Sb 1 , nuclei and asymmetry parameter
'e in antimony sulfiodide SbS( according to (761 is illustrated in Figure 14.6.
7he ferroelectrics of this group are characterized Ly a phase transition of

the displacement type. The electric field gradient in the vicinity of the
Curie point of antimony sulfiodide changes as the square of spontaneous
polarization, analogous to the results obtained for barium titanate by EPR
methods (8] and Messbauer's results (see below). In addition to anomalies
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of the field gradient ard asymmetry parameter at the OCrie poiat, slight
anomalies were detected, corresponding to low-temrcrature phase transitions.

§4. Messbauer's Method ot Analyzing Ferroelectrics

Analysis of tite gamma-ray resonance absorption spectrum (Messbauer
effect) can yield interesting information concerning crystal lattice
dynamics, electric field gradients, character of chemical bond. etc.

The essence of the Messbauer effect, as we know, consists in the
following. The nucleus of some element emits y-quantun with the energy
hv. Other nuclei of this eiement, located in a lower energy state, may
absorb this quantum. Part of the energy of the quantum, hewever, both
during emission and during absorption, may be consumed in the recoil of
the emitting and absorbing nuclei. In view of the fact that atoms are
fi.rmly bonded in a solid, the entire lattice as a whole, and not individual
.'uclei, experiences recoil during the emission and absorption of a y-quantum.
Because of the great mass of the lattice its recoil energy is infinitesimal
and energy losses during the emission and absorption of y-quanta are so
small that they can be made up by the relative head-on mechanical motion
of the source of y-quants and absorber. Then, due to the Doppler effect,
the frequency of the y-quanta will change and the resonance conditions can
be satisfied through a change of relative velocity.

The probability of energy loss by nuclei to recoil increases as a
result of vibrations of the lattice, since phonons can bv excited in the
lattice during emission and absorption of y-quanta.

The probability of the Messbauer effect occurring at the ferro-
electric Curie point, as theoretically predicted (771, should diminish due
to the excttation of low-energy phonons corresponding to the soft "ferro-
active" mode of vibrations. This was verified experimentally [78-83].

The temperature dependence of the Messbauer effect wr.; investigated
[78-SI] in solid solutions of Ba(Til xSnx)O enriched with Sn'" isotopes.

It was shown that the probability of the Messbauer nffect actuilly passes
through a minimum at the Curie point. It was also shown that in solid
solutions with a rather high concentration of BaSnO3 the mininum of the

Messbauer effect lies at a lower temperature than maximmn permittivity.
This was explained in (18-80] on the basis of the theory that as a result
of erosion of the phase transition at these solid solution i•tcentrations
the Curie temperatures of the micraregions enriched with Sn are lower
V the mean Curie temperature of the solid'solution.

!nrimum probaoility of the Messbauer effect at the Curie point
,,rved on Fe57 nuclei in 3aTiO3 (82] and in'PbFe,/1 N12 03 [83].

Thus, tnt.u investigations of the Messbauer effect also speak ir behalf of
the validity of the concepts of the dynamic theory of ferroelectricity.
It should be pointed out, however, that no changes in the line %idth of
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SnU19 in solid solutions of Ba(Ti, Sn)O 3 were detected in [34] during transi-

tion through the Curie point.

A study of the Messbauer effect on Sn' 1 9 and Fe57 nuclei in BiFeO3

and its solid solutions with Sr(Snl/3mNn 2/ 3 )03, combining electric and

magnetic ordering, was reported in (84, 85] (see Chapter 18). The effective
magnetic field on iron nuclei which, extrapolated to O*K, was approximately
SSO ke, was estimated from the temperature dependence of Zeemann separation
in the antiferronagnetic region. The appearance of an effect!ý"t magnetic
field on Sn119 n.zlei below the Neel point, explained by the exchange

4+ 2- 3+
reaction Sn - - , was also noted in these investigations. The presence
of a quadrupole moment in the Fe5 7 nucleus makes it possible to estimate
the gradient of the electric field acting on this nucleus. The magnitude
of the field gradient in BiFeO3 [84, 85], PbFel/ 2Tal/203 [85], and BaTiO3

[82j, was investigated and it agreed satisfactorily with the theoretical
value obtained on the basis of the model of point charges and point dipoles.

The temperature dependences of quadrupole separation LNE and square

spontaneous polarization in BaTiO_ are shown in Figure 14.7 [82]. The

satisfactory coincidence of these dependences indicates that in the
tetragonal phase of barium titanate the gradient of th. electric field
acting on "%he Fe5 7 nucleus (to which quadrupole separation is directly
proportional) is proportional to the square spontaneous polarization. The
value estimated from the model of point charges and point dipoles with
consideration of displacement of ions in the assumption that the effective
charge is 60% of the ion charge, agreed satisfactorily with the experi-
mental valuz.

The proportionality of the
field gradient, and consequently of

VS• 0$- coefficient A2 in the axial potential
w •a of the crystalline field (equation

(14.7)) to the square of spontaneous
polarization should be compared with

- s gz ~the results of analysis of the EPR
in BaTiO.. [81. It was found in

Figure 14.7. Temperature change of te sties [ h1 t t ax fie

quadrupolethese studies that the axial field

of spontaneous polarization in parweter in spin Hamiltonian D cr

barium titanaie (according to Bhide b2.0 changes as Ps or is linear in
and .•ultani (82]). relatien to tetragonal distortion of

the lattice (wv will recall that
distortion of the lattice of perovskites in the ferroelectric phase is a
result of electrostriction and is porportional to the square of spoataneous
polarization). Thus, investigations of the Messbauer effect confirm that
the axcial field parameter in spin Hamiltonian D or b2 0 is related
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linearly to axial potential V (cf. (14.8)) and with the field gradient.

Moreover. the temperature lependence of isomeric disnlacfient
(determined according to tie eosft.on of the doublet center) wai measured
[82] and a jump was found in isomeric displacement at the Curie point,

which is ascribed to the change in the degree of covalence of the chemical
bond wi.th the onset of spontaneous polarization.

Investigation of the Messbauer effect on barium titanate crystals
treated by different methods j82, 86] showed a change'in the surrounding
of Fe5' impurity in the barium titanate lattice, depending on the heat
treatment of the crystal.

Investigations of the Messbauer effect in boracites [87] revealed a
new phase transition between the rhombic and trigonal phases. At the Curie
poFnt corresponding to the phase transition fron the cubic to the rhombic
phase, an abrupt increase was noted in the area of the resonance curve.
A brief report appeared in [88] concerning inves;tigation of the Messbauer
effect in potassium farrocyanide.

Investigations of the Messbauer effect ii ferroelectrics have only
begun. The data obtained already suggest the effectivwness of this
method in application to ferroelectrizs. Certain qnestiorns, however,
till require further investigation. In particular, further investigation

of the probability of the effect int the region of the Curie point of
different cypas of ferroele~trics and moze •-igorous theoretic.I interpre-
tation of the results are very impoetant.
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CHAPTEk 1S. EXPERIMENTAL INVESTIGATIONS OF LA1TTCE VIBRATIONS OF FERROELECTRICS
NEAR CURIE TEMPERATURE

As follows from the dynamic theory of ferroelectricity [1-6] (see
Chapter 5), a limiting dipole transcerse optical vibration with wave vector
k, rpproaching zero, should be seen in the vibration spectrum of ferro-
electric crystals. The frequency of this mode diminishes substantially
near the Curie point, and it is characterized by great anharmonicity.

The reduction of frequency is explained within the framework of these
concepts by the fact that short-acting rotational forces of this mode are
compensated in harmonic approximation near the Curie point by farther-
reaching electrostatic forces. The frequency of the ferroactive mode in
the range of small k does not vanish, but remains positive due to the
contribution of an anharmonic action, the magnitude of which depends
strongly on temperature. And this explains the strong temperature dependence
of frequency for small k f7].

We will examine existing experimental results of the analisis of
optical spectra, inelastic scattering neutrons and thermal diffusion of
x-rays and electrons, in which are obTained data conce,.Aing these "ferro-
active" low-frequency lattice vibrations. Here we will more or less ignore
the investigations of other regions of the spectra. In particular, we will
not discuss the vibratiois of protons in tie hydrogen bond. Certain infor-
mation concerning the vibrations of protor- in hydragen-containing ferro-
electrics is found in Chapter 14. A more thorough review of a number of
studies of the lattice dynamics of ferroelectrics is given in [8, 9).

§1. Infrared Spectra

No anomalies in the region of the ferroelectric phase transition were
noted in the first analyses of the infrared spectra of perovskite t)pe
ferroclectrics, conducted with the aid of measurements of transmission
spectra in the 300-1,000 cm range [10, I)1. The reason for this is thAt
the "ferroactive" mode of vibration: is characterized by an extremely low
frequency of -10I1 Hz near the Curie pcint. lies in the far infrared region
and its detcction involves great experimental difficulties. Moreover, due
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to strong absorption in this frequency range, even the finest specimens that
can be made are opaque. Therefore it was necessary to resort to the reflec-
tion method, whereby it was possible to detect the "ferroactive" mode in a
number of ferroelectrics and to analyze the temperature dependence of its
frequency [12-17]. In the reflection method the dependence of the coeffi-
cient of reflection on frequency is measured and then the frequency
dependence of the phase angle of the reflected coefficient is determined
with the aid of the Kramers-Kroenig relation, after which the real and
imaginary parts of permittivity c'(w) and &"(w) (or refraction coefficient)
are computed.

By way of example we will examine in greater detail crystals with
the perovskite structure. According to the dynamic theory of the crystal
lattice, the total number of normal Vibrations is 3n (where n is the number
of atoms in the elemental nucleus). In crystals wilh the ABO 3 structure

this number is 15, of which 12 are optical vibrations'. Considering,
however, symmetry for the wave vector k = 0 in the infrared spectrum of
cubic crystals with the perovskite structure, only three normal vibrations
of the type FIl(xyz) should be observed. On conversion to the tetragonal

phase these three bands should expand into doublets and, moreover, yet
another band should appear, corresponding to one of the separation
components of vibration of the type F2 u(xyz). In the rhombic phase there

should be 12 absorption bands. Considering the direction of k, the vibra-
tions are separated into n longitudinal and 2n transverse vibrations, the
frequencies of which differ. Therefore there should be extra lines in the
combination scatter spectra, corresponding to longitudinal vibrations.

The infrared spectra of ferroelectrics of the perovskite type were
analyzed [10..21]. The reflection spectra of monocrystals and polycrystal-
line specimens of BaTiO SrTiO3 and certain other compounds were analyzed

(13, iS, 18] on the basis of the Kramers-Kroenig relatic .s and dispcrsion
theory, and satisfactory agreement was obtained between the theoretical
and experimental results. The anomalous temperature dependence of the
lowest frequency vibration was first discovered during analysis of the
reflection spectra of SrTiO3 [121. At room temperature it lies in the

100 cm-1 region, and at 93*K in the 50 cm-1 region. This vibration is a
ferroactive mode, predicted by theory, and the two--fold reduction of
temperature corresponds to a four-fold increase in permittivity, so that

the relation wTo = A(T - 6)1/2 is satisfied.

RaTiO-, at a low temperature in the paraelectric phase also displays

a change of frequency of ferroactive vibration, satisfying this relation,
and there is an increase in the force of the oscillator and degree of

'This analysis does not take into account the separation of dipole frequen-
cies by the macrosccpic field. See Chapter 6 for more thorough analysis.



anhar-monicity [15, 16]. The frequency dependence of e' and E" of BaTOe3

monocrystals is illustrated in Figure 9.11 for various temperatures [16).
However, quantitative estimates of wTO depend ot, the assumptions made in

the calculation and differ about three-fold in [13, 16, 17]. We will note
that from analyses of infrared spectra of barium titanate [13, 16, 17] it
follows that the ferroactive mode is damped due to great attenuation.

The temperature dependence of the frequency of the ferroactive mode

in KTaO3 was recently measured [21] by means of determining the total con-

ductivity from infrared reflection spectra. Its frequency changei from
106 cm- 1 at 463°K to 26 cm-! ct 12°K. The temperature dependence of the
square frequency of this transx-rse optic mode and 1/c were found to be in
satisfactory quantitative agreement..

The estimate for BaTiO showed that "erroactive vibration governs3
more than 90% of the entire polarization of the crystal and the biggest
contribution to overall polarization comes from the electron polarization
of ions. Thus, ferroactive vibration in crystals of the perovskite type
is of complex electron-ion ;haracter. Theories on the dependence of zonal
electron structure of crystals on the displacements of atoms are now
developed [22, 23]. In titanates with the perovskite structure the size
of the slot between the 2p-zone of oxygen ions and 3d-zone 'f titanium ions
for the most part should depend on the displacements of ions, and vibrations
of ions change the overlapping of p-orbits of oxygen with the 3d-orbits of
titanium, which is adiabatically adjusted to the vibration of the l4ttice.
In accordance with theoretical concepts of the nature of antiferroeiectricit)
a low-frequency vibration, governing about 90% of all polarization, was also
discovered during analysis of the infrared spectrum of the antiferroelectric
PbZrO Until recently, however, the temperature dependence of the vibra-

tion spectra of antiferroelectrics was not analyzed, even though such
analyses are unquestionably of great importance.

Several works pertain to analyses of the infrared spectra of ferro-
electrics with hydrogen bonds, in particular KH ,PO4 and triglycine sulfate

[25-27]. The r!flection spectra of KH2 PO4 [25], like the transmission

spectra in the 10-100 cm-! range, show an eroded band, shifting as the
temperature drops toward the Curie point in the direction of lower
frequencies. This iow-frequency vibration is apparently related to tne
ferroelectric properties of KH.2PO4 Triglycine sulfate [25] does not

display this low-frequency vibration.

Analysas of the infrared spectra of ferroelectries with the order-
disorder phase transition yield information concerning the character of
motion of polar groups. It was concluded [28], in particular, that the
NO, anion in sodium nitrate revolves around the a axis, but has extreme
difficulty in rotating around the c axis.
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§2. Combination Scatter Spectra

In the combination scatter spectra of crystnJs with the perovsKite
structure the first order spectrum is forbidden in the cubic phase by the
rules of selection. Analyses of the combination scattering in ferroelec-
trics are very difficult due to the proximity of the lines of ferroactive
vibrations to th. exciting line and their blurring, which conforms with the
theoretical predictions [29-31]. Analyses of combination scattezing of
barium titanate were carried out in [32-37]. UaTi%3 monocrystals were

analyzed [34] in the 4-475 0 K temperature range. The appearance of several
lines, de',ending on temperature in the vicinities of the phase transition,
is noted, related, perhaps, to the inczease of domains.

It can be assumed that certain lines found in early wozks on combi-
nation scattering cen also be attributed to the presence of domains. One
of the vibrations that strongiy depends on temperature is interpreted in
[34] as a longitudinal mode.

A ferroactive mode was recently observed in barium titanate crystals
by means of Raman scattering, in the form of a broad nonresonance band [35,
36]. Careful analyses [36] were done rather good single-domaitt crystals.
The attenuation and frequency of this mode, corresponding to low attenuation
[36] were calzulated and found t- be in good agreement with the results of
infrared spectral analyses [17].

Presented below are frequency wTO and attenuation r of the ferro-

active mode in barium titanate at difference temperatures [36]:

t.% -- o. tk-. r

30 39 t4 t1j.2 1

These results, atong wi:h the results of infrared spectral analyses,
show that the ferroactive mode is damped in barium titanate [13, 16, 17].
However, the question of its attenuation is not conclusively settled. In
(37] there is considerably less attenuation of this mode and no damping at
all. The analogous conclusion concerning the relatively slight attc-nuation
in the paraelectric phase was made on the basis of neutron radiography (see
below). There is great divergence between the frequ.encies found in various
works for tnis mode (about Lhree-fold in [36] and [37]).

investigations of combination scattering in the presence of an
electric field were undertaken recently. The applicztion of an el:ctric
field to perovskite crystals in the cubic phase leads to the disappearance
of the center of symmetry and consequently makes it possible to observe
the first order snectrum. The combination scattering in SrTiO3 and KTaO_

crystals in the paraelectric phase was investigated in [33] as a function
of field strength. The temperature dependence of the frequency of the
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ferroactive mode of KlaO 3 in different fields is illustrated in Figure IS.1.

Strengthening of the electric field leads to an increase in the frequency of
the ferroactive mode, which is related to the nonlinearity of permittivity:
reduction of c in the presence of a field agrees with the observed increase
in the frequency of the ferroactive mode.

Analysis of the combination
4 €,•scatter spectra of KH2 PO4 and

,NddH2PO4 crystals (39] revealed a

"line in the 34 cm-1 region at room
zo temperature, shifted toward the

12.......... exciting line by approximately 2 cm-
t5 o emeau fe pdce near the Curie point. Inalyses of

the combinatioti spectrum of KH2 PO4
ofigrequency1 f Tparatrel cmpondence at various temperetures are des:ri'bcd
of frreu ven mo e patrall feroponent in [40]. A frequenicy shift. narrowing
ofand separation of iinis were noted on
electric field strengths (field in transition through the Curie point.
direction [001]) in KTaO 3 crystals A wide band of the continuous spec-
(according to Fleury and Worlock trum was observed near 120 cm"•
[38]). Electric field: I -- i,000 When the crystal cools, the band
V/cm; 2 -- 5,000 V/cm; 3 -- 0,000 narrows and its intensity decreases,

V/cm; 4 -- 15,000 V/cm. and at !i0O the band disappeari.
The authors consider [40] that the
great width of the band is related

to strong anharmonism and unordering of the lattice in the paraelectric
phase. The bands corresponding to frequencies 155 and 188 cm- 1 are shifted
near the Curie point 19 and 11 cm-&, respectively, toward the low-frequency
region. An attempt is made in Chapter 6 to interpret the vibration spectrum
of KH2PO4 in the low-frequency range [41].

The results of combination spectral analyses [42-44] and infrared
spectral analyses 128) of NaNO 2 indicate that inversion of NO2 anions into

the mirror configuration on transition to the disordered state is in:probabie,
and also are evidence for their rotation around the a axis. Actually,
rotation of the NO2 ion around the a axis should lead to substantial change

in line component intensity corresponding to perfectly symmetric vibration
of the anion with field vector E I!b and E 1I c. Reduction of the
intensity of the component with E 11 c and increase of intensity with
E 1I b were actually observed experimentally (43].

Also observed in (42-44] were an anomalous reduction of frequenc.y
anj increase in the half-width of one of the lines in the region of the
Curie point (Figure 15.2). This line lies in the vicinity of 153 c&m1 and
corresponds to orientation vibration of the NO2 anion around the a axis.

Orientation vibration of anions around the a axis is presumably ferroactive
vibration. The amount of -eduction of the frequency of this vibration,
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however, is not enough to explain the high value of e near the Curie point.

WCWI a

Figure 15.2. Temperature dependence (Chisler and Shur
rA4]), a -- frequencies of combination scatter spec-
-ztm of NaNO2 in low-frequency range (w is orienta-

tion vibration of N02 around "b" axis, w2 is orienta-

tion vibration of NO; around "a" axis, w3 is orienta-

tion vibration of NO; around "c" axis): b -- half-

width3 of bands w "l' •'2 - 2"

Ferroactive modes of vibrationis in the investigated crystals were not
observed in analyses of the combination spectra of N.So4 , NH4 HSO4 , RbHSO4 ,

TGS and NaNO 2 r4S-48].

§3. Inelastic Scattering of Slow Neutrons

Extremely interesting results concerning the investigation of crystal
lattice dynamics are obtained with the aid of inelastic scattering of slow
neutrons. The chznge of neutron energy in inelastic scattering yields
information concerning the vibration spectrum of a diffusing crystal, where
the neutrons are "active" Uit relation to all vibrations with any k, both
optic and acoustic.

During coherent scattering of neutrons on monocrystals in each given
direction and with given wave vector K, a discrete spectrum is obtained on
the background of the continuous spectrum from incoherent and-multiphonon
scattering. Dispersion curies w(k) can be plotted from these data when the
spectra are recorded under various conditions.

During incoherent scattering of neutrons by polycrystals a continuous
spectrum is obtained, from which the actual frequency distribution function
GQo) can be obtained.

The "flat" segments of the optic aad acoustic branches, where many
vibrations with various k fall into a rather narrow frequency range, contri-
bute substantially to scattering. Therefore the contribution to the spectrum
by the low-frequency optical branch will be distributed through a rather
wide frequency interval and its separation poses substantiat difficulties.
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Thus, the most valuable information concerning ferroactive vibrations is
acquired by analyzing monocrystals (see (49, 501 concerning the interaction
o£ slow neutrons with a substance and experimental procedures).

Inelastic scattering of neutrons on polycrystalline specimens of
BaTiO3 [51, 52] and also PbTiO and SrTiO3 [52], does not display substantial

anomalies on transition through the Curie point. The peaks in the frequency
region below 100 cm" are apparently related to acou$tic vibrations of thelattice.

Cowley [53], with the aid of
f,/ inelastic coherent scatteTing of
•i / neutrons, 'alyzed monocrystals and
6 plotted the dispersion curves for

LLUO*[ /0 certain normal vibrations i SrrTiO3,

/1 propagating in direction [001]. He
O / found a peak of inelastic scattering

Syof neutrons in tnis crystal, related
Sto low-frequency coherent optic

a ge0 0 ,oI vibratior for k - 0. The temperature
dependencee of the square of the
frequency of this mode and -/c areFigure 15.3. Temperature dependences illustrated in Figure 15.3 ( is

of square of the frequency of softfram Fiur 5] .

transverse optic mode and 1/c taken from f54, SS]).

(dot-dash curve) in strontium As seen in Figure 15.37 the
titanate (Cowley (53]). square of the frequency of the ferro-

active mode is a linear function of
temperature w O = K(T - 8), which verifies the validity of Cochran's assump-

tion [6]. An interesting hypothesis was also prnpounded concerning the
nature of the phase transition in SrTiO_ at 110K, which in Cowley's opinion

[531 is a result of random degeneration of the ferroactive branch of the
transv.rse optic vibrations and longitudinal acoustic branch. Such
degeneration should lead to an anomalous temperature dependence of elastic
constants and velocity of ultrasound, as observed experimentally [S63.

The soft optic mode was analyzed [57] with the aid of the inelastic
scattering of neutrons in KTaO3 monocrystal. The soft optic mode was also

recently detected with the aid of inelastic scattering of neutrons in
BaTiO3 monocrystal in the paraelectric phase [58]. The soft transverse

optic mode in BrTiO has a lower frequency than even the transverse acoustic
3

r ode, aside from the region of small k [58]. Identification of the modes
in the region of "intersection" of the acoustic and optic branches is
apparently inconclusive. The energy of the soft node decreases as the
temperature drops from 1.4 MeV at 430C to 0.8 MeV1 at 230%C, and here the
relation .1'0 = A'I0/ B(T - 0) is valid.

11 MeV is equal to 8.07 cm- 1
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In BaTiO5 A 0.11 MeV2 , whereas it1 SrTiO A 3.7 MeVW [12, 53] and3 3
in KTaO3 A - 2.8 MeW2 [21, 57].

Analysis of inelastic incoherent scattering of ieutrons was done or.
polycrystalline specimens of a number of hydrogen- and deuterium-containing

ferroelectrics. The results the investigation of KH2 PO4 and KDPO 4 are

discussed in [59-61]; (NH4 )S 04, NH4 ISO4 , (N4) 2 )eF4 and K4Fe(C.)6*SH20 are

discussed in [62]. How3ver, no notable changes that could be related to
ferroactive low-frequency nodes, were observed in the neutron spectra at
the Curie point. This is a result primarily of the structural complexity
of these ferroelectrics and of the fact that the investigatlons were
conducted on polycrystalline specimens.

It should be pointed out that the study of low-frequency vibraticons
in ferroelectrics with the order-disorder type of phase transition is very
important. New proof is being found at this time that these transiti'-ns
are not of purely relaxation character and a-e related not only to the
ordering of "ready" dipole moments, but also to displacements of ions,

leading to rearrangement of the lattice, Therefore, experimental determina-
tion of the modes of vibrations that cause the farroelectric phase transition
will help to solve the problem of the nature of spontaneous polarization in
these crystals.

S4. Thermal Diffusive Scattering of X-rays and Electrons

New data were obtained recently concerning the vibrations of tCe
barium titanate lattice throuc" analyses of the thermal diffusive
scattering af x-rays (63, 64] and electrons [65]. In the diffraction
pattern for barium Litanate monocrystals, in addition to the diffusion
spots near the reciprocal lattice points and diffusion bands, which are the
re3ult of acoustic vibrations of the lattice, there arc also diffusion
bands caused by ferroactive low-frequency transverse optic vibrations. Here
the ferroactive vibrations have low frequency all the way to shu, t wave-
lengths.

The freitlency was estimated with the aid of ihe known dependence --
of inverse proportionality of tne intensity of thermal diffusive scattering
to the square of the frequancy of the vibrations causing it. It turned out
that in th? region k/k ax = 0.4, the frequency was -101 see-'.

The experimentally observed modulation of band intensity in the
srace of the reciprocal lattice can be e.xplained on the basis of the assump-
tion th~at the ferroactive vibration corresponds to displacaments of the
cations of barinm and titanium to one side and of oxygen atoms 01 and 011
to the opposite side. This confiv,:ration of displacements "freezes" on
transition to the tetragonal fcrroelectric phase. The concept of "freezing"
of the ferroactive vibration 4n the ferroclectric phase is also encountered
in Cochran's work [4]. 'Te configuration of displacements of ions in the
ferroactive mode according to [63, 64] agrees with certain structural data
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or the displacements of ions in tetragonal barium titanate, obtained with
the aidi of x-ray an6 neutron radiography, spicificaily witfi Evans' first
model of displacements [66] and the rnodel of Frazer, et al [67].

Effort.- have been made in a n~unber of works to (leterinine the form
of normal vi~rz~ions by relating them ro vibrations oil certain groups of
atoms. Thus.. i7, was assumeo [10-12, 15,1 that two high-frequency vibrations
*f the Flu type correspond to internal vib-ations of the TiO 6 octahedron,

and the ýow-frequer.cy vibration to vibration of cation A relative to theI octahedron. It is now clea: how-:v,?r, that in this vibration there are
very substantial relative displacements of Ti and 0 atoms [18, 53, 63, 64],
which is in better agreement with model th-.or-ies and crystallochemical
concepts of the nature of ferreelectricity in barium titanate.

Anoherimortntresltof anisotron of the difreusienscyaofteringofiv
x- anotherwa importanveresl of anislyres of the dfreusien scatering ofv
virzosin tettaoaphs;tefqunyof vibration on the a axis

waslowr t,-a outhec ais.T~l ageessatisfactorily O4 th the fact that
perittvit isgreteror hea axis than on the c axis. According to

(LO(O)/ n LOO))TOCochraaVs theory, indeed, (0// (0)) , whnere vi(0 and %, (0)

ar= the frequencies uff longitudinal and transverse optic vibrations with
zero wave vector. Consequently the frequency of the transverse optic
vibration on the a axis shoull be lower than on the c axis, which in
observed exp-iimentally.

Tuexperimental ana3yres of the vibrations of the crystal littice
of ferroplectric cuystals have verified the validity of tlhe basic concepts
of dy'namic theory [1-61. The presence of the low-frequency ferroactive
mode is also substantiated by investigations ef the Messbauer effect (see
Chapter 14) and by 'nvestigations of the dieleetric properties of ferni-
electrics in the UHF range (see Chapter 9). The ap.proazh to the ferro-
electric pliase trans-Ition from tle point of view of the instability of the
zrysca' lattice in relna_-.on to the transverse optic mode with a low wave
vector is very fruitFui and hes stimulated the extensive development of
reseoýrch in various br-ches of solid state physics.

ZEýPerimental dispersion relations between the frequency and wave
vector of certain modes make it possible to determine a numbear of constants
of dynanic thcory. Thus, oii the basis .,f the dispersion. curve of the ferro-
active mode in strontilim tiiarate, obtained from ncutron radiography, a
t. dk~l .f rigid ions and a shell mnodtl were calculated fo:_ various pal-Ometers
i harmonic approximation 533]. The use of harmonic uppraxin~ation, 'iowevcr,
-nvolves a number of difficulties: negative -values of s~iort-tcrm pol riz:--
tion, overstateu values nf polarization of positive icils. etc. rhe chief
difficulty is the inahility to explnin the temrperature dve-endence of the
frequency of the ferroactive mode. This teit erature dependence is attribiz d
to anhaim~onic interaction betweeit modes.
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Seve-al attempts hive been rade recently to take anharmonicity into
accnount by introducing to the theory the parameters of interaction between

modes, determined from experimen.tal data (68, 69'. A model with two
parameters of anharmonic interaction between titanium and oxygen, deter-
mined from experimental data on the basis if thermal expansion and the
LtPmperature d6pendenze of the frequency of the ferroactive mode, is pro-

posed irt [69]. This made it possible to iiing the theoi-tical results and
experimental data on infrared reflection, nw;utron scattering, etc. into
better agre nent. As regards further development of the theory that '-ekes
into accour, anharmonic effects, experimental data on the dispersion lela-
tions for normal nodes of vibrations in the different crystallographic

directiosis a.-e important.

The s:ate of dynamic theory iE described in detail in Chapter S.
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I

CHAPTER 16. FERRCELECTRICS WITH BLURRED PHASE TRANSITION

§1. Fundamental Properties

Analysis of the physical properties of polycrystalline specimens of
solid solutions Ba(Ti, Sn)O 3 [1, 2] revealed strong blurring of c peaks in

the ferroelec:ric phase transitions of solid solutions with a high concentra-
tion of BaSnO., (Figurc 16.1). The existence of piezoelectric vibrations in

prepolarized specimens at temperatures considera'ly higher (tens of degrees)
than the temperature of the E peaks, was also brought to attention there.
In these respects the given solid solutions differed substantially from
barium titanate, where the piezoelectric vibrations ceased on apprcaching
maximum c. The theory of noncurrent passage of the ferroelectric phase
transition in different parts of a crystal when heated, due to internal
stresses and fluctuations of composition, was advanced in [2]. By fluctua-
ti ns of composition we mean deviations of the conceptration of BaSnO3 in

microregions from the average concentration, which inevitably occur in the
statistical distribution of Ti and Sn ions in the octahedral nodes of the
perovskite lu.ttice. These composition fluctuations are presumably in the
"frozen" state at room temperature. Because of the dependcnce of the Curie
point on composition, various microregions of the crystal experience the
phase transition at different temperatures.

The analogous phenomena were also observed in solid solutions of
Ba(Ti, Zr)O3 [3] It was found that in the case of solid solutions of

(Ba, Sr)TiG3 (at high SrTiO._ concentrutions), piezoelectric vibrations oi
3 .5

prepolarized polycrystalline specimens may also occur at temperatures above
the temperature of peak permittivity [4, 5], although the c peaks remain
:&ather sharp [6].

Somewhat later unusual dielectric properties were discovered in
b1/3 20 and PbNil 2b,.O/ 3 (7]. The permittivities of both compounds

were high and passed through peaks: in the case of PbNi•i 3 ND0/ -- through
Srather fat one, and in the case of PbMgl b,,3 O through a sharper peak
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Figure 16.1. Temperature dependence of pernittivity of

solid solutions BaTiO3 -BaSnO 3 in weak fields at frequency

of 1 kHz. The numbers near the curves indicate the
concentration of BaSnO3 in mole '. (According to

Smolenskiy and Isupov [2]).

(Figure 16.2). At lower temperatures PbMgl /3M2/303 did not display a

dielectric hysteresis loop (Figure 16.3), and PbNi 1/3Nb 21/ 3 03 displayed a

strong displacemen: of the e peak (and the tan 6 peak corresponding to it)
toward higher temperatures as the frequency of the measurement field was
inc:'eased (Figure 16.2). Later on [8] dielectric hysteresis loops were found
in PbNi 1/3Nb2/ 3 03 (Figure 16.4) and also displacement of the temperature of

the c peak with increasing field frequency in PbWigl/3Nb2 / 303 (Figure 16.5).

Thus, both compounds are ferroelectrics, but they also manifest properties
that are unusual for previously known ferroelectrics, since the position of
the peak on the curve c = f(T) depends on their frequency.

The properties of polycryqtalline PbMg/3 Nb2/3 03 and PbNi /3 N2/3 0

are analyzed in detail in [8] for the purpose of proving their ferroelectric
state. As proof of the ferroelectric state of these compounds is examined
[8) not only the dielectric hysteresis loop, but also the basic curve P =
= f(E), formed in Figures 16.3 and 16.4 by the vertices of the hysteresis
loops. On the basis of the curve in the region of relatively low fields is
a disuontinuity (i.e., a sort of detached field), characteristic of ferro-
electr4cs. It was determined from the hysteresis loops that spontaneous
polarization of PbMg 1,/3Nb 2 .3 03 reaches a high value (-14-10- 6/cmZ at 1200C)

and is noizero at temperatures higher than the temperature of the c peaks.
When a stationary field is applied to specimens of both compounds the
permittivity measured in the weak field diminishes and the peaks of ( and
tan S are displaced toward higher temperatures.
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Figure 16.2. Temperature dependences of c and tan 6 of
PbNi 13Nb 2/303 at 1 (1), 45 (2), 4SC (3) ano 1,500 (4)

kHz and of PbMgl/ 3 N'02/303 at 1 kHz (Smolenskiy and

Agranovskaya [7]).

Figure 16.3. Dielectric hystereiisloops of polycrystalline PbMgl]ib2/03 Figure 16.4. Hysteresis loops c7
i3 2/1303 bi 1 Nb 0oa

at -90*C and various electric field Folycrystalline PbNi1 ,3Nb2/301 at

intensities (Emax = 20 kVlcm) (Smolen- -196°C at different field intensi-skia, et al f8l). ties (Emax = 60 kV/cm) (Smolenskiy,

et al [8]).

It was possible to excite piezoelectric vibrations in PbMg 1 / 3 • 2 / 3 0
specimens placed in a stationary field E = )S kV/cm. Piezoelectric modulus
d3, peaks near -20*C, reaching -2.5-]0-6 CGSE. At the very same temperature

the coefficient of electromechanical coupling kr peaks and the resonance and

antiresonance frequencies pass through a minimum. The piezoelectric
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Figure 16.5. Temperature dependence of permittivity
(continuous curves) and tan 6 (broken curves) of poly-
crystalline PbMgl/ 3I'0 2! 303 in weak fields at different

frequencies. (According to Smolenskiy, et al [8]).
1 -- 0 A; 2 -- 1; 3 -- 45; 4 -- 450; 5 - 1,500; 6
4,500 kHz.

vibrations exist in a rather broad temperature range above the temperatures
of the c peaks, In prcpolarized (at -190'C) specimens, however, the piezo-
electric vibrations at E = 0 vanished, even after heating to -60°C. A

similar dependence was also noted for PbNi 1 / 3.b 21 3 03 .

On the curves that depict the te" .erature dependences of the
coefficients of linear expansion there are flat peaks in the temperature
range corresponding to the peaks of low-frequency E. All this is regarded
as verification of the ferroelectr~c phase transitions in the investigated
compounds.

The growth of PbMg 1 / 3,,n 2 !O 3 and PbNil/ 3 b2 /3 03 monourystals and

analysis of their properties are described ia [9]. The character of the
temperature dependence of c and tan 6 of the monocrystals was the same as
for polycrystalline s-ecimens. There was also a displacement of maximum
R and tan 6 toward higher temperatures with increasing frequency.

The temperature dependence of spontaneous polarizatxon and coercive
field of Pbqg 1/3Nb 2303 monocrystals, determined from hysteresis loops, is
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illustrated in Figure 16.6. It is clear from the figure that there is noF-percept~ible jump of PS in the region of the £ maxima. Saturation of the
loops is not achieved at high temperatu~-es.

Duiring investigation in
polarized light it was found that
all crystals of these compounds

~15 behave like optically isotropic
crystails above the temperature of

e, liquid nitrogen. Birefringence

stationary electric field applied
Figue 1.6. empratue dpendnce perpendicular to the direction ot-
of sontceou polriztionandobservation, but as a rule no dcmain

c~arcive field of Pb.13N233structure is noted. A dcmnain
monorystl (ccoringto Bkovstructure could be detected only
and ~~ ~ ~ drn My'ioa[].o ethe process of repolaarization
and yllnkova(91) of erythin crystals (wedges s-reading

truhthe crystal'- The domain
boundaries, however, are indistinct and apparently I-ve great thic~kness. if
the process of repolarization takes place at a sufficiently low temperature,

teby removing the field it is possible to "freeze" the corresT-onding

doman srucure.If hen iathe bsece f afield, the crystal is heated,
the isiiliy o th doain grdualy orsns.Theboundaries become
lessdisinc. A ap~oxmatly 60' th tnirevisible domain structure

.1eseein igue 1.71 whre he empratredependence of the
hirerinenceof poarizd P~g Ncrytalin the absence of a

field is represented, that when heated up ti -60*C the crystal is almost

Analysis of polycrystalline 3pecimens and moinocrystals of
Pb~g11/3 X 2 /303 in a broad frequency range [10] showed that the displacement

of the peak on the curve E = f(T) with increasing freqttency, which occurs
at radio frequencies, ceases in the UHF range (Figure 16.8).

Figuie 16.7. Temperature dependence
of birefringence of field-cooled

1Db~g Ub 0monocrystal (Bokov'I and iMyllnikova [1)D. Curve I

plotted for heating without field,4 -90 and -60*C.
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Figure 16.8. Tenperature dependence of permittivity
of PbMgl/ Nb, /303 monocrystai at different fiequen-

cies (according to Khuchua [10]). 1-10; 2 -
l0e; 3 -- 6.6-108; 4 -- 10 9; S -- i.5-109; 6 --
2-109 Hz.

It is noteworthy that ir'.eresting dielectric properties of strontitun-
bismuth titarates (SET) have been known for a long time [11, 121, The
permittivity of SBT is high. (_103 ) and increases with cooling, passing
through a flat- peak, the position of whith depends on the frequency of the
probing tield. Skanavi (13] classified SBT as noT,ferroelectric compounds
and theorized thit the relaxation dielectric pclarization of SBT is caused
by thermal ionic polarization. Investigatiors in rather strong electric
fields have established, however, that SBT have dielectric hysteresis loops
at low temperatures, although by no means saturated, which 3uggests that
the ferroelectric mechanism contributes to some degree to the dielectric
polarization of these compounds r4].

Bogdanov d-spu" is the validity of this assumption [15]. He points to
the lack of dielectric hysteresis loop saturation and to the failure of

• attempts to detect the phase transition by the x-ray diffraction method. He
also points to the nonlinear dependence of the temperature of the C peak on
the bismuth titainate concentration, a.•d to the fact that the dependence of
the temperature of the c peak is strong only at low bismuth titanate
concentrations (which makes it difficult to explain the strong bli rring of
thz phase transition it high concentrations). It is emphasized here that
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strontium titanate is not a ferroelectric (not a classic ferroeiectric in
any case). His arguments, however, are not sufficiently convincing.
Actually, not only sbr, but also many other compounds generally recognized
to be ferroelectrics, do not display hysteresis loop saturation.

The x-ray diffraction method in the case of ferroelectrics with a
blurred phase transition very often does not detect changes in symmetry.
The nonlinearity of the dependence of the e peak temperature on concentra-
tion may be only apparent in connection with the limited range of solubilitv
of bismuth titanate in strontium titanate. (A strong increase in the concen-
tration of bismuth titanate in a specimen may result in only a weak increase
of its ccncentration in solid solution, which leads to termination of the
dependence of the e peak temperature on concentration). Strontium titanate
is actually not a common ferroelectric, but with small additives of BaTiO3

(1-2 mole %) to SrTiO3 the ferroelectric properties of the resulLing solid

solution are unquestionable. Finally, the fact that SBT displays the dis-
continuity characteristic of ferroelectrics on the intial polarization curve
[8] is convincing proof of the ferroelectric properties of SBT. Furthermore,
Fritsberg's work [16], pertaining to analysis of solid solutions of
SrTiO - Bi2TiO -PbTiO clearly shows a smooth transition of the e maximum

in SBT witL increasing PbTiO concentration to what is certainly a ferro-

electric e 1ieak in solid solutions enriched with lead titanate.

The anaiogous phenomena were observed in [141 (level peak on the

curve c = f(T), displacement of the peak toward higher temperatures with
increasing frequency, far from saturated hysteresis loops), in solid solu-
tions of (Ba, Sr)(Ta, Nb)20.

Goodman [171 described the nroperties of barium zirconate-niobate,
to which can lbe ascribed t e for. la Ba (Nb Zr )0 and structure of the6 8 2- 30
tetragonal bronze potasso-tLongstate type. The permittivity c of this

c
compound also peaks as the tempe-ature changes, shifting toward higher
temperatures as frequency is increased. On the c axis there are dielectric
hysteresis loops. Spontaneous polarization decreases moothly with heating,
but does not vanish in the teiierature range where the c peak: occur, but
retains a high value, continuing to diminish gradually with heating at even
higher temperatures. Goodman classifies the phase transition in this
compound as a third order ferroelectric phase transition, during which the
second derivative of spontaneous polarization with respect to temperature
should experie3nce a jump at the Doint of t.ansition. It is clear from the
preceding that there is a far reaching analogy in the properties of the
above-descri" ed compounds. It would be erroneous, however, to speak of
third order transitions in these cases. Here the temperature of transition
cannot be related to maximum c at any frequency, since spontaneous polariza-
tion itself is :,ct equal to zero on any frequency in this em-rerature range.
If the transition occurs at a very high temperature, whure P 0, then the

occurrence of c peaks and the dependence of their temperature on frequency
are inconceivable.
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62. Principles of Phase Transition Blurring

The great number of various ferroelectrics with the same character ofdielectric polarization is reminiscent of the nature of phenomena that occur

in these crystals. The general structural features of all these Lompounds --

different ions in the same crystallographic positions, can be distinguished
by careful examination. The assumption of the possibility of statisticfl
distribution of different ions in these positions led tc assumptions cot-
cerning the presence o5 composition fluctuations resulting in the blurring
of the ferroelectric p'lase transition and relaxation character of dielectric
polarization. Hence it stood t, reason that dielectric polarization will
also be of relaxation character if one starts with classical ferroelectrics
but achieves phase transition bluiring. MJeasurements of the C of solid
solutions Ba(Ti, Sn)O. with a strongly blurred s maximum on various

.3
frequencies supported this conclusion F8]. Thus, the relationship between
the relaxation character of dielectric Dolarization and blurring of the
ferroelectric phase transition became obvious.

Internal stresses and fluctuations in composition are regarded in [2]
as the causes of blurring of the ferroelectric phase traasition. Internal
stresses, hoeever, occuring in domains of a monocrystal 6r in the grains of
polycrystalline specimens due to spootpneous deformation during phase
transition, obviously cannot be a deci .'ng factor. Actually, if we examine
solid solutions BaTiO -BaSnO3 , we find :.tat baribm titanate displayts the

most spontaneous deformation, and here the internal stresses should be
correspondingiy maximal. In this series of compounds ýe-erthcless, it is
precisely BaTiO3 that has the most distrnct phase tra, itior.

It should be p inted out that the phase transiti n can also be blurred
as a result rr macroscopic nonequilibrium heterogeneit'y n composition
(caused, fo: instance, by incompletc -nutual dissolvi - of the components of
the solid sokutions). However, prolonged annealing of a number of ferro-
electric solid solutions with the blurred phase transition, tarried out at
high temperatures [8), did not eliminate the blurring of the transition.
In the case of Pb~lgl/Nb2 03 0t, w* ch is not a solid solution, but a compound,

one cannot speak at all of incoi.plete dissolving. It may be assumed, then,
that macroscopic composition heterogeneities in most of the examined cases
are not the main factor in blurring of the transitiovs, although generally
speaking their effect si-ruld be taken into account :,neneve- they are
possible,

Quantitative evwlation of the effect of fluctuations in co~nposition
on the blurring of phase transitions was done in [18]. The investigation
was done on a solid solution of two compounds with the perovsk:te stn-cture
AB'O5 +AB"0 3 , where the A ions are located in cubic octahedrons and the B'

and B" ions in the octahedral positions. Presumably there is no such
ordering of Bt and B" ions in the octahedral nodes. Suppose the concentra-.
tion of AB"C. in the solid solution is p. In the solid solution there is a
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small space containing n "molecules" of ABO where B = B' or B". Events,
consistiag in the detection of each "molecule" in the space qet aside (which

is infinitesimally smali compared to the volume of the specimer), are
regarded as independent events. Then the probability of finding m molecules

of AB"0 3 in this space is:3
at

P (a) -.- P 0 -"- ,TJ"_-,)re -P*ý*(16.1)

Using Sterling's equation, taking the logarithm and introducing the

symbol for AB"O.. conc-ntration in the examined small volume q = m/n, we
obtain

In order to use this equation we must know the value of n. For this
purpose i t is necessary to select the volume in which 3pontancous polariza-

= tion takes place simultaneously in all its parts, i.e., which polarizes
spontaneously " a whole. Some indications of the size of this space are
given by Kanzig [19] (but only for pure barium titanate).

Kanziq, as we know, on the basis of x-ray diffraction data, conLILded
that near the temperature of the phase transition from the paraelectric
state to the ferroelectric state barium titanate crystals break up into
tiny regions, in which, due to thermal fluctuations, the spontaneously
polarized state occurs at one moment and vanishes at another. These regions
exist in BaTiO3 in a narrow temperature range; they zannot be detected in

the crystal very far from the transition temperature. Spontaneous polari-
zation occurs in each of these regions (we will call them "Kanzig regions")
whether or not it takes place in the analogous adjacent regions.

It is obvious that a similar phenomernon, that of the breaking down
of a crystal in the phase transition region into piar and nonpolar regions,
should occur also in ferroelectric solid solutions, where the temperature
at which spontaneous polarization takes place in each Kanzig region will be
determined by the concentration q = m/n in this region. It is natural to
assume the dimensions of the volume wi-ich we hav'e set aside to coincide
with the dim'-nsions of the Kanzig regions. Kanzig estimates the upper
bound of liaear dimensions of these regions to be 10-S cm and the lower
bound to be 10-6 ca. The elemental nucleus ("molecule") of the examined
solid solutions measures -4 ., so that the upper bound for n is 16 mill-i-r
and the lover i3 16,000. If n is close to the lower bound, then according
to [2], deviations in the concentration of AB"O.. in the Kanzig region from

the average concentration should be rather substantial.

Calculation by equation (16.2) using a value of n close to the lower
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bound (n 21,000) yields curves of distribution of Kanzig regions in terms
of coa.osition, shawn in Figure 16.9. The width of the interval of
perceptible concentrations is conditionally -- t the same as the width ofI the peak at height 0.2P . Thz width of the interval of these concentrm-max
tions with c -stant n clearly depends on macroscopic concentra :on p, and

it iB clearl- equal to ?.ero when p
is 0 and 1. '%en p is 0.5 it is

SPlfJ.f0"• maximal. The Curie point of the
sc Kanzig region wiill -e determined by

the concentrations -f the components
in this region. The more the Curie
point (average) depends on componiznt
concentration, naturally, the
greater wtii be the width of the
temperature range in which tha phase
transition occurs (the Curie region)
with the given n. For Ba(Ti, Sn)C ,

for ex~ple, the change of the Curie
Sa apoint is about 8VC per I mole ¶ of

BaSnO.. When n = 27,000 and p = 0.2

af Uthe widin of the conditional interval
of concencratio.as is 0.008 or 0.8

4 -&# o -. mole ', which yields a Curie region
width of 6.40C. Evaluation of the
width of the Curie region for the

Figure 16.9. Curves of distrib"- compound PbMgl/ 3 Nb2/ 3 03 yields about
tion of Vanzig regions in terms of 15L0C [20].
composition for n = 27,000 and p
equal to 0.04, 0.2, 0.5, 0.8 and Thus, quantitative estimates0).9 (Isup•v '118]). x -- deviationTusqanitieetmts
o.f ,I:'~pov j•l8-- .x concdeviation of the blurring of phase trarzitions

o due to fluctuat;o;,s of c -po~ition
Kanzig region from macroscop.c yield values that agree satisfactorily
(in mole %), aa, a'a", a"a" --

conditional concentration intervals, with experimental data.

As shown by Rolov f21], it is
easy to find from relation (16.1) the expression for the .listribution of
Xanzi'g regions with respect to Curie points T

c

where f= (Tc - Tme)/(q - p) is the coefficient that determines-the rate of

change of the Curie point as component concentration changes, and is the

mean transition temperature. This expression is wre convenient for calcu-
: i at i~ns.
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Various factors that can influence the degree of blurring of ferro-
electric phase transitions are discussed in [20]. Also examined is a
k crystal A(Bi x5 3 with a perovskite structure, in which each of the

elemental nuclei has the composition AB'O 3 or Af"O 3 . If the charges of B'

and B" are nct equal, obviously, the nuclei will have some positive or
negative charge, even though the crystal as a whole is electroneutral.

If the energies of reaction between nuclei AB'O3 and AB'0 3 , AB"O 3

and AB"O 3 , AB'O 3 and AB"O 3 are equal, then the distribution of ions B' andIB" will be statistical, and the parameters of long-range and short-range
order will be equal to zero. One of the conditions for this is (assumIng
a heterovalent bond) equality of the charge- of ions B' and B". Another
condition will be equality of the geometrical dimer.sions of these ions.
Otherwise nuclei AB'O3 tend to surround themselves with oppositely charged

AB"O3 nuclei, and the nuclei with the larger B' ions tend to surround them-
3

selves with nuclei with smaller 8" ions (in the latter case the AO1 2 poly-

Iedron "*s deformed, iut the ordering of large and small octahedrons leads to
reduction of the overall (summary) elastic energy). The result wvll be
either lorg-range order (as, for example, in the case of PbMg2 5 VO.+3 ) or

3+ S+
simply short-range order (as, obviously, in PbFeo.sNb 0 .50 3 ). In the presence

of long-range order there are no fluctuations in composition. in the
presence of 6hort-range order the fluctuations are smaller than in
statistical distribution. Deviation of the ratio of the number of ions B'
to the number of ions B" from 1:1 also weakens the ordering tendency and
the distribution of B' and B" ions will be close to statistical (as, for
example, in PbMg 1 3Nb2 13C3 ).

,n the case of solid solutions with limited .- lubility in those
compositions that are tlose to the solubility limit, segregation of atoms
can be expected, i.e., enrichment of some microscopic sections of the
crystal with B' ions and of others with B" ions (a sort of predissociated
state). This shr-,- lead to a sharp increase in the blurring of the phase
transitiL..

Regardless of the character of distribution of ions, it must be taken
into account thpy the electrostatic and elastic energies of the Kanzig
region -- sponteveously polarized region, surrounded by a medium without
spontaneous polarization, are proportional to the squares of spontaneous
polarization (P ) and spontaneous deformation, respectively. For large Ps

and great spontaneous deformation, therefore, the simultaneous onset of
spontaneous polatization in a large volume of the crystal, with the forma-
tion of dcuain structure, is preferable from the energy standpoint :o the
gradual transition of individtal segments of the crystal into the ferro-
tlectric state while the surrounding space remains in the unpolarized state.
"11is apparently explains the absence of a notable Curie region in solid
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solutions BaTiOs-PbTiO3 and SrTiOs-PbTiO3 , where spontaneous deformation and

polarization increase sharply as the concentration cf lead titanate, which
of the perovskite ferroelectrics has a 6 times greater maximum spontaneous
polarization and spontaneous deformation than barium titanate, increases.
It has been shown experimental!y that in solid solutions Na0 5 Bi 0 5 TiO•-

-PbTiO, by measure of increasing concentration of lead titanate, aicom-

panied by an increase in deformation and electrostatic energies, ohase

transition blurring, which is great in Nao Bi o 5 Ti03 , actually decreases
[22].

It is noteworthy that a different explanation of the blurring of
ferroelectric phase transitions is found in several works [23-26]. Here,
as in [18], the concept of the separation of a crystal near the Curie point
into a !et of regions, in which spontaneous polarization occurs at Gne
moment and vanishes another under the influence of thermal fluctuations.
The term "Kanzig regions," introduced in [18], is used in [23, 24] for these
regions.

The authors of [23, 24], examining the phase transition of the
crystal from the spontaneously polarized state to the unpolarized state,
write the change of thormal capacity during the phase transition in the form:

dQ -L ,• Ft
d r)- -• - firv "• J (1 G. 4)

where Q0 is the energy of transition per unit volume of the crystal into

the nonpolar state, Vl/V is the relative volume of the substance experiencing

the phase transition. If the unit volume of the crystal is divided near
the transition point into N Kanzig regiors with volume V0 , of which N1 are

in the nonpolar state, then the entropy S of the system is determined through
the number of possible locations of the nonpolar regions among the total
number of regions N; Ignoring spontaneous deformation, it follows from
the minimum free energy that

W iN (F,('•-16.5)

where A4- is the change in the thermodynamic potential and V is the volume

of an individual region. For the first order transition

r.--r Ar
- - --7 '- (16.6)
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Considering the relation

Q, (16.7)

where C is the Curie-Weiss constant, we obtain from (16.4)-(16.7):

ctr'lchz + I*•

where

v,P' Ar Y (l6.')

it follows from (16.8) that the thermal capacity curve is "blu red"
in some t.mperature interval. Introducing the temperature interval T for

the blurring characteristic, in which thermal capacity is one-half the ralue
compared to its maximum, the atthers obtain:

,ACT
r,--3• b-•: •(16.10)

The correlation between individual regions leads to a reduction of
the degree of blurring of the phase transition.

It follows from expression (16.10) that the principal factors
governing the degree of blurring, in the case of examination of hetero-
phasal fluctuations, are V0 and the ratio CT /P2 . Thus, the higher the

transition temperature, the larger C and the smaller Ps, the greater will be

the degree of blurring for the same VO-

Thus, the blurring of phase transitirns in (23, 24] is cxplained
withorat involving theories of fluctuations in composition with a favorable
ratio of the values VO, C, To, Ps" The problems of the quantitative

character of the phenomeion, however, are by no means solved. The fact is
that there are distinct phase transitions in all simple perovskite com-
pounds in which there are no fluctuations in composition. The blurring of
phase transitions occurs only in the solid solutions and complex perovskite
compounds (such as Pblgl/32b 303) that have fluctuations in composition.

Therefore fluctuations of composition are a more important cause of
blurring of phase transitions than thermal fluctuations in ferroelectrics
of complex composition.

Examination of thermal heterophasai fluctuations in ferroelectrics
is useful, in part-cular because the explanation of the properties of

hýO
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MI
ferroelectrics with a blurred phase transition with the aid of fluctiations
in composition embodies examination of thermal heterophoqal fluctuations
(see below).

Noteworthy in this regard are the works of Rolov [21 o], per-
taining to examination of several properties of ferroe!ectr- with a
blurred phase transition (olurring of e peak, temperature curve of Ps0

thermal conductivity, etc.), the conclusions of which are valid, regardless
of the causes of blurring.

§3. Kinetics of Transitions

We will now examine, on the basis of concepts of compositional
fluctuations as the chief cause of transition blurring, the kinetics of
the blurred ferroelectric phase transition [20, 27]. Here, as before, we
will discuss the first order transition, close to the second order transi-
tion. We will define the mean Curie temperature of the crystal Tme as the

c
temperature that corresponds to the transition of one-half the volume of
the crystal to the ferroelectric state. This temperature can be deter-
mined by different methods (in particular, by dilatometric measurements).

We will examine a ferroelectric with a blurred phase transition
during cooling from high temperatures. Let the temperature of the crystal
be considerably higher than iae, but lower than the Curie point of individual

parts of the crystal, which have the maximum local Curie temperature T• C

Then under these conditions there will be regions of spontaneous polariza-
tion, surrounded on all sides by a nonpolar phase (isolated polar regions),
The term "domainoids" is used in [27] for such regions. In contrast to
domains, which we define as spontaneously polarized regions (in which the
electric moments of all elemental nuclei have the sane direction), surrounded
'by spontaneously polarized regions with a different direction of spontaneous
polarization, domainoids are spontaneously polarized regions (in which the
electric moments af all elertental nuclei also have the same direction),
surrounded on all sides by parts without spontaneous polarization. The
Kanzig regions are defined here as the minimal spontaneously polarized
regions in the nonpolar environment, i.e., nuclei of a new phase of
critical dimensions.

While the temperature is relatively high there will be few isolated
polar regiuns and they will be separated from each other by very great
distances compared to the dimensions of these regions, so that the forces
of interaction between them can be ignored. Two important processes take
place during cooling: growth of existing isolated polar regions due to
their combining with adjacent partq of the paraelectric phase, and appearance
of new isolated polar regions. As the 6istance between These regions
diminishes, the interaction between tLem is strengthened.

At some stage the polar regions begin to join together. This may
lead either to the formation of domain walls between them or to their fusion
and formation of large isolated polar regions.

- 1-



When TI" , where the volume of the ferroelectric phase is identicalS~C
to that of t-n paraelectric phase, the crystal can be imagined as some
complex combination of two mutually penetrating phases.

On cooling below Toe the domain structure gradually spreads through
c

the entire crystal. However, in connection with the fact that the crystal
has a large number of segments with a low local Curie temperature, the
domairs that form (in contrast to the domains in ordinary ferroelectrics)
are not continuous, and they contain a large number of nonpular "islands."
The number of these islands diminishes by measure of cooling of the crystal
and distance from Tmec

In examining this domain strueture we may obviously assume tha.t the
position of the boundary between domains, in which it passes through the
maximum number of nonpolar islands is the most stable position. In nther
words, the planes with the maximum, density of nonpolar islands are the
natural boundaries between adjacent domains. A high concentration of
nonpolar islands on domain boundaries may lead to great average wall thick-
ness and to uneven domain edges. This conclusion agrees with experimental
results (91 on optical analysis of PbMg Nb20 crystals.

1/3 2/Z 3crtas
In such an examination of a blurred transition we must deal with the

important role of thermal heterophasal fluctuations. If the temperature of
the specimen T-is higher than the local Curie temperature of any section of
the crystal, then spontaneous polarization will occur in this section from
time to zime under the influence of thermal fluctuations. The spontaneously
polarized state will be metastabie here. If T < T1O, then spontaneous

polarization in this section will be stable, but will disappear from time
to time under the influence of thermal fluctuations. Here, the greater
10

Tc - T the less often thermal fluctuation will be of sufficient magnitude
and the shorter tl.a lifetime of the poiar region in tite nonpolar state.
Houever, in a sufficiently w~de range of temperatures adjacent to TIO, the

C
possibility cf disappearance of spontaneous polarization in the pclar region
cannot be ignored.

From the given examination of the kinetics of the blurred phase

transition we may explain severai properties of Pbl/y 1 Nb2/ 30 and

PbNi 1 /sNb 2 /50, investigated in [9, 9]: features of piezoelectric vibrations,

birefringence and domain structure.

As the crystal is cooled in the absence of a field the joining of
isolated regions leads to vert small domain dimensions, with the result
that the domain structure is not visible under the microscope. ktben an
electric field is applied individual domains enlarge at the expense of
others, Here the nonpolar Jslands previcusly located on the boundaries of
the small domains find themselves within the enlarged domains. By measure
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of reorientation and enlargement of domains Visible bir.:fringence appears in
monocrystals and polycrystalline specimens display piezoelectric propertie,
which may last at low temperatures even after termination of the field. If,
however, the field is terminated and the temperature does noC differ verySmuch from ?*0, then depolarization will occur from time to time in

C
individual parts of domnains as a resuit of therma fluctuatiens. Witi the
reappeazance of spontaneous polarization in these paits its direction Mly
not coincide with the initial direction. Consequently large domains will
break down into small domaiajs (the f'r~mat-ion of small domains within the
initial large domains, where the contours of the original large domains are
preserved), visible birefringence and piezoelectric properties uill diminish.
At low temperatures this process proceeds slowly, and speeds up on heatitig
(and by the time the temperature of Pb%1g l3 Nb2/303 reaches -600C the process

is complete). The existence of piezoelectric vibrations in the presence of
a stationary field at very high temperatureýs (up to 90°C in Pbgl/Nb 2/303)

is easily explained by the presence of isolated polar regions at these
temperatures.

It also becomes understandable why many ferroelectrics with the
blurred phase transition, possessing a relatively low coercive field, do
not have dielectric hysteresis loop saturation, even with very high fields.
Apparently, the increase of polarization does not conclude with the
reorientation of all eAisting domains and isolated polar regions, but
continues due to the gradual transition of the nonpolar parts of the crystal
into the Dolar state under the influence of the electric field.

§4. Dielectric Polarihation

In view of a numbeter ma beother m e rroelectrics wioh the blurred
phase transition, there may be other mechanisms of polarization in addition
to the polarization mechanisms characteristic of ordinary ferroelectrics
[20, 27]. One such nechanism is relaxation of isolated polar regions and
their toundaries.

Spontaneous polarization of an isolatnd polar r?gion can have six
different directions (1001, [1OO], (0101, [0610], [0011 and [00] in the
case of tetragonal symmetry of the ferroelectric phase, 12 ira the case of
rhombic symmetry and eight in the case of rhombohedral symmetry. It can
be assumed that an isolated polar region possessing spontaneous polarization
in one of these directions will be located in a potential hole. At

temperatures lower than TI°, but close to T°c th central potential hole
C locorresponds to the state with zero polari7ation. Mien T c< T the centralc

hole does not exist. As the case may De, in descrb-.ng the state of an
isolated polar region we may examine several potential holes, symmetric
with respect to the state with P = 0. Thermal motion may cause the
polarization vector to jump from one direction to another through the
state with zero polarization, i.e., may lead to depolarizatior -f the



regior, with sub.;equent polariZattion in any of the possible directions. The
application ofT an ve-e~tric field gi:at7,Y increases zhe residetice time of
the region in one of the potintial hole.ý. Thus, we will have reaxationr
polar i at Ion, 3imil.-r to ther-mas ionic volariztation. Thiz rziumber Cf relixa-
tion elemeents here. however, w~il be strongly Jzqienders or zen-perature.C

Thz bopidaries t~etween th-- polzar and nonpolar phases are in continuous
motio u:" '-r the influence of therval -potion. W~e will vxamiaie the growth of
a new ta0i o; cells of 'the polar phase on such a boundary. We -il1 recall
Ot~ )-.r cL.cuzssijn concerns first arde?- phase t .nsitions, As the atimber
of cells iL the growing "sten" increases. the en:!rgy of' this stop willA
in.-rease at First furstable nucleas'. peak (critical nucieus), and then
diminish who;- the reaches sufficienviv 1:irge jimensions. in view of
the finite dimeznsions of an isolated nolar region', however, the si:-, of
the step and tne rednctlin of its energv are also lijitel. Thus, we can
ta!i% of two ic~tential holes, one of which i.; related to tic dipole moment.

Cd'1to zero and the other t3 some dipole mt-ment P. Thte expansion or
' 0;s,&e.rancce of an isc'ated polar rogion of a new laver o:f elecental

nudele in a facet is reiLted tO rr'e tr.-sition of this lcrfrc; urie
.',te. .~-'le to anothcr ant; is equi,._'ent to relayation o~f a dipole with

1l /7ie hp-ety is also necesr-ary to consid-cr the resonance

heformulation of a theory of dieloctric polarizat~orc of f~.rro-
electrics with blurred phase traoasition is obviously v. very complex ;-roblem
instatistical physics. The first task toward the develoc.ient of sucl, a
-heorv is to determine the cri-ticzl dimpnsions of spontan-ously polari~ed
r-egions in a nonpolar environment. The energy of such re.lions will
-)1v- .siv be the sum of changeý of free encroy 'e = A(T - P -, BP' ,' CS'6 +

-... during the phase transition, and ai--v of the eiectriostatiz, defoxrra-
tion and surface energies. Jaslkiehicz [291 did such a calculation for
nuclei in ellipsoidal form, lie arrived at dimensions ccrresponding to the
estimate of the d;,ncnaions of tthe Kanzig regions. However, the --irface

enryin this calculation i& very roughly approximated, and Pr'~sumably it
is equajl to one-half the energy of the 180' demain wall. The e-.istence of
frontal boundaries (perpendicular to Pd along with flank boundaries

(parallel to P) was completely disregarded.

in addition to the need to formulate a Zheory of dieiect!.c polariza-
t~ion of ferrociectrics with blurred phase transiti"n, iz is !till inroyirant
to continute experimental research on the~e r-erroelectrics and to determine
accurately those values with which tha theory h~ill operate.
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CHAPTER 17 A!iTIFERROELECTRICS

The properties o; antiferroelectric compounds and some of their solid
solutions are discussed in thiE chapter. Chief attention is focused on anti-
ferroelectrics with the perovskite structure, since they have been investi-
gated most thoroughly.

The term "antiferroelectric" was first introduced by Kittel [11. An
antiferroelectric is defined [I1 as a crystal with spontaneously polarized
ion c'iains, where adjacent ioit chains of a given type are polarized in
oppos'.e directions. It is usually assumed that the nature of antiferro-
electricity is analogous to that of ferroelectricity.

The first compound to be classifed as an antiferroelectric was lead
zirconate [2]. It should be recalled, however, that the possibility of
transitions between phases with different orientation of dipole atom groups
was (.xzmined by Frenkel (3], w.c also predicted the possibility of anti-
parallel ordering of dipole ,noments parallel to hydrogen halide crystals
[4]. As already stated, antiferroelectrics, like ferroelectrics, can be
divided into two groups -- 7 with a phase transition into the displacement
type Pntiferroelectric state, the other with a phase transition into the
order-disorder type of antiferroelectric state.

We will proceed to the specific ex.mpleS of antiferroelectrics.

§1. Antiferroelectrics with the Perovskite Type Structure

1. Lead Zirconate

Structure of Lead Zirconate

X-ray diffraction analyses IS] have shown that at temperatures above
the antiferroelec,ýric Curie point, eqial to 230 0 C, lead zirconate has a
perovskite type cubic structure. Si'perstructural lines have been detected
[6], however, indicating that thv true nucleus in the paraelectric phase
is distofted and is a multiplet nucleus. According to x-ray diffraction
and neutron radiographic analyses [7, 8] and also optical analyses it
polarized lighe [9], rhombic distortion occurs at temporatures below 230C.
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ihe elemental nucleus contains 8 formular units o7 PbZrC The three-
33

dimensional group is C - Pba2 [8.

Lead ions are displaced by pairs from position3 in the ideal cubic
lattice in plane (001) to the opposite side, approximately diagonally to
the facet (cubic direction <llr>, rhombic axis a). Zirconium ions are

displaced in the same manner. There a- also sral! components of displace-
ments on axis b.

Oxygen ions are also displaced in antiparallel in inl.n 01. Thu
plane (001) is nonpolar. The magnitudes of the displaciem.nts on the a axis
are: 0.26 A for lead ions 0.04 A for zirconium ions; on the b axis --

0.01 A for lead ions and 0.006 A for zirconium ions.

The displacements of lead ions are shown schematically in Figure 17.1
in projection onto plane (001) [7], verified in [8]. There -it• simltanu,;usly
uncompensated components of dispiacements of oxygen ions on the c axis,

which should have produced spontaneous
polarization of ~25 PC/cm2 , assuming
the ion charge of oxygen to be two

"and spontaneous polarization to be
i tJ equal to the product of the ion

':-. *' • charge and its displacement from the
c--.-- .-- position it the center of the

octahedron. The parameters of the
, • I. rhombic elemental nucleus at room

tewperatvre are: a = 5.884 A, b =
- 11.768 X, c = 8.220 A.

Figure 17.1. Projection of anti-
ferroelectric structure of PbZrO There is no notah~e displace-

ment in plane (001) and ti.e relation
to b = 2a is satisfied, wit~i the result

Sawaguchi 7]). The arrows inmdi- that the ztructure is pseudotetragonal.
cate the direction of disolacem.ent The distances 0-0 at room temperature
of lead ions. Each squart, corre-
sponds to an elemental nucleus arfo2.2t328.Thsithpanasete an oeentainingcneu .shortest distance betw.een zirconium
with parameter a,0 containing one ions and oxygen ion. is 1.92 A.
PbZrO un3t. The solid line Examination of the arrangement of

e flead ions and oxygen ions, between
denotes the proj.,ction of a rhombic ""e o e.'hich tl-e :!,dmce.- •re sfortost.
elemental nucleus, shows that two different configur.-

tions of shortest distances are
realized in ;ead zirconate, and consequently there are two possible types
of systems: of partially homeopolar bonds between lead and oiygen (8, 10).

At a higher temperature there is a phase transition in pure lead
zirconate near 230° into the rhombohedral ferroelectric phase, existing ;n
a narrow temperature range, and then into the paraelectric phase [6, 11, 1?].
Here the transition "-o the ferroelectric phase is accompanied by an inc,-c:c
in the volume of the specimen, and into the paraelectric phase, by a
decrease in 'olume (Figure 17 4a).
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Figure 17.26. Temperature dependence of thermal
expansion 6Z/Z (a) and permittivity (b) of
highly pure PbZrO- (according to Gul'po [111).

i Dielectric Properties of Weak and Strong Fields

The temperature dependence of permittivity, measured in a weak field,
of pure lead zirconate is represented in Figure 17.2b fill. Tile anomaly in
pen-ni•ttvityo and relative elongation in lead zirconate was discovered

independently by Smolenskiy [13-15' and Roberts f16]. In the paraelectric

C

Pha e he aw c = c is obeyed, wi,ere C = 1.S5olO5°K, ,6 = 4550K and0 T

CE < 50 [211. In specimens in "which there is no ferroelectric phase [1"7],

apparentiy relateJ to imp1rities, in particular hafnium, the dependence of
polarization on the intensity of a variable field is practically linear

with the exception of a narrow region near the phase transition. Th~e phase
transitioi temperature drops ,.s electric field strength increases (approxi-
r Dately 1.5e at a field strength of 20 kVcm), and the peSmittivity at
temneratures somewhat rower than thsephai ttransition temperature increases.
In puronger electric fields, howrever, ther- is induced phale trahsition into

S~the rhombohedral. ferroelectric phlase. The critical fie-ld de~repsvs lint•:arly
S • wi~th increasing temperature at a rate dEc,'13' = 1.7 kV/cm-deg [171.

p tinMeasurements of the ermittiontv of lead zirconate in a wide
frequency ranbye of 10-4-1nki 118-21 shadRwed the absence of dispersion of

e in the paraelctric and antifcrroelectric phases and notable dispersion

appacnty reate toimpuitis, n paticlarhafnumthedepedeneo
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of c and an increase of tan 6 near the Curie point in the range of the
ferroelectric phase. Dispersion in the ferroelectric phase is related to
the prcsence of domain boundaries, .iobile in an electric field, which are
absent in tne antiferro- and paraelectric phases (see Chapter 9). At
higher frequencies, close to the natural vibration frequencies of the
crystal lattice, a new dispersion mechanism, common to polar and nonpolar
phases, goes into effect. This mechanism of dispersion has not ye: been
analyzed in antiferroelectric!.. An increAse of tan 6 is noted [21] in
lead zirconate at frequencies above 110 Hz, apparently related to the
long-wave mode of vibrations.

Piezoelectric Pffect, Effect of Pressure, Heat Capacity

It follows from structural data concerning the presence cf an
•incompensated polarization component that lead zirconate may display the
piezoelectric effect, which is substantiated by Robert;' data for ceramic
specimens [16]. A qualitative conclusion has been reached as a result of
analysis of the temperature dependence of the elastic properties of lead
zirconate ceramics [221 to the effect that the anomaly of elastic properties
;s partially the result of an abrupt chanpe in the pliancy coefficient in
the presence of stationary polarization s and partially because of piezo-
electric activity. It should be pointed out, however, that a firm conclu-
sion concerning p-lezoelectric activity of lead zirconate in the antiferro-
electric phase can be made only after examination of little-detwinned mono-
crystals.

The application of hydrostat..c pressure [23] increases the temperature
of the phase transition between the antiferro- and paraelectric phases
dT /dp = 4.1°C/kbar, which is in agreement with thermodynamic theory. No

data were obtained [23] about an intermediate ferroelectric phase. Perhaps
the range of existence of this phase narrows when pressure is applied and
vanishes altogether as pressure is increased (we will recall that subnucleus
volume is greater in this phase than in the paraelectric phase and much
greater than in the antiferroelectric phase). At a pressure of 6.4 kbar
the phase transition line has a discontinuity and the new slope is
dT /dp l 1.1 0 C/kbar. This discontinuity possibly corresponds to a uew
c

phase boundary.

Heat capacity measurements [24, 25] sbowed that a latent heat of
transition equal to 440 cal/mole [24] corresponds to the antiferroelectric
phase transition Cin specimeps without a ferroelectric phase).

Qptical Properties

The birefringence of small, strongly detwinned PbZrO3 crystals was

analyzed in (9]. The refraction coefficient has a minimal value on the a
axis, on which occur chiefly a.itiparallel displacements of lead and
*irconium ions. Barium titanate, as we know, also has a minimal refraction
coefficient in the direction of spontaneous polarization. Analysis in
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polarized light revealed the existence of planes vf twinning of the type
(hkO) where h, k A 1. This is regarded [9] as experimental proof of the
nonpolarity of plane (001), since planes (hkO) with h, k A I cannot be
domain boundaries in a ferroelectric due to the requirement of zero charge
on a boundary, which is penerally true only when electrical conductivity
is quite low.

It was shown [9) that birefringence in PbZrO3 cannot be regarded

simply as a xzsult of the elastooptic effect with the assumption of propor-
tionality between the difference of refraction coefficients and deformation
of the nucleus without additional contrived theories concerning the
magnitude of the elastooptLc constants.

2. Lead Hafnate

Lead hafnate, PbHfO3 , was first synthesized and analyzed in [26]. At

room temperature there is rhombic distortion, analogous to the distortion in
lead zirconate. Comparison of the positions and intensities of super-
structural lines suggests that the configuration of ion displacements is
also analogous to lead zirconate. Elemental nucleus parameters at loom
temperature, assuming tetragonal symmetry, are: a = 4.136 (±0.001) A, c/a =
= 0.991 (±0.001). The Curie-Weiss law with C = 0.9Sl0scK and 0 = 50*K,
is valid in the paraelectric phase. The Curie point is around 200'C [26,
27]. and also there is a phase transition at about 160*C between two
different antiferroelectric phases.

The symmetry of the intermediate phase is pseudotetragonal, as ip
solid solutions (Pb, Sr)ZrO3 (see below). At 200°C a = 4.134 (±0.001) A

and c/a = 0.997. A sharp increase in volume with increasing temperature
corresponds to both phase transitions.

The application of a stationary biasing electric field causes a
slight increase in reverse permittivity arid lowering of the Curie point
(about 2%C in a field of 10 kV/cm). The dependence of polarization on
stationary field intensity is linear in all three phases all the way up to
fields of 40 kV/cm, with the exceptit,.. of- i narrow region near the Curie
point, where s!ight upward turns were noted on the curves P = f(E).

3. Solid Solutions of PbZrO. and PbHfO... Concept of Phase Transitions of

Solin selutions of PbZrO3 and Pbl:. 3 can be divided into two grops:

solutions in which the domain os the ferroelectric rhombic phase expand as
the concentration of the second component is increased, and solutions in
which this domain narrows and even disavrears. In solid solutions of the
first group, as a rule, the second component has a higher structural factor
t (see Chapter 2) than lead zirconp.c. If the second component has a lower
structural factor the ferroelectric phase usually vanislies. It is nr.te.
worthy in general that antiferroelectrics of the perovskite class hav.- a
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structural factor t less than unity. This experimental rule was formulated

by Zhdanov and Venevtsev [28]. The possibility that this is related to the
dependence of the electron polarization capacity of oxygen on its dimensions
in the lattice, as is the case in simple oxides [29], is not ruled out. Tre
effect of electron polarization of oxygen on the electrostatic dipole-dipole
interaction in antiferroelectrics was studied in [20-33]. Internal fields
in lead zirconate, corresponding to displacements of ions determined in [8],
were calculated in [34]. It must be pointed out that model theories
explaining phase transitions between ferro- and antiferroelectric phases do
not yet exist. In particular, no-hing is known of the physical factors
that can cause the electron polarization of oxygen to change, affecting the
relative stability of the phases.

Schematic diagrams of typical phase transitions [35] are illustrated
in Figure 17.3 and the second components of a number of investigated solid
solutions of the perovskite class are listed in Table 23. References to
the literature are -ttso given there.

Table 23. Second Components of Several Investigated Solid
Solutions of Antiferroelectrics of the Perovskite

Cass ABO 3 -A'B'O 3

Group I Group II
PbZrO3UaZrO3 11,". 341 Pb r3SrZtO= |,". .=.'ul

PbTIO' s. z" l •1cZrO3 I11. •JbaTiO3 P 1t. 411U 5Pto, p -. 2. .4&11

PbNIu pa. 41 sCdZrO• 1
PbTa1O. gK *PbC.1OW 4

JbZ- ,O . 1441 B1q4 aiva. .zros I4I

PbHlOj

8kIO 415Ju cant1o, 1461PhTlil !14J[ C81l103 [&,I

NaN bO3
XNbO, I2. . as4v NaTaOS IU"- W. 03

Pb.o1 an
HiaN&O0 !- i F S3.Os l94

PbZt'531 i. '9 S:TiO•. 1I
S:Nbo 1Ini. 911
PbTioP 51"io

PhI)4 11 W'1,02
PbTMOi5 .'t. IM ll ca .102 ioi
1'bMftg.,Nb OIn. s42el j VA3 O0 l-l

in the second grsup af solid !.olutions. which are formed in a rather
broad range of concentrations, a new antiferroelectric phase occurs and, in
addition, there are oftcn new nonpolar phases [i0, 22, 45, 46]. Vbc
temperatures of the phase transitions hstwcen the nonpolar phases ris; as
the concentration of the second component is increased, despite the reduaction
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Group I Group II
7 •3l• ns do.

-(pseudo-

ubic)

hef ( r.) ,er.)
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b Cr(tetr.) %
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Ci~hom C

TAIe

Figure 17.3. Scizematic diagrams of typical phase
t.ransitions in antiferroelectrics of the perovskite
class based on PbZrV. and PbHfO3 (a), Na.bO. (b) and

PbMg 1 / 2 W1 1 2 03 Cc) (according to Kraynik r35]).

Phases: A -- antiferroelectric; C - ferroelectric;
P -- paraelectric.

of the polarizability of the ions. It should also be recalled that the Curie
points drop in other ferroelectric solid solutions after such substitution
of ions. Therefore it can bo assumed that these transitions are apparently
different in nature from ferroelectric phase transitions.

Such transitio.s were detected in solid solutions of CaTiO. [49-52],
3

in several aluminates, orthoferrites, rare-earth hallates [53, 54], NaTaO,

[55-58], etc. These transitions are usually classified as "buckling"
transitions [S9-61]. The change in the temper&tures of the buckling phase
transitions agrees qualitatively with devuiations of ion dimensions (in the

case of solid solutions the averave dimensions are used) from the dimensions
required f.-r the cu1'ir structure. During buckli-: phase transition the
structure is distorted in such a way thp" the requirements of tight packing
of the ions and preservation of the angles of homeopolar bonds are satis-
fied. This t)pe apparcetly also ircludes high-zemperature transitions in
NaNbO and its solid solutions (see below;. Therefore it seems to us

3
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natural to distinguish these transitions from antiferroelectric transitionn
in which long-range dipole.-dipole interaction apparently plays an important
role.

Such differentiation is easily done experimentally only if the free
energy of the antiferroelectric state is sufficiently close to the free
energy of the ferroelectric state, since in this case antiferroelectrics
manifest strong anomalies in permittivity, field induced phase transitions
are possible in the ferroelectric state, etc. In the case of buckling phase
transitions, and also phase transitions into the antiferroelectric state
with free energy very difierent from the free energy of the ferroelectric
state, these phenomena do not occur.

We will now examine specific cases of solid solutions. As an example
of solutions with a ferroelectric rhombohedral phase we will examine solid
solutions of PbZrO -PbTiO5 (the t factor increases as the concentration of3 3
the second component is increased).

The actual diagrams of the phase transitions may have a form more
complex than shown for simplicity in Figure 17.3a. Figure 17.4 represents
the diagram of phase transitions when the concentration of PbTiO. is low

3
(5, 39]. Anomalies appeaz in th2 region of the phase transitions on the
curves of the temperature dependences of permittivity, thermal expansion
and heat capacity [5]. Phase Al (Figux- 17.4) is a rhombic antiferro-
electric phase, inalogous to the antiferroelectric phase of pure lead
zirconate; Cl is a ferroelectric rhombic phase, which occurs in lead zirco-
nate and in all solid solutions of group I (Figure 17.3a); A2 is an anti-
ferroelectric phase, observed in PbZrO_ with certain impurities, tile super-

structure of which differs from that of rhombic phase Al of lead zirconate,
but which is similar to a new pseudotetragonal antiferroelectric phase that
usually occurs in solid solutions of group II, and also in lead hafnate

- (Figure 17.3a).

More recently new ferroelectric phase C2 was found. The detailea
structure of this new phase is not known at this time. It turned out that
the ferroelectric state occurs at lower temperatures in solid solutions
of the system PbZrO -PbTiO -"PbSnO "- PbN206 [62, 63] anj PbHfO.-PhTiO.

[64] in some range of concentrations, than the antiferroelectric state
(phase A2). The application of a strong field induces phase transition
into the ferroolectric state in a rather wide range of temperatures of the
antiferroelectric phase. The application of pressure to a specimen in the
ferroelectric state causes transitions to the antiferroelectric state, which
is explained by redaction of the volume of the elemental nucleus during
transition from the ferro- into the antiferroelectric state, characteristic
of solid solutions based on lead zirconate ind lead hafnate.

As an example of solid snlutions of group 'I we will examine solutions
of PbZrO3 -75"ZO 3 . These solid solutions were analyzed in flu, 24, 36, 451.

3 Y
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T. As the concentration of the second A

m Al component in these solutions

:X ef increases a new antiferroelectric

f~f .1 phase, isostructural phase A2 in
_ solid solutions PbZrO3 -PbTiO3

- s .c CI(Figure 17.4) appears. This phase
_has a pseudotetragonal structure, to

= I :S 1 Owhich is applicable a simple model
with a double lattice parameter and

Figure 17.4. Diagram of phase transi- ion displacements, alternating in

tions in solid solutions PbZrO - opposite cirections; the configura-
3 tion of tAe ion displacements is not

PbTiO with a low concentration of k..wn. The phase transition from
.3

PbTiO� 3according to Sawaguchi [5] one antiferroclectric phase to
and Dungan, et al [391). Phases: another iq accompanied by anomalies
Al -- rhombic antiferroelectric; i. perm 'ivity, thermal expansion
A2 -- pseudotetragonal antiferro- and thermal capacity. The applica-
electric; Cl and C2 -- rhombohedral tion of a strong biasing electric
ferroelectric phases; P -- para- field increases permittivity and
electric phase. lowers the temperature of the phase

transition.

In iddition to these two transitions, two other transitions appear as
the concentration of Sr~rO3 is increased, the temperatures of which rise as

the concentration of the second component is increased (Figure 17.3a). The
third phase transition was described in [10, 451 and the fourth in (10].
These phase transitions are accompanied by slight anomalies in the
t^mperature dependence of permittivity, relative elongation and elasticity
cuefficients. The results of extrapolation of the temperatures of these
transitions to pure SrZrO3 agree satisfactorily with the temperatures of

the phase transitions in SrZrO. recently observed in [65'.I3
The two high-temperature phase transitions are more likely related to

the "buckling" phase transitions than to antiferroelectric phase transitions.
This is supported, in particular, by the rise of temperat-res of these
transitions with increasing SrZrO- concentration, despite the associated

reduction of electron polarizability of type A ions after substitution of

Pb÷ by Sr. We will also note that such substitution of ions in ferro-
electrics of the perovskite class lowers the Curie point.

The properties of solid solutions based on lead hafnate are similar
to those of solutions based on lead :irconate, although they differ in
details. As structural factor t increases, the rhombohedral ferroelectr:.
phase appears (for instance, after substitution of lead ions by barium
ions [66], or after substitution of hafnium ions by titanium ions [641),..
an4 when t decreases (fon instance after Sstitutien, cf lb++ izns by C;.
(271 or Sr÷÷ (601), at least two different antiferroelectric phases --

rhombic and pseudotetragonal, continue to exist in a certain range of
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concentrations. Also. new nonpolar phases appear, the temperatures of which
rise as the concentration of the second components is increased, despite
the reduction of average polarization capacities.

See Table 23 for references to literature on certain other investigated

solid solutions.

4. Sodium Nioiate

The anomalous dielectric properties of sodium niobate were firstdiscovered by Matthias [67, 68]. who classified it as a ferroelectric.
Vousden [69], Shirane, ct al r70] and Cross and Nicholson [71], however,
demonstrated that sodium niobate is an antiferroelectric at room temperature
and in the absence of a field sodium niobate displays under these conditions
a perovskite type structure with rhombic distortion. The parameters of the
rhombic elemental nucleus, according to [72, 73] are: a = a 5.568,

b = 4a= 15.518. c : a 0/-2 = 5.505 X, where a0 is the parameter of the
cubic nucleus with the perovskite type structure.

The elemental nucleus consists of 8 forxular units. The parameters
of the nonprimitive monoclinic elemental nucleus, containing 16 units,
often used for describing sodium niobate, are: a = c = 2-3.914; b T

in i
4-3.881 A, 8 = 9039' [74]. The spatial group at room temperature.

describing displacements of %bS*, according to [72, 73], is Dh - Pbma.

The elemental nucleus consists of 4 layers with a thickness of a0 , located
perpendicular to the b axis. The basic ccmtponent of the displacements of
Nb ions lies on the a axis and is equal to 0.15 X [731. All displacements
of Nb lie entirely in layers parallel to (010), i.e., the -lisplacements of5+•

Nb on the b axis are equal to zero. Here two layers with displacement- of
one symbol alternate with two layers with displacements of another. The
structure of Nab0O- according to [72, 73' is illustrated in Figure 17.5.

The application to i crystal of an electric field perpendicular to
the b axis leads to the appearance of a rhombic ferroelectric phase khose
b parameter is one-half that of the antiferroelectric phase, and conseqjentzy
b = 2a 0 [75, 76]. In certain cases this phase remains in the metzstable

state even after eliminaticn of the field [75, 76]. As the temperatura
increases to -360°C its stability increases and in certain crystals, in the
absence of an electric fie!d, a phase transition occured into this phase
[77]. The induced ferroelectric phpse is analogous to the rhombic ferro-
electric Thase occurring in solid solutions NaNbO.-KNb0.. Spontaneous

polarization is -10 uC/cm2 [76].

Th.- apr'ication Df z strang fie.' paiaiiel to the b axis at room
temperature in fields up to 130 kV/cm did not cause transition into the

I"Z
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Figure 17.5. Schematic representation of sodium niobate
structuire according to M•egaw and W~ells [72, 73] in pro-
jcction on plane (010). a -- position of atoms in
perovskite structure; b -- elements of syim'.etry of
spatial group Pbma; c -- location of Nb atoms (dispia.ce-
menits are exaggerated for zlarity, displacement of Nb
on x is -0.17, and on z, 10.04 A).

Coordinate 'v of non-
Atom displaced ions in

fractions of lattice
constant

ferroelectric phase, but when the temperature was lowered b~low -120°C [711
normal hyst resis loops were observed in a strong field. According to [71]
phase transition to the ferroe:lectric state in the absence of a field
occurs at ~-200•C. Once forming, the normal lhops were also observed at
higher temperatures u' to -50cC. There is information (Shirane's report
at the 1956 congress of the American crystallographic society) that the
structure of this phase ir monoclinic. It is theori-zed [65] that in addi-
tion to antiparallel displace'nent.s of ions, perpendicular co the b axis,
parallel components of disnlr, cements on the b axis also occur, i.c, thei ~ phase is ferroelect.ric.

In ceramic si:.ci~ens of .NaNbO_ at temperatures below" -80 0 C [78, 791,

3

there are also normal hysteresis loops which, having fermed, last to CC°C,
degenerating gradually. A metastabie ferroelectric phase is induced in
ceramic specimens at teSeratures above 50t in a strong electri field

[80], which vanishes on heating above 27O•C. Its structure w'as not investi-gated. Spontaneous polarization was -3- pC/cm••i. oxtremly complex tiinning
occurs in NaabU.. cr'stals [75, 76-.

The refractioa coefficicu.t of c cio minimal in the direcion of
the a axis, i.e., in the direction of the basic displacement of Nlbo .ong

[91. This is uito analogous to the results of optical analysis of -aTiO.

and i-0.•rO.. No proportionaity cozld Ae established in inh.. let-eenShirefringenc? and the corresponding dcform-aticn of the clem~ntai nceleus.
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7,7,31-83). At approximately 360*C there is a phase transition from

oerhombic phase to another, close to tetragonal, with nonptimitive
elemental nucleus 2a x 4b x 2c0 r76]. T3 this transition corresponds

maxium , cang ofbirefr'ngence and latent heat of transitioi. equal to P
S0 cal/mole (70]. The application of a stationary field increases c,
iteacured inawa aibefie-ld. At temDeratures above this transiticn
c obeys the Curie-Weiss law. Also, at 4300 according to x-ray diffrr~c-M
tion data (77, 82], a trausition occurs, appareaitly into the tetragonsal
phase with nucleus 2a 2b x 2c,, at 470-480*C into another tetrascnplA

phase, which is verified by a jump in c and birefringence (70, 71, 81], and
also by x-ray diffraction data [77, 82]; at -520*C, into a new tetragonal

phae wth uclus0 0 c0 ? substantiated by x-ray diffraction data

(74, 771, and alf'n by the presence of a jump of e and birefringence (7S]; -
at 5800C (84] -- i.-to ag'other tet'~agonal phase and, finally, at 650%C-
into a cubic phase (verified optically and by x-ray diffraction data, and
by the presence of a :ump of the temperature coefficient c [70, 71, 74, 81,
82]. Here the traix.<'t,:ns at -360%, .5800 and 6400C are first order
transitions. The :'-ture of these phase transitions is discussed below.

5. Solid Sotutions'BasexI on Sodium Niobate M

Solid solutions based on sc -um niobate can be divided coa~ditionally
into the following two groups: a high-temperature ferroelectric tetragonal

=phase occurs in solutions of the first group, and such a phase does not
occur in solutions of the second group (Figuve 171.3b and Table 23). As
already mentioned, sodium niobate in the low-temper~irire range has *' ferro-
or ferroalectric, apparently noonoclinic phase, but t'ie effect of substitu-
tions of ions on the temperature range of its existence has not been
investigated. It follows from experimental data (Tabl_- 23) that the second
components of most solutions of the first group are haracterized by higher

A ~ electron polarizability of type A ions compared to Na.

As an example of solutions of the second group we will examine
solutions of (Na, K)Nbo These solutions h&-.c been analyzed [70, 72, 73,3.
83, 86]. A detailed description of the monocrystals of these solutions
with small concentrations of K.NbO. is giv~en in [851. A diagram of the

phase transitions according to '851 is seen in Figure 17.6. A phase
transition from rhcmbic antiferroelectric phase Al with b =4a into rho-mb ic J

ferroelectric phase CI with b tr2a0 z.n be scen in hirnocrystals. In region

A!, with a K1NbO3 conc~ntration less than 0.6 mole 14, the npplication of an

eleotriC field perpendicular to the h axis causes a phase transition into
the rhombic ferroel%!ctric phase, but after removal of the field the
specimen returns to the antiferroelectric state. In region Al + Cl these
tv.0 phases coexist.A



7,°0 The structures of the ferro-

I &tectric phase occur~ing with the
n1 60 application of the field and of

rhombic ferroelectric phase C!,
occurring in solid solutions with
potassium niobate, are identical in

00 terms of displacements of Nb + ions,
C2C2 A but apparently differ somewhat in

terms of the positions of oxygen
ions [73, 87]. Nb ions are displaced

1.10 -0.17 A on the a axis. With a
V lfurther increase in the concentration

of Datassium niobate tetragonal
jj ferroelectric phase C2 appears. To

:o a s . 0 the phase transition from the rhombic
"Aft% KW6, phase to tetragonal correspond

anomalies oto the curve5 s.f the
Figure 17.6. Diagram of phase tran- temperature 4ependences of c and heat
sitions in system (na, K)NbO3 at capacity [703. It can be concluded
low K•)J concentration (according on the basis of j70, 75, 86] that

3 parameter b remains up to 30-35%
to Cross [85]). Phases: Al -- duplicated in the rhombic ferro-
rhombic antiferroelectcic; Cl -- electric phase,
rhombit ferroelectric; P) -- pzeudo-
tetragonal paraclectric; PS -- As an example of solutions of
cubic paraelectric. the second group we will ecsmine

solutions of Na(Nb, Ta)O.. It has

been shown [S5, 56] that compounds containing less than 50% sodium tantalate
display antiferroelectric properties and are analogous in trrms of dielectric
properties to pure sodium niobate. An interesting feature of these solid
solutions is the veering of the phase transition line from the thtmbic anti-
ferroelectric phase to rhombic p'raelectric phase (which occurs in pure
sodium niobate at 3601C). This breakaway occurs in the 50-60' sodium
tantalate concentration range. These results were confirmed [92, 93], -oth
on polycrystal'ine specimens anc1 on monocrystals. The general form 'f the
phase transition diagram in this system is seen in Figurc 17.3b. (u;apounds
containing more than 55¶ sodium tantalate display ferroelectric properties
below the phase transition point [55, 56, 92]. In compounds close to the
soluwion with 55 mole % sodium tantalate (region of breakaway of phase
transition line to paraelectric phase), the two phases _oexist in a certain
cangc of concentrations.

Refe:ences to certain works in which various solid solutions based
on sodium niobate wexe analyzed are given in td-le 23. There is a great
similarity between sodium niobate and silvtr niobate, tine antiferroelectrkc
properties of which were discoveret and investigated in [96].

Several hikh-temperature phase transitions occur in sodium niobate
tt t*s•mperatures above 360°C, and also in silvcr niobate. These phase
transitions are usually classifed as so-callt.. 'uckling" phase transitions
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[55, 56, 88, 961. When nucleus parameters av-'rease the temieratures of these
transitions rise in some of the slid solutions and when the parameters
increase, the temperatures drop, sc that phase transition from the cubic to

tetragonal phase occurs wL.en the nucleus parameter is the sa,.e for all
investigated compositions of various solid solutions, equal to 3.94 A [88,
91]. Buckling of the structure continues into the temperature range in
which antiferro- and ferroelectric phases occur, and deformations due to
forro- and antiferroelectricity resemble buckling deformations.

The superstructure lines in the rhombic and tetragonal ferroelectric
phases of sodium-cadmium niobates persist in the entire domain of the solid
solutions [89]. The superscructure lines of solid soitions of sodium-lead
niobates gradually vanish in the tetragonal ferroelectric phase as the
concentration of lead niobate is increased, but this d('(s not lead to any
aromalies in ferroelectric properties [881. In the ca-., i.f Na\hO.- and solid

solutions based on NaNbO3, buckling deforracions apparenvly coexist, with

ferro- and antiferroelectric deformations, which are the result of electro-
striction, and they can be separated from each other. G .nerally .,peaking,
however, buckling deformations may have a considerable el-fect on ferro- and
antiferroelectric deformations, and such separation is not always possible.

6. Lead Magnotungstate

Lead magnqtungstate (PbMg.g/2WI'112 03 ) was first synthesized and

analyzed in [97]. X-ray diffraction anlysis [89], dne both on poly-
crystalline specimens and on monocrystals, zevealed that the distribution

2+ 6of Mg and W ions in this compound is ordered in the octahedral positions
of the crystal lattice and Mig, W, and Mg ions alternate on all three axes
of the original cubic lattice. In addition to superstructural lines
corresponding to the ordering of Mg and W ions, the x-ray diffraction
patterns reveal superstructura! lines due to antiparallel displacements of
ions. It was found that the structure of .b~glW 0 is rhombic; the

parameters of the elemental nucleus are: a= 22.7; b = 22.73; c = 1-5.89 A.
The spatial group i" D5 -C222 . The eiemental nucleus contains 128

'2 1
Pb•1+ /205 units. The elemental nucl-•s is depicted schemati -illy in

01l/2WI/2 .

Figure 17.7. There are no dielectric hysteresis loops ,p to break-through
field intensities. I

The antiferroelectric Curie point of lead magnotungstate is 36%C.
To this temperature correspond a sharp c peak and spontaneous reduction of
od,lume [99] (Figuie 17.8). Above the Curie point th.e Iaw E = E) + C/(T - S)
is valid, where c0 = 58. 0 = 167"K, C - 2.-10oS*X j97]. It is not surprising

that there is no dispersion of c at trequencies up to iU. ;;4 i :.
of the antiferroelectric phase transition [20, 21, 100]. Lead magno-
tungstatc wa,: the first antiferroelectric material ir which tan 5 war founad
to increase with increasing frequency in the 1010 ;1- range [20]. The
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increase of tan 6 with frequency continues even into the millimeter wave-
length range (2]. This is evidence for the long wave mode of lattice
vibrations. Measurements of e in a variable field with a simultaneous
application of a weak stationary field showed a slight (up to 2%) increasein E[ 1011.

Of Oz *3 oA

Figure 17.7. Schematic diagram tf elemeitta. nucleus of
Pbg 1 19W 1,O., (according to Zaslavskiy and Bryzhina

' 2- 2+ 6+ 2
(98]): 1 -- 0-; 2 -- Pb ;3 -- W ; 4--Mg.

AL 0

01 ..~..~ iot~or,~cFig-ire 177.9. Temperature dependence
-1o0 -so 0 of elastic pliancy so1 (1) and

Figure 17.8. Temperature dependence l it i c
of permittivity and thermal expan- -(2) of poivcr-stalline• . v •,,O (ac,.ording to
sion of polycrystalline PbM•g/,2W..i2 Pb'g 1 /2 1 /2  ( o

Shuvalov and Minayeva [104)).
(according to Snmolen-kiy, et al o n991).

An anomalous heat capacity corresponds to the antiferroelectrik
transition. The latent heat of transition is 276 cal/mole [1021. The Curie
point drops with the application of hydrostatic pressure [103]. dTr/dp

-5.92-10-3 deg/atm up to 2,000 atm, and qaturation tends to occur with
a further increase of pressr-re. Blurring of the phase tra.sizion is noted
with increasing pressure [103] ?Xe.r the antif.rroelectric Curie point
-,-c .... • ' ne•iek .nd the iliancv coefficients display an anomaly
(104, 1051 (Figure 17.9). Inter:ml f-iction is grea,. In t".e
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antiferroelectric phase than in the paraelectric phase, obviously due to
losses on twinned boundaries.

7. Solid.Solutions Based on Lead Magnotungstate

These solid solutions can also be divided conditionally into two
groups (Figure 17.3c and Table 23). A ferroelectric phase occurs in solid
solutions of lead magnotungstate with lead titanate and lead magnoniobate
(99, 100]. When lead ions are substituted by Ca2+ and Ba2  ions, no ferro-
electric phases occur in lead magnotungstate. The phase transitions in
these solutions are illustrated schematically in Figure 17.3c [99].

The temperature of the transition to the paraelectric phase in solid
solutions with lead titanate and lead magnoniobate, depending on the
concentration of the solutions, passes through a minimum, which cannot be
explained on the basis of the aasumption of statistical distribution of
ions in the octahedral positions. An interesting feature of many of these
solutions is the appearance of a ferroelectric phase at temperatures lower
than the antiferroelectric point. Double hysteresis loops appear in a
certain temperature range, corresponding to phase transition from the anti-
ferroelectric to the ferroelectric phase, and the critical field increases
here with increasing temperature. At lower temperatures normal hysteresis
loops are observed. The coercive field of these loops is weaker than the
field in which they begin tc appear, apparently evidence ot the Meta-
stability of the ferroelectric phase in the absence of a field in the
investigated temperature interval. The antiferroelectric Curi.! point drops
as the strength of the stationary field increases. This is characteristic
of antiferroelectric phase transitions with rather close free energies of
the ferro- and antiferroelectric states (no such reduction in the fields
applied could be detected in pure lead magnotungstate).

The Curie point drops in solid solutions of lead magnotungstate
w".th barium and calcium magnotungstace as the concentration of the second
ta&eivonea, is increased to 20 and S', respectively [99]. These concentra-
cions %resumably correspond to the limits of soiubility. The dependence
of polarization on field strength is linear in the -196 to +60°C temperature
range, all the way up to Lreak-through fields.

Yet another anomaly is found in solid solutions with calcium magno-
tungstate, in addition to intmalies of c and thermal expansion, which
correspond to the Curie point. The anomaly in question Rpparently corre-
sponds to a phase transition to a new antiferroelectric phaseý.

8. PbCo W201/2W!:/2 3

The compound PbCol/ 2 W1 / 2 03 was first synthesized in [106]. The phase

transition was found [107, 103], accompanied by an anomaly of c at 20°C,
and it was suggested that it is a ferro- or antiferroelct'ric phase transi-
tion. Monocrystals were grown [109-111] and x-ray diffraction analysis
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and analysis of the dielectric and magnetic properties were conducted up to
helium temperatures, indicating that PbCo .,W 0 is antiferroelectric and

1/ /2 35+
antiferromagnetic. The distribution of Co++ and w• cations in this
compound is ordered. At 26*C symmetry is pseudomonoclinic with subnucleus
parameters am = cm = 4.009 A, b1: = 3.988 A and B = 90010. At 50*C

symmetry is cubic. The antiferroelectric Curie point is +32%C according
to dielectric measurements, The application of a stationary field dis-
places the Curie point toiard lower temperatures.

According to Isupov's dilatometric data, transition from the para-
to antiferroelectric state is accompanied by a reduction of volume, in
contrast to the case of lead ragnotungstate, in which volume increases.
The sign of volume changt contradicts other data [112]. Furthermore,
accordin- to I:upov, around -20*C there is a phase transition, apparently
between different antiferroelectric phases, accompanied by an increase in
volume with falling temperature and also by a bend on the e curve. Further,
according to Bokov's data (ll], at -205*C a phase transition occurs from
the antiferro- to ierroelectric state, accompanied by a discontinuity on
the c curve and by a tan 5 peak. At temperatures below -100C in fields
of 150 kV/cw" 1 double hysteresis loops are seen, and here the critical field
decreases as temperature falls. At temperatures below that of liquid
nitrogei there are normal hysteresis loops with a coercive force weaker than
the break-through field in which the looFs appear.

Thus, the properties of this compound are very similar to those of
solid solutions of lead magnctungstate with lead titanate and lead magno-
niobate [99], and the antiferroelectric phase occurring below -20 0 C and
the antiferroelectzic phase in lead magnotungstate and its solutions can
be assumed identical, and their ferroelectric pheses can also be assumed
identical. At -264*C a transition occurs to the antiferromagnetic state
[111].

9. PbCd/1 2W1/ 2 03

The compoundPbCd W 0 was first synthesized in [113], where it

~P1/ 2 1/2 3
was also assumed that it is a ferro- or antfferroelectric material. In
this compotrnd, as in other analogous tungstates, there is ordering of ions
occupying the octahedral positions in the lattice. At room temperature
the structure :s pseudomonoclinic, and in the 400%C region there is a phase
transition to the cubic phase, accompanied by an increase in the volume
of the nucleus [114, 1IS].

No dielectric hysteresis loops are seen at temperatures of -190 to
*160*C (1161. The temperature dependence of E is characterized by a jump
around 410-420'C and a level maximum at 100-2SOC (11S, 1171. The
temperature dependence of C in a wide frequency rangv is illustrated in
Figure 17.10. On the basis of high-frequency measurements of C it may be
concluded that the phase transition at 420°C is a transition to a polarized,
possibly antiferroelectric state. At temperatures below 4200C several
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phase transitions apparently occur
[11,61. There is considerable dis-
persion of e and high value of
tan 6 at high temperatures in this

SS ! temperature region, related [117]
to the fact that these transitions
possibly lead to the appearance of

120 /ferroelectric phases.
3 6

-100 ..... 10. Antiferroelectric Materials
-•oo o too J&7 ire 70C.VC Containing Rare-Earth Ions

in Octahedral Positions
Figure 17.10. Temperature dependence
of c of poiycrystalline PbCd/ / The first of the antiferro-

1/2W1/203 electric% with the formula
on various freqtuencies (Poplavko, 2+ 3+ 5+ 3+
et al [i17]). I -- at frequency A (B•1/2 B1 2)03, where 8 is a1.05-10-; 2 -at 3.7-1 06 3 -1.35-0S; 2 -- a 3.T10 6; S -- .- ; rare-earth ion, to be discovered was
1.3s1138 4 3-10 5 -- 1..9109; PbYb NI) [118]. Antiferro-

6 -37.1010 liz. 1/2 1/2r3
electrics PbYbiTa!0 PbLu Nb 0

1/2Ta1/203' 1/2 1/2 3
and PbLu ra/ were also synthesized and analyzed [119]. Pbilo Nbl0

1/2 1/23. 1/2 1/203
and Pbn/2Nb/0 were first synthesized in [120]. These compounds have
a monoclinic otructure at room temperature [112, 121].

At the antiferroelectric Curie points there are sharp E peaks cmax <

< 300). Transition to the antiferroelectric state is accompanied by a
reduction of volume. Also, compounds containing Yb have low-temperature
transitions (112, 119].

X-ray diffraction :inlysis of PhYbl/2Nb /3 [1121 in the antiferro-

and paraelectric regions revealed superstructure lines due to ordering of
niobium vtterb;.um ions. Firthermore, due to antiparallel displacements of
ions there is superstructure in the antiferroelectric region, which vanishes
in the paraelectric phase.

Presented below are data on the Curie p6in-.s of antiferroelectri,:s of
the perovskite type, containing rare-earth ions in the octahedral positions
(119]:

Compound

Pb, 1 .: .lo ...........................

P ,NIOj.................... ..........
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11. BiFeO3

This compound, in which electric and magnetic ordering are combined,
is discussed in Chapter 18. We will point out here that the nature of the
electric ordering in this compound is not conclusively established. The
small c at the Curie poiit T = 8500C [122] indicates that a phase transi-S~C
tion occurs from the paraelectric phase to the antiferroelectric phase.
Along with the phase transition to the paraelectric phase, BiFeO3 has

several phase transitions in the range of electric ordering [122-125].
Some of these are possibly transitions betweetn antiferroelectric and ferro-
electric phases, and some may be so-called isomorphic phase transitions
that cake place without alteration of the spatial group.

The superstructule lines seen in neutron radiography analyses
[126-128] are evidence for a multiplet elemental nucleas. Electron
diffraction [129] and x-ray diffraction [130] analyses, however, did not
reveal any superstructure. It can be concluded, apparently, that anti-
parallel displacements of cations occu: at the investigated temperatures,
and the superstructures related to antiparallel displacements of oxygen,

since displacement of such heavy ions as Bi ÷ and Fe3 ÷ would have been
detected. The positions of the cations, according to [129, 130] are quite
different.

The spatial group of BiFeO 3 with c':nsideration of the multiplicity

of the nucleus, has not yet been determined. The absence of antiparallel
displacements of cations, along with an indication of the generation of the
second harmonic on BiFeO3 powder [128] indicate that BiFeO3 is polar at
room temperature, which excludes antiferrociectricity at higher temperatuies.

Investigation of solid solutions I-ased on BiFeO_ indicate the close-

ness of the free energies of the ferro- and antiferroelectric phases. In
man), solid solutions e increases with increasing structural factor t and
the ferroelectric state occurs (for instance in solid solutions BiFeO.

with PbFe 1/2N bl/0 (123], PbTiO.. [131, 128], BaFe 1 b 0 (1321), and,/2 ,/Ba3e1/2 1I/203 5] n

wher structural factor t decreases, the antiferroelectric state becomes
more stable (for instance in solid solutions with LaFeO3 1132, 133]).
Different conclusions are reached in [132, 133] concerning the nature of
the rhombohedral region of the solid solutions.

52. Other Displacement Tvpe Antiferroelectric Compounds

1. Tungsten Trioxide

The anoralous dielectric properties of WO, were first discovered in

([134] and [135]. Hysteresis loops and high permittivity were found in these
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works, with the result that WO5 was classifed as a ferroelectric. Subsequent

works, however, showed that antiferroelectricity may exist in certain phases
of WO3 .

The structure of WO3 is a deformed ReO3 type structure, which can

be derived from the perovskite structure by removing a type A angle icn.
It is constructed of octahedrons, connected to each other at the vertices
ano forming a three-dimensional structure. The structure of WO was investi-

gated at room temperature in [136-139]. The spatial group is C2h - P2/n.

The structure is monoclinic. The elemental nucleus has 8 units. The con-
figuration of ion displacements concurs with the results of [136], but
contradicts the results of [138]. According to [139] tungsten ions are
displaced in antiparallel from the centers of the octahedrons in such a
way that the crystal is nonpolar on all three axes. It is concluded that
if the structure is antiferroelectric, polarization lies basically in plane
ab. The lattice parameters at +30 0 C are: a = 7.30, b = 7.53, c = 7.68 A,
8 = 90*541 [139].

When WO3 is cooled from room temperature to about 17*C a phase

transition occurs from monoclinic to triclinic crystalline phase [140, 141].
With further cooling in the -50 to -40°C range there is a phase transition
to a new phase (during heating this transition occurs at -20°C). it was
previously assumeO that its structure is trigonal [142, 14!], but it is
confirmed in [141] to be monoclinic. According to 6144], permittivity
drops sharply during the first cooling in the -40 to 50°C range, but after
repeated heating and cooling the temperature dependence levels off. There
are data on the observation of dielectric hysteresis loops and concerning
the motion of domain boundaries under the influence of an electric field
[134, 143, 145], which suggests the properties in this phase to be ferro-
electric.

As the temperature increases above room tempirature a phase
transition occurs at 330*C from monoclinic to rhombic [146-148]. The
positions of the ions in this phase presumably do not differ much from
the positions of the ions in the monoclinic phase, achieved at room
temperature.

At 740°C a phase transition takes place to the tetragonal phase
[147, 149]. It was show-n [149] that a sinpie antiparallel configuration of
ion displacements on the c axis exists in this phase, corresponding to the
Kittel antiferroelectric structure. Chains of 0' ions, displaced in the
positive direction on the c axis, Alternate with chains of ions displaced
in the negative direction on the c axis. The elemental nucleus contains
two WO3 units and has dimensions a - aor, c a0 , where a is the cubic

lattice constant. At 9100C a phase transition occurs, apparently to
another tetragonal phase [142, 14., 150]. At 1,230*C there is a phase
transition to a new, apparently also tetragonal phase (142, 144]. It is
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not possible at this time to make a firm conclusion about the nature of the
various phases of W0, due to the high conductivity, which interferes with

reliable dielectric measurements, even at low temperatures.

[• 2. Lead Orthovanadate

The dielectric properties of poly- and monocrystals of lead ortho-
Svanadate (Pb 3V20 8) were studied in [151]. It was found that near 100%C

a phase transition occurs, accompanied by anomalous permittivity (Figure
17.11) and tnermal expansion, and also by the di3appearance of twinning
stricttre on herting. No hysteresis loops were observed. It may be
assumed that the phase transition observed is antiferroelectric [1511.

Lead orthovanadate has a rhombic structure [152] with ak = 7.65 A,

- = 46002', has one unit in its elementary nucleus and belongs to spatial

group D d-R3m. The crystalline stiucture of lead orthovanadate is illus-

trated in Figure 17.12. Its lattice is constructed of isolated VO4

tetrahedrons, surrounded by lead ions. The phase transition at 100*C isaccompanied on heating by sharp compression on the c axis and relatively

little expansion in the direction perpendicular to c, so that the volume
here shrinks.

In addition to the phase transition at 100%C there is a phase transi-
tion near 00 C, accompanied by anomalous e and an increase in volume on
heating.

3. Lead Silicate (Pb 4 SiO6 )

A reversible phase transition takes place at ISS*C in lead silicate,
Pb 4SiO6, which apparently corresponds to contraction diring heating [153,

154]. It was shown [155] that this transition is accompanied by a sharp
anomaly in permittivity. The peak value of C is a low <40. No hysteresis
loops were obse-ved. On the basis of these data this phase transition is
assumed to be of antiferroelectric character [155].

§3. Antiferroelectric Compounds with Order-Disorder Type Phase Transition

The properties of lang known antiferroelectrics with the order-
disorder transition of the group NM •tlPO1 (ADP) and periodates (NI~•tt3IO 6 .0

etc.) is given in [1561. Therefore we will simply point out here that new
data were found recently concerning the ordering of protons in the hydrogen
bonds during transition to the antiferroelectric state in ADP. According
to nuclear magnetic resonance -nalyses [157, 158], the sharp increase in
time between skips of deuterons along the bond O-P... 0 in deute:raled APP
corresponds to transition to the antiferroelectric state. It is thought
that the hydrogen bond, which play an active part in spontaneous
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Figure 17.11. Temperature dependence Figure 17.12. Crystalline structure
of nermittivity of Pb 3 V2 08 (l:upov, of lead orthovanadate: a -- rhombo-

hedral elementary nucleus Pt' V 0et al [151]): 1, 2 -- different poly- 32108
crystalline specimens, frequencies (Bachman [152]); b -- prcjection
500 kHz and 58 N-iz, respectively; onto plane perpendicular to•<100>;
3-- monocrystal, frequency 500 c -- background of lead ions.
.kz field parallel to c axis

(perpendicular to planes of
cleavage).

polarization, induce dipole moments in groups P04 , 106 among others, ana

their ordering leads also to crdering of the dipole moments of these groups.

We will proceed now to description of the properties of comparatively
recently discovered order-disorder type antiferroelectrics.

1. Cesium Trihydroselenite

A report appeared in (159] concerning the discovery of antiferro-
electricity in Csl!3(SeO03,. M1ore detailed data are found In [160]. The

Curie point of this antiferroelectric is 145"K, the paraelectric and arti-
ferroelecceic phases have triclinic symmetry and belong to the same spatial
group C!-Pl. In the antiferroelectric phase there is a Superstructure on

1

the c axis, so that cant4 2c
ant: para

Careful investigations of the pyroeffect did not detect spontaneous
polarization. There is no piezoelectric effect. Near the Curie point were
found double hysteresis loops, each loop with extremely narrow, possible
zero "width." These loops apparently correspond to induced phase transi-
tion between the antiferra- and paraelectric phases (although it still
cannot he ruled out that this transition is between the antiferro- and
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ferroelectric phases). Ihe critical field diminishes with increasing
temperature and vanishes at the Curie point. Permittivity, perpendicularI
to plane (100), peaks at the Curie point. There is also a peak in direction
[010]. No anomaly was found in c in direction [001]. 0 = 6SK, C =
1 1.4.10 30K. In the presence of a stationary field the Curie point drops

(to -2.8 0C for 32 kV/cm), a first increases and then begins to fall as

the critica!l field is reached. Belaw the Curie point there are no domains
and it is concluded that the crystal remains single-domain, which agrees
with triclinic symmetry. There is a slight change in birefringence at the
Curie point. It can be concluded that the antiparallel dipole moments are
near the plane perpendicular to the c axis. The anomalous heat capacity
at the Curie point corresponds to SQ = 116 cal/mole. The entropy change
is SS = 0.81 cal/mole'deg. On the basis of data [160, 161], the phase
transition should be classified as the order-disorder type.

2. Copper Forminate TLtrahydrate

A dielectric anomaly in copper forminate tetrahyd':ate (Cu(HCOO) 2 .41i 2 0)

is reported in [162, 163]. On the basis of the investigation of dielectric
properties in [163] it is concluded that this compound is an antiferro-
electric with the Curie point -3 9 %C. Also, at 170K a transition occurs to
the antiferromagnetic state [164].

The crystalline structure is determined [165, 166] through neutron

radiography. At room temperature the crystal is monoclinic, and the spatial

group is C2 h-P 2l/a. Thi elemental nucleus contains two units, and some of

the hydrogen atoms are cisordered. The crystal consists of alternating
layers, formed by water nolecules and copper formimr. e groups. The layers
are parallel to planes (001). There is superstructure in the antiferro-
electric phase, correspor ding to the doubling of parameter c with the
elemental nucleus [1671.

The permittivity in the
i >ý tdirection perpendicular to the plane

-i ' (010) displays at -39"C a sharp peak
2 * 1.O0'>.• (Figurp 17.13), Emax ~ 1.500 and the

,Curie-Weiss constant is 3.2"i0• 0 C

r.• [163]. At temperatures somewhat
below the Curie point are double

- 150 - fo -1 -50o asor,• hysteresis loops. An external
field occur5 at the transition

Figure 17.13. Temperature dependence point [1631. Deuteration increases
of permittivity of copper forminate the curie point to -27°C. There is
tetrahydrate in directions perpen- a X-form heat capacity anomaly at the
dicular to planes (010)-(010) e Curie point. The entropy change at
and 8100)-(l00) c (according to the transition is 0.78 cal/mole'deg
Okada [198]). in tetrahydrate and 0.90 cal/mole-deg
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in deuterated tetrahydrate [1681. The first order antiferroelectric phase
transition is of the order-disorder type and is related to ordering of
hydrogen ions in the layers of water molecules.

.. Ammonium Halides

The opinion was offered in [169] that the tetragonal phase (phase III)
of the ammonium halides NH4 I and NH4 Br, with the CsCl structure, is anti-

ferroelectric. Antiparallel displacements of the ions I and Br are
detected in this phase, resulting in the appearance of superstructure lines
on x-ray diffraction patterns [170, 1711. At 235°K in N11 4 Br and 231*K in

NH4 I a phase transition occurs to phase II, which is cubic. The elemental

nucleus of the tetragonal phase has the parameters a' = a/2- and c' = a,
where a is the parameter of the initial cubic nucleus, and contains two
units [170-172]. The spatial group of phase III is D7 -P4/nmm. Diagrams

4h
of the phase transitions in these compounds are presented in [173] as
functions of temperature and pressure. When pressure is applied. the
temnperature of the phase transition between phases III and III drops.
Deuteration also lowers the temperature of this transition.

Many attempts have been made at di.electric measurements of ammonium
halides [174, 17S], but the results of the various researchers differ with
respect to both permittivity and the tempertýtures of dielectric anomalies
related to phase transitions.

The nuclear magnetic resonance (NMR) of protons in amnonl i halides
was investigated in [176, 177] as a function of temperature. The N.IR of
the halogen ions was investigated in [178j. A small abrupt cnange in the
second moment of the proton resonance iine was observed [1771 in the region
of the phase transition between phases II and III in ammonium bromide. It
was shown [1781 that quadrupole expansion of the nuclear resonance line of
Br° occurs in phase III of ammonium bromide, a-id the magnitude of this
expansion characterizes to some degree the ordering of the crystal.
Nagamiya [179] proposed a theory of phase transitions in ammioniurm halides,
in which the effect of polarization of halogen ions and the interaction of
octupol moments of ammonium tetrahedra are taken into account.

4. Rubidiian Nitrate

On *he basis of investigation of the dielectric properties of rubidium
nitrate (,bN03) it is theorized ir [180, 1811 that th.s crystal i; anti-

"ferroelectric. According to differential thermal analysi3 [182] there are
four stable forms in rubidium nitrate between room temperature and the
melting point, the temperatures of the phase transitions between ,.hich are:

IV 111- 1- 1. Two anomalies in E were found [180, 181], corre-
sponding to phase transitions between phases IV and III and hetwe.:r phases
III and I1. The application of a field expands the region of pha:;e III
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and increases somewhat c in phases IV and II; also, double hysteresis loops
were observed in phase IV, on the basis of which it is'assumed [1801 that
phase II is antiferroelectric, and in [1811 phase IV as well. The strictures
of the phases are described in [183-185].

5. Potassium Nitrate

A theory is advanzed [186] that the phase of potassium nitrate (KNO3)

exis';ing at room temperature (usually called phase 11) is antiferroelectric.
tt> structure is rhombic, of the aragonite type, the spatial group is

1I6-
2h _Pa and the antipelar direction is axis b. On heating, phase II
2h nina

changes at 130oC to phase I, having the calcite type structure with spatial

group D dR3c. On cooling, an intermediate phase III forms, possessizg

ferroelectric properties. Its structure is similar to that of phase I,

the spatial group is C -R3m and its range of existence is ~10-20°C [186-

188]. It is shown [1881 that a stationary field lowers the temperature of
transition between phases IT and I. Also, double hysteresis loops were
observed in phase II. These data support the assumption cf the antiferro-
electric nature of phase II.

6. Other Antiferroelectric Compounds of the Order-Disorder Type

There are data concerning the formation of a sinusoidal antiferro-
electric phase in sodium nitrate between the ferroelectric and paraclectric
phases [189, 190]. This phase is characterized by the appearance of a
superstructure on axis a [189], corresponding to an eight-fold increase of
period a0 on this axis [190]. A model of the new phase is proposed [190],

which satisfactorily explains the x-ray diffraction data. This model
incorporates sinusoidal modulation of the ordering parameter in each layer,
with a thickness equal to the parameter a0 . In other words, this model has

sinusoidal modulation of the sumnary dipole moment of each layer (Figure

17.14). (We will recall that the ordering parameter is S = where

N is the number of elemental nuclei per unit of volume, N+ is the number

of nuclei with positive polarity and N is the number of nuclei with nega-

tive polarity). The sinusoidal antiferroelectric pnase exists in about a
IC temperature range (-+163 to -+164"C). Anomalies in the temperature
dependence of the lattice constants [191', permittivity [192] and heat
capacity [1931 correspond to the phase transitions betweet, the ferro- and
antiferroelectric phases (temperature Ta) and between the antiferro- and

fa
paraelectric phases (temperature T ap).
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Figure 17.14. Schematic diagram of sinusoidal
I modulation of summary dipole moments in anti-I I ferroelectric phase of NaINO2 (according to

E Z Yamaia [1901). The arrows show the magnitude
and direction ef dipole moments of layers
with t'hickness corresponding to parametera0
o-f ferroelectric phase.

Electromechanical measures indicated the absence of the piezoelectric
e-ffect in the sinusoidal phase (1941. Studies of the quadru'pole splitting
of N!4R lines on Na23 in the temperature range corre-lpondxns to the sinusoidal
phase [1951 revealed additional separation indicating the coexistence of two
different gradients. 11bw this result correlates witih the eight-fold

F increase in the nuclgus of this phase and presence of a certain relationship
between the parameter 5 and quadrupole splitting, also observed in (1951 in
the ferroelectrit. phase, remains unclear. The application of' hydiostatic
pressure increases both T ind Tap, and here the range of existence of

the sinusoidal phase expands from -1*C at 1 bar to -8* at 10 kbar 11961.

The number of antiferroelectrics, heye'Týd the compounds which we
have examined, is obviously unlimited. Several phases have been found in
thiourea FC(NI 2.H) 2 (197-201], in which the ordering of the dipole moments of

thiourea molecules differs, Some of these phases are antiferro- or ferro-
electric. Pha.;e transitions have been observed in many alums, some of
which are apparently antif~erroelectric (202-2041. There have been reports
that certain crystalline phases of ice are perhaps even antiferroelectric
[2-051. The list is almost infinite.

§4. Discussion of Concept of Antiferroelectric;.ty

Most corptemporary researchers have an opinion concerning the

c.;clue fomexapiii~ation of experimental data that one antiparallel
oinpJoorother more geea omo retto fdipole moments is

tric. Iisnecessary that a phase transition occur in the crysta!,
accmpaiedbythe .:horacteristic anomally of diei:-tric properitis.;S

Frmestimates of the electrostatic dipole-dipole interaction in
the fC;)rro-- and antiferroelectric phases with the perovskite structure
can Lý concluded that its mar-O~tude di,'fersdlittle for all these phases.
1his agesstsatr.ywt xperimenta! dita on the nea-.ra~zs of the
free energies of the ferro- and nvtiferroelectric phises, whict, goveriis the
possibilityf of phasea transitions betw'een these phases. T1his is hardly a
rand.-1m coincidence. 7t is the basis on which many researchars conclude
that electrostatic inxeraction plays a grea, part *'n the formation of anti-
ferroolectricity ond determination Df relative stability of ferro- and
antiferroelectric phases, even though short-range forces perhaps play
greater role in antiferroelectrics than in ferroelictrics.
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It should be pointed out that along with theories that regard electro-
static dipol-dipole interaction as the cause of spontaneous polarizazion,

lthere have beer miny attempts to explain it from the standpoint of the
electron state3 of atoms. Such works include, in particular [206].
According to [206] the d-zonws of transition eleme-zts and p-zones of
oxygen are close in ferroelectrics of the perovskite class. The result
of this proximity of zones (pseudodegeneration) is displacement of atomic

nuclei from the initial positions in the lattice and formation of dipole
moments. Thorough examination, apparently, can also be applied to anti-r ferro-electrics. In any case, that the effects of pseudodegeneration may be

the deciding factor in the phase transitions of certain arrtiferroelectrics
cannot be ruled out.

-Af one proceeds from the assumption of generality of the nature of
ferro- and antiferroelectricity, then one obviously should not classify
transitions of t6e buckling type as antiferroelectric phase transitions.
In accordance with Srnolenskiy and Matthins [207, 2081, Megaw [591 pointed
out that ferro- and antiferroelectric phases in compounds of th- perovskite

class are characterized primarily by the presence of displacements of ions
of tne transition elements with an unfilled next to the last d-shell from
their initial positions in the centers of the octahedrons. It has also
been shown that displacements of lead ions also occur in lead-containing
nerovskites. The phases that occur after buckling transitions are
characterized by displacem-vnts of oxygen ions as a resalt of the alternating
slope of the octahedrons as a wholr. The displacements of A type ions that
usually occur in this case facilitate tighter packing of the ions. Dis-
placements of B type ions relative to the oxygen shell are not characteristic.
of these phases. This apparently means that the phases that form after
buckling transitions and after antfferroelectric phase transitions are
different in nature. 0

M

It is noteworthy, on the other hand, that oxygen-octahedral titanates
and niobates are known, in which type B ions are displaced fia the centers
of the octahedron, but in which there are, nevertheless, no phase transi-
tions that are accompanied by anomalous dielectric properties. Such
comnounds irclude, for instance, harium tetratitanate BaTi 4 09 [2091. The

configuration of the shortest distances B-0, which is usually tied to the
distribution of honeopolar bonds, is analogous to tetragonal barium
t.tanate. It may be assumed that there are no low-frequency long-wave
opcical modes of vibrations in sach compounds, sincz their permittivity is
low, and they should not he called antiferroelectrics.

Thus, it is now customary to classify as antiferroelectric phases
only those phases with a free energy close to the free energy of ferro-
electric phases. The antiferroelectrics, in addition to compensation of
dipole monents, are characterized by considerable anomalies in dielectric
properties on transition to the paraelectric state, reduction of the
temperature of these transitions and increase of c when an electric field
is applied, and also pha.;e transitions into the ferroelectric state are
possible (When some of the ions are substituted under the influence of
temperature, electric field, pressure),
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CIHAPTER 18. FERROELECTRICS WITH MAGNETIC ORI)ERING

"T11e rapid development of the physics of ferroelectricity and m;'--"
during the last two decades has strengthened concepts concerning the na.
of these rhenomena and increased the number of known ferroelectric and
ferromaginetic materials. The result has been the discovery of a number of
ferroelect:".Ls with magnetic ordering. These compounds were first syn-
thesized by Snolenskiy, et al [l-51, who synthesized ferroelectric-anti-
ferromagnetic compounds with the perovskite type structure. Eventually to
ether families of ferroelectrics with magnetic ordering acre discovered --

hexagonai magnetites and boracites. Ferroelectrics with spontaneous
rnagnetization are of tremendous importance, since these compounds possess
several effects- attributed to the mutual effect of electric and magnetic
subsystems. The presence of these effects follows directly from thermno-
dynamic thieory, and before proceeding to review experimental works, we will
briefly discuss the basic results of theoretical examination.

§1. Elements of Thermodynamic Theory of Ferromagnetic Ferroelectrics

ThPe First thermodynamic examination of a ferromagnetic ferroztcctric
material was conducted by Smuienskiy :61, who inve..tigated the sec'.nd order

phcse transition from the ferromagnetic (or ferroelectric) to the ferro-
ferromagnetic state at a temperature close to the temperature of transition
from the paramagnetic to ferromagnetic (or from the paraelcctric to ferro-
ciaetric) state. In other words, he examined the case when the aa•gnetic
and Cerroelectric Curie noints are close. Later on Nedlin [71 showed that
tbe results of this work are general and do not derend on the nearness of
the temperatures of both transitions.

There is a magnetoelectric effect in the ferr'-errnmagnetic nha-e,
i.e., the electric and magnetic mc,.ents are lItutcar funct'ons (ir we.
fields) of the magnetic anr.1 electcit. field.
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Here is the tensor of the electric and Xthe tensor of the
magnetiv and

is the, tensor -f composite magnetoelectric susceptibility. Near the transi-[h cas wa xanmined [6. 7) when the axi's of easy magnetization and

the fcrroelectric axis coincide and the magnetic and clectric fields are
parallel to this axis. Thus, the superposing of externa! fields alters only

polaizaionandmagnetization, but not their direction. With fields of
arbitrary direction the thermodynamic theory should he formulated fý-r each
specific crystal wirh consideration of its synnietry.A

During transition to the ferro-ferromagnetic phase f-ont the ferr'--
magnetic (fterroclectric), magnetic (electric) su~cepxibility ey- 1
positive jump, i.e.,

ffs)f > I) rw . X))

Here the subscripts ff, f and c dezote the f~rro-ferromagnvtit., 1erro-A
magnedcc and ferroelectric phases, respectively.

kiitsek an6 -Smolenskiv [81 did a thera~edy:maic study of a ferro-ferro-A
wm'gnetic vith c'qnsi-e-rition of a-nisotropy. They examined a criystal cubic in
t).n paraelectric a,,d paramagnetic phas.-s. It was shown that electric (mag-
netic) orde:,'~ng causes rra-,nctic (electric) an~sotropy to become urniaxinl and
thie interaction of the maýrhetic and NŽlectric subesystemns can he regarded, in
particular, as zthe zonsequcnc~e of .,Itcctro- and magnetostrictior.. Change in
electric polarization deforms t-he cr'ystali, which, in turn, hy virtue of
inagnero~triction, aliters magnetizatiop and vice versa. The samec conclusionA
,an be z'eacniet ov vi:tfinv the thermtodynamic potentia:l as the sun of elastic -

(~~c U gntestc( :,.5 ) and clectroelasticA
A-t u P P4 enoergics.

eel Ji k72 ii k Z

The- equilibrium varlucr5 c-f the deformatio~i' teozsox- t7.apOr.eTnts are
Jete.-mined 1ýror- Thlý condiZi.in of min-4Lum therm d-.na.mAc rrter.n.al in terms
etf variables u.. ce equil ibrium v,;1-es ha~ve a-, tt,,i'. a P-art, that i!ý

atiadratic in terms of ppolaivization components i . a pzart t1i:-t
.s "Uadratic in termf. of magntetizativr cti31-ýA'ents fjkMz)CI'. As a -rosalt

of substitit-tion of eqai librium values u. . la the v>Prcssion fc~r the

~AA
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thermodynamic potential terms of the type MN H PP appear in it, which
indicates inzeractioit of the electric and magnetic subsystems.

This is all valid for ferromagnetic-ferroelectrics. The formulation
of thermodynamic theory of ar.tiferroviagnetic Ferroelectrics requires the
knowledge o: their specific symmetry, position of magnetic ions in the
nuclets, charzcter c-f magnrtic arderihg, i.e., for each substance it is
essential to conduct a special examijnation. Nedlin [9], however, showed
that the aecond arder phatt transitica from the ferroflcctric to ferro-
electric and magnetica•.y ordered -toe can be examined in rather general
form, wheace can be n:dt. certain io,iclusions that are vaind for a large
class of antiferrc.magnetic f,•irzecJ.,,trics.

The posskýle syi:.etry of fer,.magnetik ferroelectrics was examined
theoretically in [iC, 21

52. Perovskit-s

The first ferroole.t;'t "s with magaetic ordering were PWFe 12N")-/203

and Pie 2 t 3 h1 j3 05 [1-5]. These compounds have a perovskite type Ttructure.

Ions Fe , M)5+ and N6+ occupy the octahedral positions anc ",ere is no
ordcring of thesu iors. The farroelectric Curie noint c Pb. I---Nb J

is ýSY°K and of P-:Fe 2/31303 178 0 K. Thut temperature di of

imagnetic susceptibility of PbFe 2/3W 1 / 3 0 5Is illustrated e 18.1.

The temperature at which the dependences E(T) and liE(T" have a discontinuity
(5] was taken as the temperature of ant.iferromcgnetic rrdering (Neel
temperature). Due to the unordered distribution of magnetic (Fe- 4 ) and

diamagnetic (W6 ) ions, part of the Fe ions have as next door neighbors
in the o-:tahedral sublattice only diamagnetic ions and thereore do not
tartici?;Qte in magnetic ordering. In the first approximation such ions
beha%'e like paramagnetic ions and ire responsible for the growth of magnetic
susceptibility as the temperature falls below the Neel point. The presence
ef magnetic ordering in PbFe2/ 3and Ph /3 / /2 0 3 was verified later

by teutron radiographic analyse:s !12, 13] which showed that a magnetic
structure of the sc--called C-type formt, :n which the magaetic mnomert of
each ion is ant•.paraliei to the magnetic moment- of their r.e-rest neighbors.

Accotding to magnetic measurement-data, the See! res.perature of
PbFe,/W11 3 03 is 563° K an-! of PbFe /\Ib,-to 1,43 0 K [5]. The analogous

magnetic properties are displayed by PbF. e1 2Ta, 203, the Neet tcmperature of

wlich is 180 0 K [14]. 'f in the examined compounds thor is no ordering of a-

the various ions occupy ag the octahedral positions. it.. in PCa,,,W, e-

also having a perovskite structure, the ions Co2 and W6 are ordered and'
the c-ietafntal nucleus is accordingly doubled [i-171. According to the
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Figure 18.1. "temperature dependence of magnetic

susceptibility x( _ (2, and permittivity c (3)

PbFe/ 3 W l/303. Measurements were made on mono-

crystalline powder (according to Bokov, et al [5]).

data of 8okov, et al [171 PbCo W 0 transitions at 305°K from the para-
112 1/2 :3

electric to the antiferroelectric state. As the temperature drops, starting
at 170 0K it b,,omes possinle to observe e1pctric field induced transition
from the antiferroelectric to the ferroeiectrzr stae. As the temperatu'.t
continues to drop, the transition field diminishes and at 6W0K transition
occurs spontaneously [181.

The volonoetric interaction betueen magnetic ions Coa in PbCo 1 .0-
1/2 1/2 3

proceeds in the chain Co-O-W-O-Co. Therefore che interaction is weak and
ragnetic ordering occurs only below .,WK r19]. In terms of its magnetic
properties Pbro/i2W! is a typical tweal ferromagnetic with spontaneous

magnetization of 0.15 G'cm 3/g at 4.2°K [19]. Thus, at t2mpneratures below
9*K PbCo/ W•iO is simultaneously a ferroelectric and a weak ferromagnetic.

The temperature deptndencc3 of magnetifc susceptibility and spontaneous

magneti-ation ave presented in Figure 18.2.

A• Figvre 18.2. Temperature dependence

fiji of magnetic suscentibiiity (x) and

spontaneous magnetization (Mi5) of

PbCol/ ! .0 Measurements werer1/2 1/2 3'
I made on monocrystalline powder

9a(according to Kizhayev and Bokov
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N lfA Figure 13.3. Temperatuxe dependence

f - of permiitivity (1), spontaneous
i magnetizAtion (2) in Bohr magnetons

1 per Fe ion and inverse magnetic
susceptibility (3) of solid solu-

00 _ _ tion 0.7 PbFe W 03-0.3PbMg0.f2/3 1/3 3 g/ 2 .W/203 (accrding to Smolenskiy,

-tco - -- ,-O et al [20]).

On the basis ol 'omplex perovskites Smolenskiy, et al [20] produced
ferroelectric solid solutions that are simultaneously ferrimagnetics, i.e.,
uncompensated ant."?erromagretics. Ferrinagnetism was obta'ned in the
system

We will iecall that Pb(ll /2)0 is an an.tiferroelectric. Ions

6+M•!g' and W+, occupying the octahedral positions, are ordered, J..e., there

are two octahedral sublattices. The f'ormaation of solid solutions of thissystem can be regarded as the substitution of some of the Mg2 . and W6* ions

by Fe3+ ions. It is obvious that when stoichiometry is maintained tl. number

of Fe 34- ions in the octahedral suhlattices of Mg and IV should differ and,
by separating the sublattices the formula of the solid solution can be
written in the form:

v,,(•..,.,r•,•,.)•k,_.ya.-,•)o•.(1 8.5)

If now magnetic urdering occurs and a G-type antiferromagnetic
structure is formed, which i, characteristic of all perovskites with iron,
then the mign( ic sublttieF will coincide with the sublattices in the
paer-theses in (18.5). The direcLions of the magnetic moments of Fe+
i.s in (18.5) are indicated bo arrows. Since the number of Fe3÷ ions in
., s'iblattices differs, then th.a magaetic moments of the s *"attices will

not bho compensated, i.e., ferrimagne^isn should vccJ;. Exp,-rimental
investigitions of this system have shown that the ordering of ions occupy'~g
the octahedral po.;itions takes piace wien the concenzration of
Pbgl.,Is.0. exceeds _A%. Solid 5olutions with x •- 0.88 dispolay ferro-

electric properties, and in the ranxye of concentrations 0.2 < x < n.4
there is otabie spontancous rnagnetizatioq, The temperature dependences
of permittivity, spontaneous m•agnet i zation apld inverse magnetic susceptibility
arc illustrated D, -eigure 18.3. The lattcr dependence is of the form
characteristic of ferr'-magrctics.
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Also noteworthy airng perovskites is BiFeO,. According to x-ray

diffraction analyses this compound has rhombohedral symmetry [21-231.
Although structural analyses have been quite numerous [13, 24-261, the
question of its spatial group cannot be considered conclusivel,' answered.
As shown by magnetic measurements done by Smolenskiy [27], Bil-eO.5 is an

antiferromagnetic with a Neel temperature of 6430*:. According to neutron
radiographic analysis, the magnetic structure is of the G-type [12, 24].
The question of whether or not 3iFeO3 is a ferroelectric was solved eor a

long time chiefly by investigating solid solutions, the properties of which
were extrapolated t'o pure PiFeO3. The systems BiFeO.-PbTiO3• [21 , 28, 291

and BiFeO,-PbFe1 Nb 1/203 [30-36] have Ieen most thoroughly studied'.

Later on Kraynik, et al 132] we)-- able to measure the permlttivity of poly-
cyrstalline BiFeO. at high frequencies in a wide temperature range. The
results of these measurements favor the antiferroelectric pioperties of
BiFeO,. aWhether PiF,!b- is a ferro- o- a;'tiferroelectric is a question
discussed in Chapter 17, 51.

Mbny ferroelentric perovskites of complex composition with magnetic
ordering have been synthesized and analyzed by Zhdanov and Venovtsev and
coworkers. The results of these works can be found in review [38]. Some
information conce!rning these compounds is given in Chapter 19.

§3. Hexagonal Manaan-.es

Hexagonal manganites were first synthesi:ed by Bertaut, et al [391.
The general formula of these compounds is AMnot. where A is any i-re-carth

ion from H1o t, Lu, and also Sc and Y. Manganites are of a new, prev~ously
unknown type of structure (spatial group P6.cm (Figure 18.4) B39, 40]).

The oxygen ions in this structure comprise triangular bipyramids, which,
connected at the vertices, form layers perpendicular to the sixth order
axis. The manganese ions are located inside the bipyramids and the rare-
earth, yttrium or scandium ions are located between the layeis of the
bipyramids. Hexagonal mangan;tes are uniaxial ferroelectrics, the polar
axis of which is the sixth oider axis. Spontaneous polarization is
_.5_106 C cm- 2 [41-44]. The ferroelectric Curie temperature of these
compounds is very high and cannot be determined according to the dis-
appearance of hysteresis loops due to high electrical conductivity. However,
a set df experimental data,.such as jump of" elemental nucieus Farameters,
maximum pyroelecric current, uraximum permittivity, observed at about the
same temperature, makes it possible to estabilsh quite reliably the
temperature of the antifvrrwelectric phase transition. Such analyses have
bevn conducted for YnQO. [4ý] 9nd YbMnO. [43, 45]. For |loMnO. anr Er."O_

33 .3 .1

rAnalyses of solid solutions based en BiFeO3 are presented in the reviews
[37, 3e].
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there are data only concerning the temperatures ot maxinum permittivity [43].
The information known at this time concerning the temperatures of the
ferroelectric and antiferromagnetic phase transitions In hexagonal manganites
is summarized in Table 24.

Table 24. Ferroel.ctric Ct:rie Pont. Tc ) and Temperatures of

Pntiferrom-,gn-tic Ordering (C,) of Hexagonal Manganites

Phas- - 7ffi34-3

tranif - i L , bu X

ot thiignei rpetenh

j6co 483 1 958 911433 10

A feature of these forro!lectrics is their low permittivity; thus,
on the polar axis E - ?3-25 at room temperature and c - 60 at the Curie
point [461. The ferroelectric domains are indistinguishable in polarized

light, but can be discerned by
etching the surface perpendi cular
to the. polar axis [491. In terms
of their magnetico properties the
ma;"ganizes are antiferromagnetics.
Then feature the absence of
anomalous magnetk, susceptibility at
the MNoel point [50O-52] . IData on
Noel temperatures were also obtained
from neutron radiography, and in the
case of 'thln(, from analysis of the

Mnessbauer effect on Fe st uclei in
3+ 2+

atn ions were substituted ov .Fer

ions [471. The results of all these
measurements are presented in Table
-4. 'rhe discussiorn here concerns
ordering of the magnetic, moments of

f 03 Nin ions. There is still no infor-
o: nation concerning magnetic ordering

Figure 18.4. Elemental nucleus of in the sublattice of rare-earth ions.

YNO..0: I -- Mj3+ -2 -- Y` -- The magnetic structure of manganites
.n. ,was investigated chiefly on the

02-. example of Y.%nO3 , both theoretically

[531 and experimentally by the
neutron diffraction method [54-561. As a result of these investigations it

was established that the magnetic moments of .Mn' i'nls tic in the planes
perpendicular to the sixth order axis, and form six magnetic sublattices.

- 531 -

- =--- -- ----- -- --- - -



.94. Bo -n. -. ,e-,

, .ications that the mineral boracite Mg 387013CI has ferroelectric

properties were first uncovered by le Corre [57]- in subsequent works
[58, 59', however, doubt was cast on the presence of ferroelectricity in
this mineral, and only after the works of Ascher, Schmidt, et al [60-651
in which several compounds similar to natural boracite were svnthesized
and analyzed, did it become clear that they all are apparently" ferroelec-
tries. The general formula of such compounds can be written in the form
MeB 70 13X, where Me = Mg, Cr, Mn, Fe, Co, N5, Cu, Zn, Cd and X = Cl, Br, 1.
Thae structure of boracites, analyzed by Ito, et al [661, and also their
dielectric properties will be discussed in Chapter 19. We will discuss
here the domain stiucture and magnetic properties. The domain structure
has been investigated only on boracites with nickel, for which the direction
of spontaneous polarization has been established and detailed crystallo-
optic analysis condacted [651. Like other boracites, this compound belongs
to the cubic acentrosymmetric spatial group F43c(TV) in the paraelectric

phase. The matrix of piezoelectric coefficients g in this case has the form

0000c O 0
ooe 0 .0 (l* 0 1 .6)
000 0 0 C1.

Spontaneous polarization occurs on one of the edges of the cubic
elemental nucleus, i.e., cubic directions of the type {100}. The spontaneous
deformation that occurs here can be regarded aa the result of the piczo-
electric effect, and in accordance with (10.45) deformation con~ists In
displacement in the plane perpendicular to the polar axis. The elemental
nucleus becomes ,hombic with polar axis :', coinciding with the pseudocubic
direction [001l, and with axes x' and y', coinciding with pseadocubic
directions [110] and [T10] (Figure 18.5). The indicatrix axes of the 180°
domains are rotated 900 relative to each other. There-fore such domains
can be distinguished in polarized light. The configirations of the 90*
domains of the borazites are quite varied and in mar:V U-ses do not agree
4ith the general rules discussed in Chapter 7. Often the polarization
vectors are arranged "head to head," and "tail to tail." The domain walls
differ In many cases from surfaces with rational indices rnd are often
strongly curved, which apparently is a result of the smalness of rhombic
distortions.

The magnetic properties of boracites with paramnagnetic ions have not
•et been analyzed sufficiently, but there are data concerning the behavior
of magnetic susceptibility at temp.,ratures above 77*K for most of thle
compounds [62]. All the,;e compounds are apparently &ntiferromagnetics
with rather low Neel pcints. Ni-l-boracite, the magnetic properties of
which are most thoroughly investigated (Figure 18.61), displays very
interesting properties. Antiferromagnetic ordering occurs in this ocompound
at 120 0 K and then Ni-1-boracite becomes a ferroelectric at 6A*K. The
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Figure 18.53. Relations between Figure 18.6. Temperature dependence
elemental nuclei of cubic and of permittivity (e) and magnetic
rhombic modifications of horacite susceptibility (X) of Ni3B70 11
(Schmidt [65]). (Ascher, et al [63]).

reduction of symmetry at the ferroziectric Curie point leads to'the appear-
ance of slight spontaneous magnetization and Ni-f-boracite becomes a weak
ferromagnetic. Spontaneous magnetization is perpendicular to spontaneous
polarization, which corresponds to magnetic point geoup m'm2l.

If spontaneous polarization P s is parallel to cubic direction [0011,

then magnetization Ms may be directed either on [110] or on [TI0]. Thus, in

the ferroelectric domain there may be antiparallel ferromagnetic domains,
but in the ferromagnetic domain, Ps can have only one directi.on. Pence

follow a number of puarely domain effects, which were also detected experi-
mentally [63, 65). By changing the direct.on of P with an electric field,

s
it is also possible to alter the direction of Ns, and conversely. Thus, if

the direction of P is changed from [.)Dl] to [0611 st rotates 90' from,S S
(110] or from -Ta0] to [00], or to [10]. The opposite effect also occurs,
ie., if magnetization i first directed, for instance, on [ de0 p and the
crystal is remagnetized by applying a magnetic field on [ITO), taen the
direction of Pi should choange from susce to [00i0.

• • electric hysteresis loop for

•,•_A 8 0i T11 with H on ±[110] and

Ps on r001] at 46"K (according
(to Ascher, et al [63]).

In accordance fith theort i a Ni-I-boracite displays the linear magneto-
electric effect. Taking p he direction of P as the z axis and the direction

$of Me as the [ axis, in accordance with the soPmetry of the crystal,r wel
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have the following equations for linear magnetoelectric effects:

EP J.irn d4, (18.7a)

(18 .7c)

P3- I(18,7c

(18.7d)

The effect described by equation (18.7a) has been investigated
experimentally [63, 54]. The dependence of the change of electric polariza-
tion on magnetic field intensity is represeated in figure 18.7. it has the
"butterfly" form. This is related to the fact that remagnetization occurs
in a magnetic field of -6 ke intensity. The transition 3 -- 4 (Figure 18.7)
is related to a change in che direction of M1 from MI I[FOJ to MI[110]SS 5 ".

and the transition 6 - 7 to the reverse rotation from M s1[1101 to

M IIl•'O]. Jr absolute value yme - 3.1410"4 at 15°K.
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CHAPT,:•, 19. REVIEW OF FERROMI.ECTRIC COIPOIINDS

§1. Ferroelectrics with the Perovsk-te Typ-e Structure

1. Strontium Titanate

Rushman and Strivens [1] discovered that the Curie temperature of
solid so .Lions BaTiO.-SrTiO.. fails linearlv as the concentration of SrTiO3

increases. Extrapolation of this dependence made it possible to propose
that SrTiO3 , at temperatures close to 00 K, will have maximum c, and that

strontium titanate is therefore a ferroelectric.

Measurements of c in SrTiO. at low temperatures were first done by

Smolenskiy [2-41 on polycrystalline specimens. It was found that the C of
SrTiO. at low temperatures passes through a maximum. At temperatures below

that of the maximum dielectric hysteresis loops were observed. This led to
the conclusion that strontium titanate is actually a ferroelectric with a
Curie Doint of 15-35°K.

Sonewhat later Hulm [5] conducted analogous measurements and did not
find the e peak. According to his data c of strontium titanate obeys the
Curie-Weiss law from 300 to 50 0 K, and at temperatures below S00K increases
more smoothly than follows from the law C = C/(T - 0), and approaches a
constant value of -1,300 as the temperature approaches 0°K. At 40K c was
not found to be dependent on field intensity all the way up to 25 kV/cm.
Hence Hulm concludes that strontium titanate is not a ferroelectric

Strontium titanate has been analyzed by many researchers in past
years; the question of its fprroelectric properties has been discussed
repeatedly, but even today the behavior of strontium titanate at low
temperatures is not sufficiently clear.

0
Strontium titanate is practically cubic at 20WC with a 3.904 A

[6]. Granicher and Jakits [7], extrapolating the dependence of the
temperature of phase transitions in solid soltions SrTiO3 -CaTiO.. on the
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CaTiO concentration, concluded that strontium titanate changes to the

tetragonal phase below -100*K. Puller, as a result of analyzing the EPR
3+

3
-100*K a phase transition occurs in strontium titanate to the tetragonal
phase, whereupon the cryatal breaks down into nume-rous twvins [9, 9]. The
existence of this phase transition is also substantiated by other works
on EPR analysis in SrMO 3 [10-13]. Rimai and de Mars (131 determined the

transition temperature as 110 ± 2.5*K and noted that this transitioa occurs
much more smoothly than the transition from the cubic phase to tetragonal
in BaTiO 3 and is not- a first order tra~nsition~. Cooling of the crystal

below 110 0K is accompanied by a sudden drop' in the linear expansion]
coefficient [14], which at 200C is (9.2 t 0.8)-10-60K (15].

X-ray diffraction analysis and analysis of birefringe.ace of SrMO 3

at low temperatures are described in [16-18]. According to [16] SrTiO)3 I
above 1104K hes a cubic lattice and a linear expansion coc ficient of
9.4.l0.6l/Oi(. At about 110*K the change of lattice parameters during
coal~ing practi~zally ceases, and separation of the x-ray lines, indicating
tetragonal distortion, was noted only at tem~eratures close to 65*K. Then,
during heating, this separation is clearly discernible in the 65-120*K
temperature range. The magnitude of tetragcenal distortior was found to
b& cla = 1.00056. In the SS-65*K range no line separation wus noted, but
from 15 to S5'X separation of the lines (triplet) was clearly discernibl-e.
This separation is related to rhombic distortion (a:b:c = 0.9998:1:1.0001).
Below lbO*K the specimen expands when cooled, and more strongly as the
temperature approaches 100'K; below 1001K the cpeciImen contracts. The
possibility of a phase transition t.i the rhombohedral phase at 10*K is
pointed out in (16].

Birefringence was noted in the S:'TO 3crystal (1.6] at room temperature,

which could indicate exctremely low tatragonal distortion of the lattice
with c/a - 1,00008. Slight birefringence was also noted [17, 181 at 20*C
and it was also concluded that there is distortion of the lattice at room
temperature. RThombohedral distortion [171 and rhombic distortion (18] are
proposid at, 20*C. The possibility of birefringence due to merhanica) 7
stresses, however, is also admitted (17, 19).

Birefringence Ln on two axes coinc-iding with the fourth a~res of the
cubic lattice begins to change near 110'K [i3], ard on the t~ried axis at
-35*K. An begins to increasie below 110*K r171]; in the Interval froir 69
to 20*K tI'ere is a plateau in the temperature dependence of birefrilngonce,
aitd with further cooling An increases anl ypeaks,. Here the increase of
birefringenc'e below~ li&K and change in the character of itt dependence
near 60*K are re~ated tc phase transitions. Yet another phase transiticn
is presumed to occur in the 20 to 4.2*K region. The authors point out that
at 770K the character cf blurring of the lines on the x-ray diffraction

Ag
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patterns could aot be attributed to tetragonal distortion of the lattice,
althcugh it is satisfactorily explained by pseudomonoclinic rhombic distor-
tion with a = c = 3.8070 X, b = 3.8988 A, b/a = 1.0030, M = 6'. Discrep-
ancies among the various data are not surprising, since distortions of the
lattice are extremely small.

Analysis of the heat capacity of strontium titanate, conducted in
the 51 ta 300*K intervai [191, and froiy 20 to 80*k 120], revealed no
anomalies on the c (T) curve. This may be :egarded as an indication of low

thermal effects during phase transitions.

O~tic analysis of monocrystals revealed that at 20*C strontium
titanate has the refracti-n index n = 2,37 at = 7,000 A and n = 2.67 at

X = 4,000 X (21]; n = 2,380 at A = 6,S63 A; n = 2.409 at X = 5,893 A and
n = 2.488 at X = 4,861 A [271 and n = 2.39 [23]. The refraction index
decreases with heating: dn/dT = (-6.2 ± 0.1)-I0- l/°C at X = 5,460 X [15).

Below 100°K [24, 25], during analysis of a strontium titanate plate,
perpendicular to [100], in polarized light, a fine twinning structure was
noted. The twins had a width of 10-50 micron and were parallel to the
cubic axis (011], as in the case of 90' domains in tetragonal barium
titanate. -Me direction of extinction agreed with tetragonal distortions.
No changes in the twinning pattern (that could be related to phase transi-
tions) were noted iii the 80 to 4.2*K interval. The application of an
electric field of 4-15 kV/cm [18, 25] did not alter the twnning configura-
tion.

NumFrous investigators [IS, 20, 24, 38] have analyzed the dielcctric
properties of highly pure polycrystalline specimens and monocrystals of
SrTiO3 . The results of these % -ks confirm that the c of SrTiO3 , increasing

with cooling, does not pass through a peak, but approaches some constant at
temperatures close to 0°K. Apparently the peak in the temperaturz dependence
ozZ E described in previous workz (2-4j, is related to the low purity of
materials used for the synthesis of the specimens.

The permittivity of SrTiO3 , approximately 270 at 20%' (for poly-

crystalline specimens) and 300-400 (for monocrystals), increases with cooling

(Figure 19.1) according to the Curie-Weiss law: c = £F ÷ C-c". , where C,

according to various authors, varies from 7.83.104 *K to 8.64 104 OK, 0 from
17 to 38*K, and c0 W 43. On cooling below 80-100°K a gradual deviation from

the Carie-Weis3 law begins, and the growth rate of e diminishes gradually,
remaining practically constant below 10°K, reaching 5,300-6,300 in poly-
crystalline specimens and !8,000-20,000 ir monocrystals.

To explain this temperature dependence Barrett (39] developed Slaters'
theory, conducting a quantum-mechanical examination of ionic polarization,
Uere Sr and 0 ions are regarded as fixed in the lattice nodes, and each Ti
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ion as an independent anharmonic oscillator. It is proposed that titantium
ions are weakly bonded and their interaction is achieved only through an
electric field. The "anharmonici' part of the potential energy of the
oscillator is rega:ded Rs excitation. This account of the effect of dis-
creteness of the energy levels of oscillcters on ionic polarization of Ti
led to the dependence

C8-

nIvwhere 6 is the extrapolated Curie temperature and 81 ;7 is the character-

ist;.c temperature determined by the frequency v oi the oscillator. This
equution, with proper selection of constants C, 81 and 0, satisfactorily

describes the experimental temperature dependence of e. When T >>ell
eI I

2 -cth . asymptotically 3pproaches T and the equaticn acquires the form:

S= C/(T - 6), i.e., is ccnverteA to the Curie-lleiss law. When the
temperature appreaches O°K, cth(Ol/2TV ) I and E ' C/•8 1 /2 0), i.e., when

T -< e is independent of temperature. Thns, roughly speaking, 91

separates the low-temperaturi region, -here due to quantum effects the
temperature dependence of e deviates from the Curie-Weiss law, from the
high-temperature region, where the behavior of c is described in classical
approximation by the Curie-Weiss law. Neavcr [31] obtained satisfactory
agreement with t'ie experiment for 8 = 45'% and 86 100"K, i.e., when 6 :

S0.45301. Hegenbarth [20] ootained 0 = 27"K and e 80 0K. The temperature

81 = 100*K corresponds to osciilator frequency 2.1.1012 Hz or 70 cm-', which

just lies in the iar infrared regien.

L • Figure 1I.l. Temperature dependence

of permittivity of SrTiO5 mono-

, 1 ' cryatai ir. direction [110. in
S,,.', various stationary biasing fields.

"., 21 (According to Sawaguchi, et al

Measurement of c in pseulocubic dizections [1000], (110] and '111] [351
showed that ths plirmittivities along these three axes take the same path and
differ little from each other. The slight difference in the valuns of C on
the various axes are related by thr authqrs to the presence of internal
residual mechanical stresses.
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Contrary to Hulm's results (5], the c of SrTiO3 at low temperatures
depends strongly on electric field strength [28, 29, 34, 38]. This
dependence diminishes with increasing temperature, but is still quite
notice.ble at 70*K (Figure 19.1).

Hegenbarth [28] demonstrated that the dependence of e on temperature
and the fteld naturally' derived from Barrett's theory. On the basis of the
expression for free energy

+RBP'4.., -EP

and assuming that E remains constant during the measurements and B is
independent of temperature, the author arrives at the conclusion that the
maximum in the temperature dependence of E will occur only in fields greater
than

Here the following relation should be satisfied:

Experimental data agree satisfactorily with these dependences. It
was found that Ek = 1.58 kV/cm.

As shown by the measurements of Rupprecht, et al [401, at temperatures
from 90 to 230*K and frequencies from 1 kHz to 36 GHz the dependence of e
of SrTiO3 monocrystal on T and stationary field, parallel to the measured

field, can be described by the expression

* (M. El)- + '(T. ')

where c(T, 0) C/(T - 0), and Ahk7 is the anisotropic nonlinearity constant,

depending .n the direction of the field E relative to the crystallographic
axes: A100 - 1.1510", A110 = 0.96-10-", A111 = 0.69-10-1 °K-mzm/V 2 .

Nonlinearity in the behavior of e is attributed to the anharmonic recurrent
force acting on the titanifim ion when it is displaced from its po3ition of
equi 1 ibritum.

-, an 6 of SrTiO3 in the region of sonic frequencies is

0.0002S j.. T-c irve of the temperature dependence of tan 6 has two

- 5h2 -
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maxima: one at 13-14 0 K and the other near 72'K (at ;'D0' Hz) [20 23, 32].
As the frequency on which the measurements are ma.3 i.,,creases, a displace-
ment of the second maximum is noted toward the region of higher temperatures.
Presumably the cause of this relaxation maximum of tan 6 are impurities and
annealing conditions [20]. According to [40], tan 6 of strontium titanate
monocrystal can be represented as the sum: tan 60 and tan 6., where tan 60

is the field-independent contribution and tan 6F is the field-dependent

contribution. It has "een found that tan F = b(Bhki/C)cs(T, O)E2, 'here

BhkVis the anisotropic constant (at freqnenciv of 2.3 to 6.5 ktliz in the

90 to 230 * K region B = 4.8.10a '.sec.oK/V2 ). 'he temperuture dependence
of tan 4 is satisfactor.ily described in the 90-230°K range by the expression
tan SO = (A + DT2)/(T - 0).

More recent investigations [41, 421 in the 3 to 36 Gliz frequency
range led for zero biasiag field to the expression tan 6 = (A + BT + DT2 /
/(T - 0), where 0 =33°K, the paraweter A is determined by attenuation on
lattice defects, and the parameters B and D arise due to attenuation r,lated
to anharmonic interaction in the lattice. The magnitude of parameter A is
determined by the number cf lattice defects (including impurity ions' and
vanishes in highly pure moiocr-stals, vihereas the parameter- B and D are
practically independent of the production method, treatment and purity of
the specimen. Tan 6 is proportional to frequency in the entire 3-36 GHz
range.

At low temperatures in fiqci less thaA 130 Vi-rm the de;-ndence P(E)
is linear (15, 29]. The hysteresis ioeps appear only in the higher fields.
On this basis Granilcez [291 p-opos-3d that in the absence of atn electric
field &r'Ti). is i:n the paraelectric state, whereas ,ýie application of a

field converts ft to a state energeticaily close to ferroelectric, i.e.,
an electric field "induces" the ferroelectric state. It should he pointed
out in this regard that the saiclinerity of the dependence P(E) :f ferio-
electrics in small fields is always relatively weak and the assumption of
"induced forroelectricity'9 would be more valid in the ease )f the detection
of double hysteresis loops. According to Granicher F291, rt 4.24K (f =
= 50 Hz, E 8 k/cr.) P_ Z 3-10-r C/cm2 , P l.-06 C/cm, h = 300-500
V /cm. res c

Wea-er [311 analyzed the temperature dependence of spontanecus
polarization of SrTiO_ monocrystals. This r~searcher obtained a smaller

P than was obtained in [29]:•i.S-1)- C/cm2 at 1.4'K, and E = 670 V/cm.

Hegenbayth [20] points out that the dependence P(E) 4n f-e1js up to
12.5 kV/em is not strictly linear, even at temperatures alove 80°K, whereas
below 80*K weak dielectric hysteresis loops appear, which are quite
pronounced at 20*K. The existence of hysteresis loops at relativeLy high
temperatures (-70*K) was also pointed out by Mitsui and Westphal [24). The
depenaence P s(T) of SrTiO3 monocrystals, determined according to the

hysteresis lcps, is illustrated in Figure 19.2. As seen in the figure,
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the residual polarization exists in an extremely wide temperature range,
gradually d~minishing on heating. It is presmed (36] that the dielectric
hysteresis loops in SrTiO3 are not relatel1 to the ferroelectric state of

the substance and are explained by the influence of space charges. This
assumption, however, has not been checked.

The effect of hydrostatic

U a~pressure on the E of strontium

titanate was analyzed in [43, 44].
"It was found that as pressure0.2-. increases, C diminishes according to

oaf _ - the express~iorn c = C*/(p - po),

where C* = 12,600 kbar and p0 =O Z7 9o 69 Tr = -40 kbar (44).

Figure 19.2. Temperature dependence According to Granicher [29],
of residual polarization of SrTiO• 3 at low temperatures piezoelectxic
monocrystal (according to Mitsui oscillations can be excited in
and Westphal [24)). strontium titanate moiocrystals

polarized by a field of at least
600 V/cm.

The elastic conistants of strontium titanate monocrystals were first
analyzed by Poindexter and Giardini (45] at 20*C. The following elastic
piia. :y coelficients vere obtained: sll = 3.3-0•' s12 = 0.7410 and

s 4 4 = 21-i0'" cm2 /dyne. Bell and Rupprecht [46] measured the elastic

moduli of SrTiO. monocrystal in the 330 to 77 0 K temperature range. At 295*K

l S.22-101  dyne/cm2 , c1, = 1.20-1012 dyne/cm2 and c4 = 1.22-102

dyne/cm2 . The elastic moduli increase gradually from 20°C to 1i20 K, where
the velocity of ultrasound changes notably. For a transverse wave on axis
[100] the velocity decreases 15% within the limits of 30 K. Measurements on
axes [111] also indicate a change in the elastic modulus at 112*v. Here
there was no tenerature hysteresis, which indicates a second order transi-
tion. Below the transition temperature the-velocity changes little all the
way to 77°K. For a longitudinal wave on axis (100] attenuation becomes so
great that measurements cannot be made below U12 0 K. The sharp increase in
attenuation of shear and longitudinal waves and the great change in the
velocity of ultrasound in monocrystalline SrTiO was also noted by
Kregstad and Moss [47].

Rupprechet and Winter [33, 48] measured the elastic and electro-
mechanica: constants of crystalline SrTiO 3 in the 300 to 4.2°K range. It

was shown in this work thrt -a addition to the piezoelectric effect, which
is caused by The application of a biasing electric field, and which is
--:oportional to this field, crystalline SrTiO dis,1ays a piezoelectric

*2ffe.t in the absence of an external field as well. Thus, the piezoelectric

-544-



modulus in a stationary electric field is described by the expression d;l

Sd1 + 2q 3 1 E5, where d~l is the measured and d the true ?iezoelectric

[ modulus, q3 1 is the electrostriction coefficient and E3 is the field

perpendicular to the length of a longitudinally vibrating bar, the facits
of which correspon.' to t! planes (100), (010) and (001). At 243.3*K

q3! ' (1.732 ± 0.U2)-i0"19 m2/V7, and d3 1 = (1.21 ± 0.27).10"-1 m/V. Here[ / = C.T - T2 
Q10e3q3 1 =Q31/(T T-1and d3 1  D3 1! (her, whr = (6.92 9 0.07)-1-

m2 -deg 2 V- 2, D1 = t! (-2 ± 0.32)-10-12 m-deti.V- 1 , T1I = (41.48 ± 0.0l)*K,

T2 = (99.5 ± S.8)*K.

At temperatures above the phase transition temperature Tt = 102.52

± 0.031"K the elastic pliancy coefficients diminish slowly on cooling far
from Tt, but near Tt they increase sharply. Below Tt they drop sharply and

between 80 and 66 0 K are practically constant. Measurements at 22 and 17°K
yielded: at 22"K sl = (24.S ± 0.3)_1012 m1 /W; at 17"K s = (9.3 ± 0.6)-

-101 m1/N. Considering that at 66°X Sll = 5.36-101 m/N, the authors

conclude that the maximm olastic pliancy occurs in the interval from 66
to 22*K. The final true piezoelectric modulus d3 1 in the entire temperature

range below 306'K verifies the deviation of symmetry of the SrTiO3 crystal
from cubic at temperatures above Tt.

Schmidt and Hegenbartb [37] analyzed the electrostriction deformations
and piezoelectric constants d33' g3 3' d3 1 and g3 1 of monocrystalline strontium

titanate in a slowly changing biasing electric field. They found that at
800K d3 3 and g3 3 are linear functions of E (for E up to 12 kV/cm), whereas

at 20"K the rate of iacrease of g3 3 slows down )mewhat as the field is

increased, and d3 3 peaks and then drops off. The valu'es of d3 1 and g3 1

at 80*K are negative and increase in absolute value as E increases, but at
20*K they increase in absolute value only to 1.5 kVi/c, after which they
vanish and then become negative. These anomalies are tied to the slow
establishment of the equilibrium state of the crystal. The authors
indicate the presence of the piezoelectric effect in the crystals after
the removal of the field, uhich vanishes only after a long n:-iod of shorting
of the electrodes. The possibility is not ruled out that the existence of
the piezoele:tric effect after appl4cation of a field is related to an
elcctric effect.

To explain the phase transition near 110*K Cowley [49] proposed that
this phase transition is related to random degeneration of two branches of
the dispersion curves: longitudinal acoustic branch and transverse optical
branch of lowest frequency. This assumption, however, is taken to task
[481. The archors indicate that if such degeneration were the cause of
the transition, then the transition temperature T. would depend notably
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on the strength of the biasing field, but in reality thtre is no such
dependence.

Horner [50] considers that a new type of excitation can be viewed
as the cause of this phase transition at 110'K: the bonded state of two
ferroelectric soft phonons, the frequency of which becomes lero at Tt.

This excitation represents vibrations of ion quadrupole moments propagating
in the crystal. Horner points out that this excitation could be detected
experimentally near Tt according to the second order Raman scattering.

It is noteworthy that strontium titanate has been the object of

numerous investigations of optical spectra, theoretical and experimental
analysis of lattice vibrations and experimental checking of dynamic theory
[51-77]. Many works have been devoted to analysis of EPR, NIR and the
Messbauer Lffect in SrTiO3 [78-85], ana!ysis of latti;e, defects, semi-

conductor properties, superconductivity and luminesceice [86-110]. There
are also measurements of thermal conductivity ana the eleccrocaloric effect
[111-114]. Certain works are devoted to discussion of the polarization of
ions in strontium titanate [115, 117].

By way of summarizing the results discussed above, we point out
that several phase transiticis occur in strontium titanate during cooling,
of which the one at 100-110*K is nonferroelectric, whereas the nature of
the phase transitions at lower temperatures is not clear. 'the character
of the dependence of c on T and E is satisfactorily explained in Barrett's
theory by the paraelectric behavior of SrTiO and does not require assump-

tions concerning the presence of the ferroelectric phase transition. Never-
theless, low-temperature phase transitions do occur in SrTiO. at

temperatures of the order of 30'K, and there is little reason to deny their
ferraelectric origin.

2. Lead Titanate

The x-ray -diffraction analysis done by Megaw in 1946-1947 shoved
that lead titanate (PbTiO3 has a tetragonally distorted lattice at 20"C

with a high degree of distortion: c/a = 4.141/3.891 = 1.0635 [118, 1191.
Jonker and van Santen [120], discovering that the temperature of the ferro-
electric phase transiti3n in solid solutions (Ra, Pb)TiO. and (Sr, Pb)TiO

3 3

increases as the concentration of lead titanate increases, proposed that
PbTiO3 is a fervoelectric. However, the first experimental evidence for

the existence of a ferroelectric phase transition in PbTiO_ near S00°C

was obtained by Smolenskiy [2-4, 121] and Shirane, et al [122, 123]
working independently.

X-ray diffraction analyses confirm Megaw's results or the tetr-gonal
distortion of the PbTiO._ lattice at room temperature and vield close values

aA
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of the parameters c and a and the ratio c/a [122-126]. At a higher
temperature, as seen in Figure 19.3, the constant a increages smoothly and
c diminishes. Here the volume of the nucleus and the ratio c/a decrease.
At temperatures close to O"90C (490-S5O0C) c and a change sharply ano the

K lattice becomes cubic. The phase transition to the cubic phase is
accompanied by a substantial reduction of volume. The sharp change of
parameters in the region of the transition suggests a first order phase
transition. It was established that conversion to th" rhombic and rhombo-
hedral phases, analogous to the low-temperature phase transitions in barium
titanate [123], do not exist in PbTiO3 . Ar lower temperatures, however,

phase cunversions, apparently of a differe',t nature, do occur [127, 129].

CC
.O Tetrago/na tsa

'Cublc

0, 4W, Nr ,'W V

Figure 19.3. Temperature dependence of lattice para-
meters of Pl-TiO3 (according to Shirane, et al [123]):

a -- lattice periods and volume of nucleus; b
ratio c/a.

X-ray diffraction analysis showed that when specimens are slowly
coolnd, a phase transition occurs near -100 0 C, in whici the values c and a
change and superstructare lines appear, which could be identified on the
assumption thal a' = 4a and c' = 4c, where a and c are the former lattice
parameters. During the transition there is a reduction in the ,olune of
the elemental nucleus. Knaiysis of thc Temperature dependence of c of
lead titanate during slow cooling (A.S'C per mirute) revealed two very
small, but distinct jumps in E at -100 and -1501C. The jump of c at
-100°C agrees satisfactorily with the phase transition at -1600C, reovealed
by x-ray diffraction analysis. The existence of the transition at -150rC
has not been checked by x-ray diffraction analysis. A change in the slope
of the curve c(T) was also .O9ted r'ar -60rC. The authors 1127, 128] feel
that the transitions in PhTiG3 a Oft and -150VC iac similar to the phase

transitions of buckling found by Cross and Nicholscr. ini NaNhb( at 470 and
5200C.

The great/volumetric spontaneous deformation, determined by the
change in (a c)l 3 (Figure 19.3a) causes the hinear expansion coefficient
a of a polycrystalline specimen to become negative in the ferroelectric
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state in a wide temperature range (121, i24]. At -30C there are
discontinuity on the curve &ZII•VT) and maximum on the curve a(T). Smolenskiy
[121] proposes that this anomaly in volumetric expansion is related to a

low-temperature phase transition. This is 3pparently one of the low-
temperature phase transitions described in [127-129]. The transition to
the low-temperature modification, according to both dilatometric data [121]
and the results of x-ray diffraction analyses [127], takes place with a
reduction of volume. The difference in the transition temperatures may bt
related to the fact that the measurements in [127] were made during cooling
and in [121] during heating. The rel1tive elongation of PbTiO3 mono-

crystals [132], in addition to the anumaly at the Curie point, also mani-
fests an anomaly in the 370-4S00 C temperature range. This, however, does
not agree with the results of measurements on polycrystalline specimens
[121, 124], although it does find some confirmation in the results of
measurements of the temperature dependence of e of polycrystalline PbTiO3

with mineralizers [4]. The anomalies in this temperature region are most
likely not characteristic of pure lead titanate and are caused by
contaminants.

Shirane, Pepinsky and Frazer [130, 132] conducted an x-ray diffraction
analysis of monocrystals and neutron radiographic analysis of polycrystalline
PbTiO. specimens at room temperature and determined the displacement of ions

from symrnetric positions. For the case when the Pb ion is used as the
origin of tihe coordinate system and the centers of the ions are placed at
points with the coordinatesi Pb: (000), Ti: (1/2, 1/2, 1/2 + 6 zTi),

0 (1/2, 1/2, 6zo) and Oi: (1/2, 0, 1/2 * z , the following values of

3z were obtained: 6zTi = +0.040, 6 z1 - +0.112, = .0.112 or (in

angstroms): zSz_ +0.17 A, 'z +0.47 . Sz 40.47 X. However, since
a OlO

ft = 6z it is more convenient to place the origin of the coordinate
01 011,

system at the center of the octahedron (Figure 19.4). Then 6zi = 0,

6Z = +0.30 A, 6z +0.47 X, i.e., the Ti and Pb ions are displaced in
Ti Pb

the same direction in relation to the oxygen octahedron. The authors point
out that these displacements are much larger than those of Ba and Ti in
barium titanate. Calculation on the basis of ncutror radiographic data
of the ionic part of spontaneous polarization, assuming a purely ionic
crystal, yields 54.!0- C/cm-, whereas the analogous calculation for 3aTiO.
yields for its value 17-10- C/cm'.

Caiorimutric analysis of lead titanate was uhdertakcn in w .-s
[124, x:-, 134]. The heat capacity passes through a sharp peak a, the
Curie point. The latent heat of transition is 1,151 cal/mole [124, 1331.
The correspcnding change in entropy is -0.80 R, where R is the universal
gas constant. According to F1341 the heat of traisition is 900 cal/mole.
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F £ The refraction coefficient of
ROC &471 PbTiO3 monocrystals was analyzed in

[12S, 126, 135]. The mean refraction
index was investigated using a

[selenium-sulfur alloy, It was
established that the refraction index
differs for crystals grown by
different methods, and at room

tPkriO temperature varies from 2.65 to 2.71.

Figure 19.4. Elemental nucleus of The birefringence of PbTiO.
PbTiO3 with origin of coordinate bn

[131, .36]oat room temperature for
system at center of oxygen octa- X 5,896 A is 0.01, gradually
hedron (b) compared to elementa3 increases on heating, reaches a
nucleus of BaTiO3 (a) (according to maximum value of 0.018 at 400°C,

Shirone. et al (1311). diminishes to 3.012 near the Curie
point, and suddenly vanishes at the

transition point. More recent moasurements verified this character of the
temperature dependence, huL showed that birefringence varies from crystal to
crystal and can be much lower for twinned crystals than for single-domain
crystals [137]. Despite the fact that spontaneous deformatibn is much
greater e 'cad titanate than in barium titanate, its birefringence is only
abort one-third that of the latter 11381. This fact, like the nonmonotonic
character of the temperature depend.nce of birefringence of PbTiO3 , is

possibly relate' to overlapping of the electron she.ls of the ions in the
presence of great spontaneous polarization [139]. It should be recalled
that the spontaneous birefringence of PbTiO3 was calculated [1401 and it

was found that lead titanate should be optically positive, even though this
disagrees with experimental data. The correct sign was obtained in the
calculation c-iducted in [141].

The domain structure of PbTiO. was first analyzed by Fesenko r1261,

who observed polysynthetic twinning on (101) and (011), Domain width was
0.1 to 10 micron. The 2ngle between the domain walls and crystal facet
(a = 46°451) coincided satisfactorily with the calculated value. On heating
above 400%C rearrangement of the domain structure begins and near 50onC
the domains vanish. On cooling a simpler domain structure appears. In
most cases the area of layers of the monocrystal filled with c-domains is
small, and heating above the Curie point leads to disappearance of c-domains
(128, 142]. Analysis of the temperature at which the domain structure
vanishes and appears [137] showed that the temperature hysteresis of the
phase transiticn reaches 3-4*C. In a crystal broken down into 90° domains
reorientation of the domains begins at 20'C only when E z 14-17 kV/cm [127].
This process, however, does not proceed tz completion due to rupture of the
crystal with a further increase in the field. When a field of 10.5 kV/cm
is applied to a single-domain crystal, wedges are formed, comprising an
angle of 450 with the direction of the field and cutting through the entire
crystal in 1-1.S sec. After 0.5-1 nin the entire crystal consists of two
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domains. Strengthening of the field caused displacement of the b~oundary
through the crystal, and elimination of the field caused motion in the
opjos-ite directien until the entire crystal became single-doifain.

The dielectric and piezoelectric properties of lead. titan-ate haveI been analvzed to a miuch less'er cxtený than those of many other forroelec-
trics. The reason for this is than. ae produccion of well'sintered poly-
crystalline sp,.ci~oens of leatd titL.-azo is inipeaed by the volatility of lead

U~~~o~tde zhigh temperatures. Lrcsse-; of PbO during roasting lead to disrup-
tion oi the stoichiometric ratio of the oxidcs. Until this day it has not
been possible to produce well sintered lead titanate ceramic-s without using
mineraliziag additives. At room tepperature, moreover, the coercive field
ctf lead titanate is very strong and the domains can be completely reoriented
only in extrecely high fields, exceeuding the presently attainable electric
strength of the'specim~en. lAt the same time, the rapid' increase in electrical
conductivity and reaiuction of electric strength diiring heating Drohibits
reorientation of dom~ains at high temperatures, close to taeC Curie point.
wherc E~ is 'Lower. Therefore srontinecus; polarization and the -piezoelectric

properties of pure PbTiO ; have not yet been measured.

T1he permittivity of PbTiO.,, meastored in weak ficlds, increasas during

AM- ~heating and peaks in tne- region ef 4190-5100C. The permi t-tivilty of cera~mics
with considerable porosity [ 781 i5 50 at room temnerature. 1*1 was
esablished during investigation of the ceramics that above the Curie

temperature the Cuvie-Weiss law is obeyeti, where C = 1.1-105*c, and 0
r20 (124] and C = 1.54-;01%, 0 490'C 1126].

The dielectric properties of lead tz -tanate rc-onocrystals were firý-t
a.alyzed b:: Belyavev and Khodakov f 143]. Perniittivity at room teimerazui'i

Wag found to he lit). It was found that at radio frequenciies c depends
little on freqjuen~cy and in,:reases notably inly on transition to low
frequencies. Tht, elect-rica! conuiu.:txi'xty incre.ses both with incrca4-xng
temperature and with increasing field. The enteroy of ac tivation was found
to he 1.06 eV for the investigated Crystals, grown frirm a Mixturc of PbO,I V~O~and TiO,.

More rece;it m.,asurcments [1251 showed that ýýat room tempctazure
depend3 strongly on the methcd of growing the crystals and varies from
IS to 150. The jpermittiý7ity, measured ir. a weak- vr~riable field, does not
depend an the strergth of a simrniltaneouslv applied stationary field up to

F=50 kV/cm. According to Bhide, et al [158], the permittivity of nono-
crvstalli-ne PhTi(X is equal at 10 kliz: to 30- at room. temperature and -111,000

at 4954C. SAbove the Curie tempcrature the Curie-Weiscs law is valid, with,
C ll*l0~ and 0 485'C (Frigure ..

Introduci.ng varivus additives to lead titarilite in thc- quantities
(.1.5O. and 1%, Tien and Carlson [11441 -iore ablce to obtain relatively

weWll sinter.ed ceramics %,with a porosity of up to 114-95.51 of the ts~-eurt ca 1'
For ceramics wikth a 1 mo~le additive of CaP.. they obtained a picznoeec'aric



modul is d 130*10 '2 C/N =3.9-10-6 CGSti. The densest PhTio ceramics )3 3 3
were obtained by adding 1-2 mole % MnO,, (1451. Here c =210-2.80, tan 6

=0.007S-0.008, k 4-5% at 200C and the electric resistance is[ 101 Lastl1 [63] and Yatsenko [36] analyzed the optic absorption spectra

of lead titanate. Last found absorption bands v. and v, at 590 and 405 cm-,

and Yatsenko at 575 3md 420 cm- It follows from thene data that the force
constant k for valent vibrations IS (1.04-I.4)*105 dyne/cm, the effective
charge of the vibrating system is 0 =(1.57-1.8)e, and for deformation
vibrations k = (0.60-0.76),10s dyne/cm, Q = (1.3-1.S)e.

BlokhiAn (146, 147), on the basis of analysis of the A-ray K-spectrum
oi absorption, proposes that the bond of the atoms Ti and 0 in PbTiO are

3
basically covalent, which the author attributes to the slibstantial
polarizing action of Pb atoms on Ti and 0 atoms. The authur concludes that
lead titanate is an electron semiconductor, in which electrical conductivity,
governed by the transition of electrons from the 3d- to the 4s, p-band,
should increase sharply when the terperature is increased.

Kabalkina and Vereshchagin (149] an~alyze-! t~e effect of hydrostatic
pressure Cup to 18,000' kg/cm) on crystal lattice parametets. They
esýtabllshed that when the pressure is increasod, parameter a increases
linearly witN pressure, and parameter c decreases linearly (at p = 18,0100
kg/cm L1C = -0.10 X, Aa =+0.01 A) in -minection wizb which the rat.io c/a
decreases. Thbe dependence of Ac or. pres:zure can be represented in the form

We--14.3-10 7 p. Extrapclating their data, the authors reached the
conclusion that the phase transition to the nenferroelectric state at 20%C
should occur at Dressures of the order of 27,900 kgicm2, and he-ce a-;su'uc
dT/dp 18.1e 3*eg/atin.

Also noteworthy are several works on analysis of PbTiO with the, aid
ofOpIjc.. spectra, EPR. diffusion of slow neutrons 153, 56. ~3 4-1511.

The first attemptz to explain the high Curie temperature of PbTiO_

,ias undertaken by Si-ýolenskiy [3], who expiained the pronerties of lead
titanate by the features of %the electron shell of thle pb2* i-n, which
differs sharply from the electron shell of alkaline-earth ions and which
is respcnsible for the considerably r.-are pronounced covalent character of
the chemceal bond in lead titanate. Megaw [1521, stressing the. importance
of the partially covalent character of bonds in PbTiO.-. notes that the

hondeopolar systcr. of bondf, in PbO plays an important rnl6, nad the Pb-O
bonds !.. NbO form a shallow tetrahedron with the lead atom at the vertex-X
'Me displacement 3f the lead atom in Ph~ijO. relative to the center of the

oxygen pol-,hedror esir:-rounding it causes the four oxyvgen atoms lying in the
?lzne perpenaicular to P, tco form, with the lead a ietrahc'.iron similar t r:



the one seen in PbO. Thus the large
# ! ratio c/a and high Curie temperature,

R•1 according to Megaw, are explained by
OR ,the formation of directional bonds

RE by the lead atom. Belyayev also

2 'shares this point of view 11531.

Venevtsev, et al [1541
t & TI.C calculated the internal field and

spontaneous polarization of PbTiO3
Figure 19.5. Temperature dependence inthe t onaripase. Tis-

of e and 1/i of monocrystalline in the tetragonal phase. The dis-

PbTiO3 at 10 klz in weak fields placements of ions were taken from
3 a[131]. It was assumed that the

(Bhide, et al [138]). charge of each ion is one-half the
charge that would occur in a purely

ionic crystal, i.e., the charge +2 is ascribed to the titanium ion, +1 to
the lead ion and -1 to the oxygen ion. The origin of the coordinate system
is placed at the center of the titanium ion. The calculation yielded the
spontaneous polarization of PbTiO.3 (90.5.10-6 C/cm2), numerical expression

for the contribution of electronic and ionic polarization of individual
ions to spontaneous polarization, and the irternal field acting on the
various ions:

Ion Via - . -*.. -*.*

01 ....... 7JC 32A . 46
u Oil I 0 -1 • -•03 218.4 2-M-1

Hlence it is clear that the greatest contribution to spontaneous
polarizatic. comes from 01 ions, and the smallest from Ti ioi-s. It should

be mointed out, however, that since the contribution of the vavious ions
to the ionic part of spontaneous polarization depends on the choice of the
coordinate origin, the contribution of C. ions to spcntanecus polarization
will also vary, depending on where the authors place the origin of the
coordinate system. Approximately 70% of spontaneous po3ari:ation is
ascribed to the electronic component. Despite the obvious usefulness of
such chlculations, a careful attitude should be taken toward the results,
in view of th.2 arbitrary choice of the effective charges of the ions, due
to the lack of reliable information concerning the electroz polarizability
of the various ions in the crystal lattice, and several other assumptior'
in the calculation.

V- important role of the high electron polarizability of the Pb2-
ion, determined by the unshared pair of 6s-electizons, which in many compounds
including, probably, PbTiO., displays stoichiometric activity, is stressed

in [155]. Also noted is the possibility that in lead titanate, possessing
a large share of covalent bonds, dipole moments may occur as a result of
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these bonds. It. is also stated thait the part-ally covalent charactt-r of
bonds in PbTiO miny in%ýrease ion polarizability of the crystal lattice,3
decreasing the recur)?cnt forces and giving the vibrations of -che ions an
anharmonic character (I~. It is further noted that odd hybrid states,
in which participate the 6s- aad 6tp-orbits, as a result of antisymme.I'ic
excitations [IS71, oan occur in P'bTi03, and thesz canl create a dipole

moment, inc-.easing the ion polarizability and, consequently, permittivity.
Thus, electrcstatic forces of dipole-dipoie interaction, which are great
due to the high electron and ion polarLaahbilties of the crystal 'ztt-ce,

W are stated ir, [155] as the main cause of the high Curie temperature of~ lead
r- titanatu. "The high magnitude of these polarizabilities, in turn, is

related to the specific structure of the el-ctron shell of the Pb2, ion
and partially cova.ent character of the bond.

3. Cadmium Titanate

T~he ferroelectric properties of vadmium titanate (CdTiO) were

diz;zovered by Smclenskiy [2, 3], accord'ing to whose data transition to the
ferroelectric state takes place at approximately 50*K. At room temperature,
nevertheless, CdTiO3 has a rhombi-cally distorted structure of the perovskite

class r-ather t.han a cubic structure. According to Megaw [158], the nuclci"As
is doubled op all three rhombij axes and the lattice piarameters are: a

V ~ 10.695, b =7.615, c = 10.834 A.

More recent x-ray diffraction analyses of CdTiO, £159], performed

on monocrystais, showeed -hax doubling occurs only on the b axis and the
lattice paiame-ers are: a =5.438, b =7.615, c 5.417 X. The rhombi:c
elemental necleu., contains fCour "molecules" of CdTiO3 Either Pcrnn or

Pc2. n are possible spatial groups. T1he authors relate the symmetry of

Ci to the po^lar group Pc? n. Hence they find the disnolacements of ions
in the elemental nucleus of (.dTiO. at 20*C Tal S.Acrdin o[5]

all displacemer~ts of 0. ion on the y axis are identical with respect to

magnitude and sign, and the same apnliies to displacement of 01Tions.

However, Ay. -0.03 and Ay *0d.07, Whlile the dipole n3memits

':reated by the displacemments of all, other lo,.s are mnutually compensated,
thE coniponents of dipole moments 'f ions 0OI and 0 1 on the y axis are

mutually upcompeasated. it follows, th.-retore, from Table 25 that the
elemeatal nucleus of CdTiO displays a dipole minement -it room temperature.

It ;hould lie borne ini mind, ,owever, that thchoic of the polar group
Pc21nr was r-ade only On the basis of x-ray diffraction. data without chzcking

for the presenice of piczu- or pyroelectric properties.
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Table 25. Coordinates of Ions in Cadmium Titanate

tons Position of Ions (Error

04.O.C30 0-0.006 1,/2+0.008 1/2-0.006:L M02
c-. { , 314 4 i/ :14 -,

(1+0.006 0-0.0 1/2-0.016 t/2-0.016 d.o.t0

T, 1/-4062+0.00 5 1/2-OW +0.005 -005L.'i o -
0-0.o06 0+0.055 1/2-+-485 1/2-0.065 ±O.O,

z 0-0.03 0 .3 1/2"'0.3 1/2-0.03 *0.01s
o314 01/40 3 /4 1/4 ±0.0=.

1/2+0.•5 112-0.05 0+0,5 0-0-.0o5 ±0.O5

S 1'4.+D.05 /4--0.05 3/4--G.05 3/4+0.05 ±0.005
Oa,1{ 1 0-0.03 0-0.03 1/2-0.03 1/2-0.03 ±0.015

14+-0.0 4 314+0.06 314-0.06 1/4-0.08 -0.015
1/4,•.04o5 1/4-0.0 3/4--0.05 ./%4+0.05 ±0=5Of Mr+0.07 1/2+10.07 O 0.7 ..... •015
/40t*.oo 13/4-0.00 314--.6 IA-4--'6• :L..I

11/2+0 0:13±0'"~ z~? ±0.015

According to Smolenskiy's data [2-41, c of polycrystalline cadmium
titanata increases with cooling and peaks at a temperature of 50°K, below
which CdTiO 3 displays ferroelectric properties. Hegenbarth conducted a
more thorough analysis [341. He measured the P (at 800 liz and 50 V/cm)
of polycrystalline CdTiO specimens, sintered at 1,250*C, in various bikasing

-3
fields (Figure 19.6). The permittivity, equal to -900 at 80*K, increases
to 2,300 at 50 ±.0.5*K, and then drops again. As seen in Fir.ire 19.6, it

is strongly depender.t on the direc-
tion of the field. At 20.4 0 K c is
1,490, and at WO•K e = 1,200.

0 Below the Curie point diel-]ctric
IN ,hysteresis loops are seen. ilegen-

barth [160] also analyzed the
electrocaloric effect of polycrystal-

,soo 'x~x line CdTiO.. specimens at 59.7, 68.6
3and 78.7%K. Its maSnitude is low

•t in due to the sufficiently high entropy
R '-Wof the lattice at these rather high

temperatures.

Rhombic distortiop of the
-a-CdTiO. n',clefis is regarded [!,";] a-,

Figure 12.6. Temperctuie dependence .i
of per-,ittivity of prlycrystalline the rcsult of buckling phase transi-
cadmium titanate ;n various sta- tion that 3ccurs at high temperatures,
tionary biasing fiIds (azcording and the pha,.e transitio.n at S00 K is
to HeSenbarth t34]). regarded as a transition to theferroelectric state. The opinion isadvanced in [1621 that CdTiO, even at room temperature, is a ferroelectric.

The electric moments of various ions in the CdTiO5 lattice, ittrihuted to
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noth ionic and electronic pularizat i .n at 290C, were calculated in [118].
For this purpose data [1591 on the positioizs of ions in the elemental
nucleus and the structura) coefficients calt-utace(d for norai-sp.'aýa ir
positions were used. Tlhe charge of the iadn n inn was zA,-t at +1, +. .s
ascribed to titaniam and -1 to oxygen. Thie sptntaneous polarization calcu-
latMd with the stat.d prerequistles is 1 8 - 1 0  C/cm2 , and the contribution
of electronic polarizarion is 52G.

Polycrystalline specimens of CdTiO3 have a t peak [Io3u at 060°C.

. solutions (Cd, r)Ti , i N) and (Cd. Li)(Ti, Ta)03

have r- peaks in the 750-1,000%C region. It is reported that dielectric
hysteresis loeps were observed in these specimenn at around rnom temperature;
these hysteresis loops vanished at ll0OC.' Hence it is concluded 1163] that
at 9600 C an aatiferroelectric transition occurs in CdTiO.., and at :00°C

3

there is a trancition from the antiferroelectriL state tj the ferroelectric
state. However, Poplavko reported at the sixth All-11ion Cinference of
Ferroelectricity the results of MirW measureme'its of Cdl'iO.- spercimens in a

34
wide temperature range. According to his data c of cadmium titanate
decreases monoto.,ically between 20 and 1,0000C and, consequently, no c
peaks were observed in this temperature region.

"Thus, there are two points of view at this time: one consists ;I
the fact that the distortion of the CdTiO3 lattice at room temperature 4S

3a
a result of a buckling trmnsition, and the other ascribes ?erruelvc'ricity
and antiferroeleztricl.ty to CdTiO., in the t Ipcrature range uj to 9600C..5

!n this regard it is noteworthy first of all that the geometric criterion
of CdTiO. (t = 0.88) is muc•r less than unity ,snd about the same as that of

calcium titanate, ,vherŽi the buckling phase transiion occurs at tenperatures
of the order of 1,000C. -Thus, at more or less, high temper: tures a buckling
phase transition nry take place ia cautrium titanate, similVr to the phasetasit~ion t!hat occu-s .,.r .,,i-. Se.nn•
trans t c ,. Se'onl, the character of the temperature

dependence of c belor- room temperature (ri.gure 19.6) is more typical of the 4Z
phase transitions from the p:;raelectric p!hase ;'o the ferroelect-ric phase
than of the zransition from one ferroolectric phase to another. Third,
since "he measurcment technique, waa. not described [16;] and 5,nterpretation
of the results of dielectric i-heaslurenentft at temperatores of 9016-1 ,00 0oL
requires great care, and since Poplavko's results do not agree Aith
other c-.ta [165], thu validity oF the conclusions [I"!j is doubtfiul.
Therefore the viewpqoint which retavds rho:Žbic distortion of the CdTiO.

3

nucleus at room remptrattre as the result of a high-tenperature bu'-kling
transition, 'auised by the nonconformivy of the rclatively .cmal! cadi'.itm
-on with the geometric re.1uirements of tt"• pertec perovs'ite -rye lattice,
is preferable at this time,
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4, Sodium-Bismuth and Potassium-Bismuth Titanates

The ferroelectric properties of NaBi-titanate (NaoBio sTiO3 ) ard

KBi-titanate (K 5 Bio 5 TiO3 ) were discovered by Smolenskiy, et al [1551.

Preliminary x-ray diffraction analysis [155] indicated that
a Bi0. Bi0.sTiO3 crystallizes into a perovskite type structure, and at 20 0 C

the lattice parameters, calculated in the assumption of a cubic lattice,
were fouiid to be a = 3.88 X. Data concerning the phase transitions in
sodium-bismuth titanate were obtained froin the results of dielectric and
dilatometric analyses (Figure 19.7). According to th.. -mperatures of the
peak and discontinuity on the curve E(T) and jumps of the line•r expansion
coefficient of polycrysralline specimens, it was found that the Curie
temperature is -320'C, and a low-temperature phase transition , curs in
the vicinity of 200"C.

The x-ray diffraction patterns of NaBi-titanate lack superstruct,:re
lines [1641, indicating the unordered distribution o5 Na and Bi ioni in
the nodes with the coordinate number 12, w.hich concurs with experimental
results [155]. Slight separation of sorre of the lines was noted. Calcula-
tions showed that Na0.5 Bi . TiO3 has a rhombohadraily distorted lattice

at room temperature with the parameters a = 3.891 ± 0.02 AO, a, 89056' +

t 3' and V 5 8.7 ± 0.1 X3.

0, X•, .18o

300 4D.3 J75 0 Figure 19.7. rtemperature dependenceI• of c, tan 6, relative :hange of
length and thermal expansion

I coefficient of polycryszalline
Na Bi TO (according to

4Sn, uIenskiy, Ot l(155]) 1[• _•at 500 kflz; 2 -- AZ17.; 3 -- cc;
-101- MI • 5• t-n AS at I Vllz.

17 ZOO 004 7, O

A well formed and nearly rectangular hysteresis ioop is seer during
analysis of polycrystalline specimens of Na~i titanate in strong electric
fields [1551. At 116 0C P 5 = 8.0-10-c C/cm2 , k = 14 k\/cm.

It is pointed o61t [1551 that thv, use of the ion radii presented in
S21] yvields a structaral factor t eqdal to 0.91 f3r NaBi-titanate, and
since the antiferroelectric state is more v'haracteristic of compounds with
t much less that, one, it could be expected that this compond will be an
antiferroelecttic. The fa•t that NaBi-titanate is a ferroelectric is
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attributed to the large nve.-age

dipole moment of A ions, wh.ch
s~ 3S ~governs the h~ig electron pol~riz-

ability of Bi3 . This is rc-ason-
jbie from the standpoint of the

M. f en~ergy of electrostatic dipole-
dipole interaction, since an

RK3[~ inicrease in the dipole moment Of A
ic'r.; often facilitates the develop-

11 e rfýmc~t of the. ferroelectric state.
L L' Also indicated is the possibiiity

0 QX ,~'Cth~at the presence of Bi3* ions in'
the given comipound, by increasibgq

Figure, 19.8. Temperature de-;erdence ~.lie degree of homoopolarity of ihe
of u, relative change of lenigth an~d che:nsical bond43, increases the
thermal expansion coefficieivt of elJe::tfIit polarizability of oxygen
Polycrystalline K 0.5Bi 05 STiO 3 ionls. Thils also increases -.hs rela-

(according to Staoleaski~y, et al tiest~a hiiytftefere.crc
[155]): 1 -- cat SO kH7 2 -t.te

At/I 3 - a.According to the results of
prolininary x-ray dif!ýraction

analysis [15S], K05 Bi 5 TiO3 has a perovskite typeý structure, and the -

?3arameters of its nucleuL, assuming a cubi- lattice. a-za a 3.94 A. Mole
recent analysis [164] vvrified that in tie case of NaBi-titanaro there. are
no superrtructure lines on the x-ray diffiaction p-tterns of K0  Bi~ TiO3
that would indicate ordering of the K and Bi ions. Some lioes were
separated, but as in the case of Nabi-titanate, expansion was slight, and
the rear l-i~es on thz x-ray diffraction patterns were hlu.-red. In contrast
to NaBi-titcanate, KKi-titana' a is tetragonally distorted at rocom temperature
and has the parameters* a =3.913 ± 0.003 X, c 3.993 ± 0.003 X c/a

1.02 and the volume of the nucleus V = 61.1 ± .15 V~ N201.

The phase t-ransition temperatures of KBi-titanate were first deter-
mined from dielectric and dilatometric analyses (Fig-ure 19.8). the Curie
temperature -- at -380*C and the lo0w-temperature phase transition at -3000CM
[155]. As a result of high-temperature x-ray diffrlaction analysis [!64]
it was found that usp to about .170*C the symnietry of K~ Bi~ TiO3 re-mains

tetragonal, but near 270'C a phiase transition occars. The syimnetry of t'.e
phase existinq above this temperature could not be determined due to theM
smiaiin,,ss of the distortions apis diffusion-of the lines. At 410'C a
transition occurs to the paraelectric cubic phase. The considerable
d2vergence in the phase transition temperatures of [1553 and [1641 requires
furthar investigation to refine the dielectric data and the structural
changes of potasslum-bismuth titanat-: uiuring heating.

The high Curie temperatuic f~~ Tio lk hto0. 0.5 '3
Na0  H~iTi0 ' can h: eyplained 1155] 10y the fz-ct th~at the Bi3  ion~s have

O.- 55i' 3
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the same electronic configuration as Pb and apparently govern in the same
manner the high electron and ion polarizabilities of the lattice. The
level peaks on the curves e(T) re both KBi- and NaBi-titanates indicate
ferroelectric phase transitons of blurred character in these compounds.

2. Potassium Niobate and Potassium Tantalate

The ierroelectric properties of potassium niobate KN.O. and potassi'um

tantalate KTaO. were discovered by ,Matt-ias j1661.

Sassium niobate, pos3essing a perovskite type cubic structure
above 4.S5"C, transitions below this temperature into rhe ferroelectric
state and becomes tetrzgonal. With further cooling, transitions occur
into the rhombic, and then into the rhombohedral phases (167-1711.
According to Wood [1681, KNbO 3 has a rhombic nucleus at 25 0 C, containing

0

two units with the parameters: a0 = 5.702, b 5.739, 0 = 3.984 A. The
00

lattice para.ieters at room temperature [169, 170] are somewhat lower than
those dttermined by Wood- a0 = 5.6946, b0 = 5.7203, c 3.9714 X [169]

and a0 .695, b = 5.721, c0  3.973 X [170].
0 '0
When the long diagonal of the rhombic nhase is taken as the z axis

[172], thelattice parameters at room temperature are a = 5.67, b = 3.971,
c = 5.720 A, and the spatial group will be Bmm2. When the origin of the
coordinate center is placed at the certer of the niobium atom the ccordi-

nates of the atom will be: Nb: (0, 0, 0), K: (0, , -÷+ :K) 0: (0, 1
1 1 '~ K' I

z ), o +, + ). The value given in p'172] is z=
Z1 II 4 0X1' On -K

= 0.017 * n.001, = 0.021 ± 0.002, = 0.033 ± 1).002, x = 0.004 ±
01OnC1 II

i 0.J-02. Hence it follows that the oxygen octahedra remain nearly
regular. Inside the octahedrca Nb is displaced 0.030c0 (i.e., 0.17 :)

from the center of mass of the six oxygen atoms making up the octahedron,
toward one of the edges of the octahedroa. The analogous displaccmeui of
the Ti ion of barium titanate in he rhombic phase is 0.022c (0.125 A).

The nhas.- transition temperatures during heating and cooling
according to varioais data are presented in Table 26.

For ýhe Inwer transition temper:ature h--steresis was observed in
c-rtain cas ;s at 45%C [f701. Data cn the :ermperature hysteresir o.- phzsc
ransition:. in KNbO [168, :;J, 1731 are conv:-cing evidei :e of the

presence here of first order phase t-ani:ions.

The temperature dependence of the latti,-e constant of K.%10. in tile

tetragonal and rhombic phascs was a.aly-ed in [1711. The temperature

"- 558 -
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Tab'e 26. Phase rransition Temperatures in Potassium
Niobate (in *C)

-~ *'"~~'-"** 6)

4)3 -- IS ) ... U"" I4*""" 1 _6 . I

"4131 C 4C.1 22 i.7 i27 -.52

KEY: 1. T-ansition between cubic and tetragonal phases;
2. T'-ans tion between tetragonal and rhombic ptases;
3. T"-ansition between rhombic and rbombo,..dral phases;
4. Ite,.t ing

5. Cooling
6. Source

dependence of the parameters in the rhombohedral phase has not been investi-
gated, but it, is known that at -140'C, a = 4.016 ± 0.02 X and a = 89050' ±i -± 1' (170].

Cotts and Knight [173], analyzing the NN1R and NQR of Nb3 in mono-
crystalline KWNq0W, concluded that the phase transition from the rhombo

hedral phase to rhombic occurs over a considerable temperature interval
(12-20"C). Ftruc:u-al charig. occurs much more rapidly in both high-
temperature transitions. Fince the in:ensity of the liner gradually
changes during phaie transitions, and ? .e frequencies of the- two phases
coinciE,, it is obvious that transitien occurs at diff:'ent temperatures in
different parts of the crystal. -his nay be caus.:.d by the difference in
the concentration of defects in the lattice and the presence of internal
stresses.

Shirane and his coworkers [1.., 171], nea!,uring the latent heat of
transitions AF irn polycrystalline KNbO. and calculating the corresponding

entropy chianges AS, found the following data: fo: tran:;ition from cubic to
tetragonal nhase AE 1 190 i 15 cal/mole, AS 0.28 cal/mole-deg; for
transitior from. tetragonal to rh't'nlic AF = 85 ± 10 cal/mole, AS = 0.17
cai/moie-deg; for transition from rhombic -o rhembohedral AF = 32.5, cal/mole,
-S = 0.12 cil/mole-deg. The later.. heat of transition of poiycrystalline
K.'%bO. from the ferroelectric state to the paraelectric state [17:, 1751

is 134 t 5 cal/mole, 4herea: more recent measurements [1761 gave even
smaller values: for ceramics '•-1 _ 10 cal/mole; for a small monocrvstal
Sl15 15 l ca!/mole.

The perm.ittivity of K.qhO. peaks Curing all three phase transitions

[170]. Its temperat-tre dýpendence above the Curie point is satisfactorily

Ia



described by the Curie-Weiss law with C = 2.68"10S0C ard J = 350 0C [174,
17S], Spontaneous polarization of -26 i'C/cm2 was foun. [174, 175] from
the dielectric hysteresis loops obtained for monocrysials in the tetragonal
state near the Curie point. "ii-ýbwasser [175] calculated the coefficicnts
in the expression for free energy: F = F0 (T) + A(T - ()P 2 + BP4 ÷ DP6 ,

where F0 (T) is the free energy for zero polarization. A = 2.60O10-' I/oC,

B = 5,0.10-13 (erg/cm3)-I, D = 4.1.10- 2 3 (erg/cm3)-l, 0 = 360.4 t 5.90C.
The temperature dependence of Ps, calculated with the same constants,

shows satisfactor> agreement with the experimental data. The electro-
mechanical properties of polycrystalline KNbO3 were analyzed [177!. The

radial coefficient of electromechanical coupling is 0.28-0.30. The
frequency constant passes through sharp peaks at the points of low-.
temperature phase transitions, marked at 220 and -12"C.

The results of NNIR and OiQR analyses of Nb93 in potassium niobate
[173: ind-.cate a co..siderable degree of covalence of the bonds. Also note-
worthy is Hewitt's work [178], in which several characteristics pertaining
to the nuclear quadrupole resonance of Nb93 in KNhO3 are determined and
calculated. The optical spectra of KNbO_ were analyzed in [63, 179, 180].

The method of growing KNbO 3 monocrystals is discussed in f181, 182], and

the method of producing pure potassium niobate in [183].

1The most interesting feature of potassium niobate :s that it is the
only ferroelectric in which there is the same alternation of phases as in
barium titanate: cubic, tetragonal, rhembic and rhombohedral phases. More-
over, if the ratio' ol' the transition temperature Tt to the Curie temperature
T for BaTiO3 are 1. 0.69 and 0.49, then these ratios for KNbO.. are quite

c ~3 a
close to the values: i, 0.71 and 0.38 11701. The latent heats of transi-
tions of KNbO. are greater than those of b;,ium titanite. This is explained

by the great distortion of the potassium niobate lattice compared to that
of BaTiO3 . Chano- in entropy at the Curie point of these two compounds

are approximately proportional to the values (c/a - 1) in the tetragonal
Dhase.

At room temperature potassium tantalate KTaO3 , in contrast to potassium

niobate, has a cubic lattice with a = 3.9885 A [169]. The Curie temperature
of potassitmn tantalate [184], determined according to the c peak and the
appearance of dielectric hysteresis loops, is 13.2"K. According to this
work c of KTaO obeys the Curie-Weiss law in the 52-850 K temperature range

3
with C a (6.1-8.3)'!04 'K and 0 = 14-14.6cK. Below 52 0K c is lower than
prudicted by the Curie-Weiss law, and below 13.2 0 K [184], c decreases
almost linearly with cooling. Below 130 K dielectric hysteresis loops
appear, but at 5 kV/cm they are again far from saturation. The Curie-Weiss

-560 -
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law i5 valid [26] in the 80 to 303"K temperature range, where c. 39, 0 =
= 2.8'K, C = 5.99l104 0 K.

According to the data in [185], in which the nonlinear properties of
monocrystalline KTaO were analyzed near the Curie point 0 = 1 ± 0.S*K.

3
Above the Curie temperature, as should be expected for a crystal with a
center o• symmetry, KTaO- has no linear electroptic effect, but there is a

large quadratic electroptic effect. At the 3ame time the generation of the
second and t..rd harmonics in the microwave range at 4.20 and linear and
quadratic dependences of permittivity on electric field strength were notý,;
The generat-cn of the second harmonic and linear dependence of permittivit,
on the field, however, are possible only if the crystal does not have a
center of symmetry. Another evidence for the acentrosymmetric character of
the crystal at this temperature is the discovery of a meastircable piezo-
electric effect. It should be pointed out that the extrapolated Curih
temperature [185] does not agree with that determined in [184], and the
temperature of the ferroelectric pha3e transition was not determined at all.
The possibility :s not excluded that the discrepancy between the results of
[184] and [185] is related to inadequate purity of the first monocrystals
analyzed in [184], which may have contained some niobium impurity and could
have had a somewhat higher Curie temperature. Then, however, it becomes
uncertain how to explain the data [185] about the absence of a center of
symnm.try in KTaO. at 4.2°K. In any case the sitt'ation with KTaO_ is quite

a 3reminiscent of SrTiO3 , in which the existence of v ferroelectric phase

transition is still at issue.

The optic;._ spectra and certain other optical properties were analyzed
in [58, 179, 180, 186-192], NMIR, EPR in [193-195], semiconductor properties
of k-raO. in [196-199].

6. Ferroelectrics with the Perovskite Type Structure and Canerai
Formula ABI B /0..

1/3 2/303

As we hay already stated, ferroelectrics with the perovskite type
structure and formula of the type ABR,..B,.O. (Pb•1g"N\-'+ 0 and

1b2+ 1,! /0 0/ .. )/ 3)
PbNli3.12/3 0-) were discovered by Snolenskiy and Agranovskaya [2,,,p. The

discovery of these ferroelectrics stimulated work on the sm.nthesis of other
compounds of this type, in which Nb) ,as substituted by Ta, and Mg by Ni, Cc
and Zn. As a result Bokov and Mvl'nikova discovered several new f-rro-'). + + ^ .2 S+ 2+ 2 '1- -)+ :;electrics: ,g-T113 a2/03, PbNil Ta/ 0 PbCo +,Y 0 PbCo Ta10

1','3 2/ /3 '/3 3' 1/3 ~2/3 3V 1/3K
"4 ;+

and 'uZn 3Nb'0 [201, 202]. Later Smolenskiy, Agraiovskaya and Isupov

discovered the first ferroelectric tungstate with the pe.ovskite type

structure: PbhI- •6 0. [203].½.. /3"1/•3

?%



The properties of Pb,%igl 3 Nb .30. have already been discussed inI Chapter 16. We will therefore examine only th~se properties rnot described
in that chapter. At room temperature Pb Nb2/303 has a cubic lattice

with a = 4.04 A [204]. The absence of superstructure lines on x-ray
diffraction patterns indicates the absence of ordering of ions Mg and Nb
[205, 206]. The temperature of the ferroelectric phase transition (average
Curie temperature), Pstimated from dilatometric and piezoelectric measure-
ments, is -10 to -20 0 C [207]. According to lsmailzadels data
Pbhtgl/3Nb2/3 at -15*C has a tetragonal lattice with a = 4.020, c = 4.044 A
[2041. However, the optical analyses of Bokov and Myl1nikova [2081 showed
that the symmetry of the ferroelectric phase of this compound is more likely

rhombi!-. Sponta..eous polarization, determined on a monocrystal, is
24-l106 C/..2 at -170 0 C [208].

The electrooptic properties of Pbhig!/3.'b2/3.I3 were analyzed by

Berezhnoy [209]. The study was made at X = 5,500 X with a field on [100]
and light beam on [010] fit the temperature range from 20 to 1000C. It was
found that the dependence of birefringence on the field is essentially
quadratic in the range of fields employed (up to 10-20 kV/cm). Bonner, et al
[210] determined the refraction coefficient n = 2.56 at 6,328 X and electro-
optic coefficients (MlI - t1 2 ) = +0.O15, St = +0.008 m4/C.

Smolenskiy, et al studied the electrooptic effect of PbMgl/3Nb2/30_

in the -30 to +100*C temperature range. They showed that ir. a weak field
the depcndence of Ln on E' is quadratic in al;most the entire temperature
range, witereas with large E it becomes practically lincar, although as E
increases, tlre contribution of higher order effects u.;ually increases. As
the temperature rises the range of fields in which the dependence is
quadratic expands and above 80 0 C in fields up to 18 kV/c!z the effect is
cnly quadratic. At room temperature and X = 6,240 ý the quadratic electro-
optic coefficients describin§ the dependence on the square of the field
were: (R11 - R1 2 ) = 13.0-10- CGSE, R4. = 2.3-10-8 CGSE, and the coefficient5

describing the dependence on the square of polarization were: N -1

- 18.310-•' CGSE, M = 2.18-10-" CGSE. An increase was observed in-'44
n3n(Rl - R1 ) with decreasing wavelength, related to the apnroach of the

natural absorption band of the crystal to the edge.

The behavior of PbMg/ \b 0 is discussed from the viewpoint of
i/3 2)/! 3

the concepts of blurred ferroelectric phase transitions (see Chapter 16).
In the region of the blur-ed phase transiti': bove the mean Curie
temperature the quadratic effect in wteak fi is attributed to the effect
in the paraelectric phase and orientation ot polar regionr. The sudden
increase in R RE2 as the temperature drops is attributed to the

increased contribution of orientation processes. The change to a linear
dependenct is presumably the result of die transition of apolar regions to
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the ferroelectric state under the influence of a field, leading to the
combining of polar regions. At higher-temperatures, naturally, the change
to a Uinear function takes place in stronger fields.

1he zompound PbNi Nb 0 at room temperature has a cubic lattice

with a = 4.025 A [204]. The Curie tempcrature lies in the region -110 to
-1400C. The prorerties of this compound were also described in Chapter 16.

The compound ?bCo1 1 3 N/3b,0 3 at 20 0 C is cubic with a = 4.04 A [201].

The permittivity of PbCo 1 /3%b2/ 3 03 monocrystal at I kllz peaks at -700C

(Figure 19.9). Since the phase transition of this compound is blurred and
its properties resemble those of b b20 and PbNi Nb20 this

ofPb'kg 113N \'2/303 1/3' 2/3ý t'
temperature also hives only an approximate representation of some average
Curie temperature, There is no saturation of hysteresis loops although
there is a clearly discernible discontinuity on the principal oolhri:ation
curve.

The compound PbZn /3Nb 2/303 assuming a cubic lattice, has an

elemental nucleus with a = 4.G4 A [201]. However, since the peak s at
1 kHz occars in this compound at 140 0 C (Figure 19.10), and well saturated
hysteresis loops are found below this temperature, it is clear that the
crystal shouid not be cubic at rooD. temperature.

'I'N tgF

11'M
N.g

/0.1 1S5M000

C ~0.0502

-4u 84 0 0920 109 150 TC(

Figure 19.9. Temperature dependences Figure 19.10. Temperature depepdence
of c and tan & of the monocrystals of c and tan 6 of PbZn /b2 03

1/3' )/.33of several perovskites at 1 kHz(for PbNi/1 3 Ta2 / 3 03 at 450 VHz) mBokv and Myl'nIkova I (according. to

(according to Bokov and Mli'nikova
(2031)).

The compound Pb.gl 1 3 Ta 2 / 3 03 is cubic at 20°C with a 4.02 A [2011.

At 1 kHz maximum e occurs tiear -98'C (Figure 19.9). Below this temperature
di, tectric hysEteresis loops are observed. The phase traznsition is blurred
(201).
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PbNi Ta20 also has a cubic lattice at 20*C with a 4.01 f [201].
1/3T:2/33 3

Maximum c at 1 kHz lies between -160 and 180*C (Figure 19.9). Ilie dielectrichysteresis loops at -196*C are far from saturated, even in fields with a

str,-ngth of 150 kVicm. The ferroeiectric phase transition is blurred.

PbCO 230 is also cubic at room temperature (a 4 91 A [201])

At 1 kItz maximum c lies near -140°C (Figure 19.9). The phase transition
is blurred. The dielectric hysteresis loops are far from saturated, but
ar,! nevertheless quite distinct.

The ferroelectric properties of the compound PbCdls23 0 are
1/3 2/3 3

dcscribed in [212, 213]. Its permittiv-ty passes through a level maximum
in the region 250-300*C, although the nucleus at room temperature is,
ac:cording to the authors, cubic with a = 4.123 A. The position of maximum
E depends on frequency. It may be assumed that this compoui. is a ferro-
electric with a strongly blurred transition.

At room temperature PbFe Wl 0 has a cubic lattice with a = 3.97 A,
2/3 1/3 3

and no superstructure lines indicating tl'e ordering of Fe and W ions in the
octahedral nodes are seen on its x-ray dtffraction patterns [203, 206].
The permittivity of PbFe 2 / 3 W11/30 3 passes through a peak at -90 to -70%C;

at -196°C there are dielectric hysteresis loops [2031. The phase transition
is apparently quite blurred. The theory is advanced [203] that PbFe2/3W1/303,

F 3+
in which 66.7% of the ions in the octahedral positions are Fe ions, is
simultaneously a ferroclectric and an antiferroelectric. T-:s assumption
was confirmed by the results of [202]. Its properties are described in
greater detail in Chapter 18.

The synthesis of the perovskite PbSc 2 3.W 1 / 303 , which at 20°C has a

cubic lattice with a = 4.067 X, is described in [212, 213]. According to
[212] c of this co-apound passes through a maximum at -12*C, where it
reaches 2,500. On the basis of the low geometric criterion (t = 0.92) this
compound is an antiferroelectric. It is not indicated, however, whether
the compound was checked for the presence of a dielectric hysteresis loop.

3. 6+
The perovskite Pbfn .W1 3 0., with a c peak temperature equal to

200'C, is also described in [212-215]. At 20 0 C its lattice is mnnoclinically
distorted: a = c = 4.098 A, b = 4.014 X, 6 = 90°23,. (n the basis that
t = 0.96S the compound is an antiferroelectric. It is not indicated [212-
215] whether the valence of manganese was controlled. Meanwhile this is
essential. If manganese is reduced to divalent, then the formation of

PbMn•2 + W .6 cannot be ruled out.
0.5 0.5 3

The ferroelectric properties of the perovskite class compounds
1+. 6. 3 6+.aRB 2 6' 0 and Bi 'toMI 0 the former of which has a rhombic lattice
B•2/3 1/3US 3n 2 1/3 3'
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with a 4.348 A, . 90020', are reported in [216, 217]. On the basis of
these x-ray diffra:tion data the former compound is classified as a ferro-
electric (the Curi!point is stated as 450*C). The latter is monoclinic
with a = c = 4.360 A, b c 4.321 A, B = 90030' and is classified as an anti-
ferroelectric (Tc I 500C). These conclusions are ioubtful. The presence

of pseudocubic distD--iion at room temperature is not in itself proof of the
ferro- or antiferro'llectric state. From the dependence C(T) presented in

[216] it follows on.y that c increases as the temperature increases. This,
howeve7, may be rel!t,.d also to increased electrical co-nductivity with
heatiag. Moreover, tte c of BaBi2//W 03 at 20%C is very low (about 25)

which is completely un&'aracteristic of ferroelectrics of the perovskite
class. It is also asst ted [217] that tue perovskites BaCu Ta 0 (Tc=

1/3 2/3 3 c
= 470°C), BaCu Nb (T = 330°C), SrCu Nb (T 390°C),1/3 2/3 ý c 1/3 2/30 A~
SrCu /3ra (T C 1,250*C?) also possess ferroelectric properties. At

20 0 C vhey all have tetragonal distortion with c/a from 1.031 to 1.049.
At 3800C BaCUl/32/33 isplays in x-ray diffraction analysis a transition

to the cubic phase and a maximum c is noted. The ferroelectric properties
of these compou.-ds, in our opinion, also need to be checked.

Examination of the experimental data on ferroelectrics of the type
2+ S+PbB B 0 reveals that all these compounds lack long-range ordering in
1/3 2/3 3 2 e

the distribution of B and B+ ions in the octahedral positions. The phase
transitions are more or less strongly blurred, dielectric polarization is
of a clearly relaxation character. In this connection all these compounds
may be excellent objects for investigation of the kinetics of blurred ferro-
electric phase transitions and the effect of the blurrir.g of transitions on
dielectric polarization.

The Curie temperatures of these ferroelectrics are compared in
Table 27 (158' (the Curie temperature is assumed equal to the temperature
of the maximtqr at 1 kHz).

Table 27. Transition Temperatures in Niol-ates and Tantalates
with the Frrmula PbB' "0

1/3 213, 3
C~m2°nd ] [ ' iff. in•

Compound Y.. K nd e. uF_ niobate-pndd'-r alate

I t
-b~o..T, 04 -10 -Fb ý43 -M Phx1..TA.';O -14( 6D
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PbCd3 Nb 02/503 and PbZn b/3 2/303 have a maximum Curie temperature,

1132/31/ 2/ 32+ 2+apparent!y related to the high electron polarizability of Cd and Zn
As always, niobates have a higher Curie temperature than the corresponding
tantp.ates.

7. Ferroelectric Compounds of the Type AR. B" 00 0. 5 3
3+ 5+The first ferroelectrics of the t)ype AB B (PSc Nb 0 and

0. 0.50s 0Pb 0.55.

PbS 3Tao03) were discovered by Smolenskiy, Isupov anO Agraniovskaya [21F].

Daring the course of further research on complex perovskites of this class

the investigators discovered the ferroelectric compounds PbFe '. 0-,and0. 0.5 .3 n
. + .5+

Obr*.51a 0.5 [119-221] and a considerable number of antiferroelectics

(see Chapter 17). Several works have been done on new compounds of this
type under the supervision of Yu. N. Venevtsev and Ye. G. Fesenko.

According to Ismailzade's data (222], PbSc N^.O. has a tetragonally

distorted latLice at 30-.;2"C with a 4.083 ± 0.001 X, c = 4.074 ± 0.001 A,
c/a 1.002. We see in ;igure 19.11 that the permittivity of polycrystalline
specimens of PbSc (.5 Ko 0.. 5 0, pass through a peak near 100'C, whereas tan 5 at

the same temperature has a characteristic drop [218, 220], Spontaneous
polarization, determined on polycrystallini specimens from hysteresis loops,
according to [218], is 3.6-10-6 C/cm2 at 18"C, and the coercive field is
E = 6 kV/cm. At 25'C [223], P = 13-10-6 C/cm. The large P obtained in

s s
[223] is apparently the result of better sintering of the specimens.

According to Agranovskaya's data [206], the lattice of PbSc rTa 0
0.5 '0.S -

at room temperature is cubic with a = 4.07 X. According to I5,ailzade's
data [2221, a = 4.072 ± 6.001 X at 30-320 C. The permittivity peaks at
26"C (Figure 19.11) [218. 220]. Below this temperature there are dielectric
hystero:ý5i loops [218].

Calculation of the parameters of PbFe N..ib .0- at room temperature

in the assumption of a cubic lattice yi-.•ded a = 4.00 [ (206, 2241. More
recent ar.alyse5 [22S] showed that this compound is rhcmbohedral at room
temperature with a = 4.014 A and a = 89.9-0. It was found from dielectrit
measurements on the basis of the c peak temperature (Figure 19.12) that th.:
temperature of the ferroelectric phase transition is 110-112'0 [219, 2241.
Mbasurement of the t of Pb~e , NIbo) 03 at freouencies of 45n and 4,500 k!i-

[224.] showed that the temperature at which c peaks does not depend on the
temuerature on which the measurements were m3de. In this sense
PbFe Nb 0 differs substantially from ferroele~trics of the

0.5 0.5 3
Pb%4g4 1 3 Nb2 ,13 0 pe. There are distinct dielectric hysteresis loops helo"

the Curie point. At -1360 C spontaneous polari:ation is 5.3"10I6 C/cm2 -rd
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Figure 19.1.Temperature dependence F-gure 19.2. Temperature-pendetce
of • and tnn 6 of p,:ycrvstaIline of and tan 6 of polycrysta0;ine

s-tpec 1)-r
seimens of PbSc0., 'n.03 E. - specimens of PbFeo._Ni' .531--:

2 -- tar 6) and PbSco TI .03 2 -- tat) 6) and PbFe .511a1.05

(3 -- ; 4 -- tan 6) at frequency of (3 -- c; 4 -- tai, S) at frequency of,
I U17 in weak fields (according to 1 k~lz in weak fields (according to
Smolenskiy, ;t al [213j). Smolenskiy, et al [220]).

:al polarization is 6.2,10"' C/lm-2 the coercive field 1: =i , LV:'cm [22.A].c

On the curve VZ/Z(T) in the recion of the phase trnsition there is v dis-
continuity, to which correspond linear e).:-ansion coefficient of polycr,,stal-
line specimen [224]. This indicates that spontaneous volumetric dpformation
and, accordingly, velimetrie electrjstriction -re positive.

Investigation of the radial piezoelectric vibrations oi specine.is of
PhFe 0ý'••O.0. polarized by a field of 27 '-Vl,-m for 2.5 hours showed that

the resonance and antiresonance freaucti-es decreise monotcnically during
heating and approach the Cur'e temperatv:re, and at the Curie point pass
thr-ugh a sharp minin--m. Piezoelectric modulus d-. is -1.7"!0" CGiSE at

roon temperature and pases through a minimunt near the Curie point 21241.
At room temperature the elhctrical conductivity of polycrystalline
PbFe .•. 0 specimens is of the ordot of 10"8 oh m 1*lm:'. At 212 0C

transition occurs fro,'- ene linear segment of the deptendence log p = f(I/T)
to arother linear segment. The energy of activation in the 20-212"C
temperature range is 0.76 eV, and 2.3 eV above 212 0C. The s."gn of thermal
emf was positive in the entire 20-350"C te,.apzrature range. Belon ?"20'.
aFparently, electrical condictivity -s impurity, and at higher ten:,:eratures
nati-ral electrical conductivity prevails [2.241.

- 5*7
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The ItF dispersion in PbFe Nb 0 was investigated in [226, 227].
0.5. 0's 3

it was shown thot notable dispr'rsion of . in the paraele.:tric phase occurs
in the frequency range * low 5.10e Hz. In the -21082109 Hz frequency

& range dispersion ef e occurs only below the Curie temper:-ture and is of
the same character as the UilF dispersion of c in harium titanate. The
"k-w-frequency" disp.rsion is related to a reduction of the influence of
electrical conductivity on c and tan 5 (due to relaxation of the space
charge) as the frequency increases. A change in frequency does not cause
displacemenz of the peak on the curve s(T). Magnetic susceptibility of
polycrystalline PbFe0.5 %O.503 increases during cooling, and the dependence

1/X • f(T) is characteristic of antiferromagnetics. In [224), hovever, iT
was not possible to completely exclude the presence of ferromagnetic
impurity in the specimen and the presence of the -atiferromagnetic state
was convincingly proved only in [214]. after the morncrystals were grown
(see' Chapter 18).

At room temnerature PbFe Ta 0 has the cubic lattice with a =

0.5 0.5 3
4.00 X [206, 224J. The Curie temperature, determired on the basis of

dielectric measurement results, is -30 to -25C [220, 224]. At this
temperature the c of PbFe 0 .5 Ta0. 5 03 peaks (Figure 19.12), and below thli

temperature dielectric hysteresis loops are found. At -136 0 C spontaneous
polarization, deter-ained on polycrystaliine snecimens, is 2.4 10- (/em2 ,
total pola-ization is 2.9-10 6 C/cm2. Ii = l•'kV/cm f224]. The curve

AZ/Z(T" las a discontinuity in the vicinity of thL phase transition, and
the linear expansion coefficient of -he polycrystalline passes through a
minitumt, which indicates positive vulumG-tric electrostriction [224].

It is noteworthy with regrd to examination of the investigatei
ferroelectrics of the Pbbl sB2 O_ tyTe, where B' = Sc and Fe3' and B" 1

= Nb and Ta, that even though the x-ray diffraction patterns of these
,:ompounds show no superstructure lines, the blurring of phase transitians
is relatively siight, and dielertric polari7ation is not clearly of a
relaxation character. This is apparently explained by the presen:e of
short-range order in the distribution of B' and B" ions in the octahedral
positions of th..e lattice in the absence of long-range order. Investigation
oF this distribution is important, both for solving the problem of the
properties 2f ferroelectricr with a blurred phase transition and for solving
the problem of symthesizing ferro-ferrimagnetic3. Preliminary evaluation
of the short-range ordering in PbFe,.sNbo.5h 3 indicated that the NTO 6

octahedron, on the average. surrounds approxinately 3.9 FeO octahedrons
[2281.

The synthesis of new .erro- bnd antiferoelectric perovskite typtS-+ 2+ 6+

:otoud P 'N-b 0O PbMn MD Min. W .01. Phmrn W:o0pourd5 PhCo 5h.0.5 3' '1.5n ".. 3 . "0.5*0.5 3. 0.50.1 3
ro 6 -in 3+e + BaBI 1c:) 0  Ba3i 5Tah 0.

Pbl ~ Re ~ 0- i

fl, ).S3 5 .5 05 0. 0.

~ v..$6k



DaBioM V0 . 5 03. BaCuo.5W0. 5 03 ad SrCu 0 . 5 W0 .50 3 is reported in [2l1, 215-2171.

3+
For PbCoo Nbo 33 at llC ther: is an c peak (where e reaches ~600).

nue to thi presence of the f: peak, and on the basis of the geometric

criterion t = 0.93, the compound is a ferroelectric. PbMn Nbo 05  din-

plays expansion of lines on ,-ray diffraction patterns at 20'C. On this
basis, in connection with the fact that its t = 0.97, this compound is at.

antiferroelectric. The lattices of PbMno Z %W .03 and MPb~n. 3.O.,5 are

moneclinically distorted, and at 150 and 165'C, respectively, there are
c peaks (where E z 160-200). Since both comppunds have t < 1, they are
antiferroel~trics. Htw the authorq regulated and controlled the valence
of Mn and W ions is not stated in the articles.

X-ray diffraction analysis of Pbon 2+ Re06+.U at i20•C reveals a

transition from monoclinic to cubic. By analogy with the compounds
PbCoo sWo. 5 03 and Pb-Y 0 5 Nb0 ,5 0. the substance is an anziferroelectric.

Pt.Mfn 'Re 5 0 is also an arntiferroelectric (1, = 95°C). The reasons for
0 .5 0 .5 3

these conclusions are not given, nor are the methods of controlling the
valence specified.

The conpounds BaBi 0 .sNbo 503 and BaBi 0 .sTao, 5 03 , having rhombo-

hedrally distorted lattices at 20 0 C, are related to ferroelect-ics, and
the monoclinically distorted compound BaBi 0 . 5V0 .503 is relate. co anti-

ferroelectrics. As proof for Bagi 0 sV0 50 the authors point to the

reduction if C fromt -85 to -25 as the frequency increases from 104 to
5.107 hz, although it would be more natural to reli-te this reduction of
Sto the smailer contr-.bution of the sra,'t charge relaxation to polarization.

The compournds BaCuo W-0 and SrCu 3 5 W'.0 2 display tetragonal

:istortion with c/a = 1.095 at 200C. Accord.nq to the results of electron
micrographic analyses [2:91, th)e Cu 'on in the BaCu 0.5 W0,.%O3 lattice is

displaced 0.20 X relative to the barium ion on the z axis head on toward
the oxygen ions, and t-,e W ion is displaced 0.10 A in the direction of
displacement of thi oxygen ions. In this connection bth compounds are
classified as ferroelectri(h:.

The production of ferroelectrics of the perovskite type with vacanc:ies2+ 'S+
in te-,ns of oxygen, wi-h the general formula PbB.s BO5' 01.S, is described

in [230]. The synthesized compounds have a Curie tempei'ature .nuch different

frc., the Curie point of compounds of the type AB/3•2/ 0 For eyample:
1/3aI, 2/3

in PbCo ? 5 0 T -15*C (in PbC/Nb2 0 T = -7•'CQ, in
-0.5 2.75 c 1/ 2/3 3c
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S.. a. 2 0 T = -60*C (in PCo 1/3Ta 2/30 T -140"C), in0°°.5 0O.502.75 Tc 11 .23 c'

PbNi2Nbo0 T = -_.S*C (in PbNi Nb 03 T -120*C). In connec-
i0.5 b0.502 .75  c 1/3 2/3 3

[•2+ 5+
-ion with the possibility of producing phases of the type PbBli B2/ 01/5 2/3 3
and PbB D.S+. 03 during synthesis, the phase that was fovmed was checked

in the work. It was shown by x-ray diffraction analysis that the
synthesized comp45unds have a superstructure related to the doubling of

the perovskite lattice parameters, absent in compounds of the type

2+ S:+ 22. +PbNi /3Nb21/110 A check of the valence of B ions was done with the aid

of magr.etic measurements. The results of these measirements showed the

Freserce of Co27 in, the compound PbCo 2 .Nb 0 Quantitative deter-05 o.5S .5"3
rination of the relative concertration of Co2 + and Co' ions obviously
wiuld hiave been desirab.he hee.I

Many of the compounds of the type AB' B" 0- listed in the review,
• 0,5 0.5 3

to which are ascribed ferro- and antiferroelectric properties, required

further investigation. In many cases more rigorous checking of the
composition if required, and in other cases -- mor, careful analysis of
the dielectric properties ard explanation of tile nature of phase transitions.

S. Cesium Chlorogermanat,- (CsGeCl__ )

CsGeCI. was first prepared by Karantaesis and Capatos [23i]. The

crystals were twinned and displayed birefringence, disappearing above 15S0 C
a::d reappering on cooling. The crystal,_ displa-'ed piezoelectric and pyro-
electric properties. Christerse" and R- mussen [212j reported that the
substance is a ferroclectric.

Above 155 0 C CsGeClI has a cubic structure of the perovskite type [232].

A 175 0C a 5.475 A. below 15S°C the stiucture becomes rhomhic (with a
5.444 X, ' = 89.630 at 25%C). With rhombohedral distortio;., as follows

from x-ray diffraction data [232], the germanium ion is displaced on the
tertiary axis. The chlocrine ions are also displaced from the ideal
perovskite positions. The Cs-Cl distance, however, changes little: from
3.85 to 3.88 X. The Ge-Cl distance differs considerably: three distances
o qoal 3.13 A. three others 2 X . (the Ge-Cl distances in the cubic phase
are 2.74 X).

The permittivity of the polycrystalline rubntance [23•] peaked at
1hysC. There are no data in the work concerning the presence of dielectric
hysteresis loops. This is related, perhaps, to the difficulties ielolved
in analyzing the given compound, which is very susceptible to the rfffcts
of tht- atmosphere, forcing physical measurements to he made in .n ".,:.osphere
of nitrogen.
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CsGeCl 3 is the ofliv halide- with the perovskite s~ructure that is,

apparently, a ferroelect-ric

There are indications in the literature that the plumbuhalides of
It cesium rsPbX3  where X =Cl, Br, T (233-2361, ha-re forroelectric properties,

of which the compound CsPbCl 3 has bean investigated most thoroughly. At

room temperatur? CsPbCl 3 has a tetragonal structur~. of the perovskite class

with c/a =1.007. The phase transition to the cubic phase occurs at 47*C.
Dielectric nDecsuremrent3 were hampertcd by the photoconductivity of the
crystal. Therefore, altihough permnittivity also peaks rkt low tenperatures
(at -900 C in light and at -150 0C in (Iarknes%), and the dependence P(E)
resembles a hysteresis loop, additional study is required to determine
concluSi-,rely the nature of the phase transition in thi3 compound

§?Lithium Nioba-ce and Lithium TantalateA

Matthias and Remeika (2371 reported on the ferro iectrin properties
of lith~um niobate (LiNb0..) and lithium tantalate (LiTaO3. F'or a long timeO

these crystals were not subjecte!d to furth~eT analysis and thley were described
in the :itzrature 3s ferroelectrics with an ilmenite structure. In the last
fev years these crystals attracted the -*ttention of numerouis investigators,
principally because of their interesting lectrooptic, piezoelectric and
mechanical properties. Consequ:ntly both r'ystals b~e now quite well
iiwestigated.

The crystalline structurfl :-.f Li..bO and LiTaO. t,, 'g not of the

ilmenaite tnre, is nevertheless ielated to Lt, It is rho.. ohedial with
a = 5.4920 A, a SS*S3' f')r L"bC and a - 5.470 A, a = _1*12' far LimO..

3 .
[ 238, 239). The- elemental nuclcu.4 contains two fczular unts and at roý,n

16
temperature is described by the spatial group C -.R3c.

1The Curie tenperature of LiNbo is 1,140-1,M10C [240, 2i1]
3

(apparently that of thie pure cryst," ks l,2100*C) and the Curie temperature
of kUTaO, (238] is 65'Y*C. Sponta. ..s polarization accvrs on the tertiary
axis.

Th)e crystal lattitre of these compounds (rigure 19.13) is Constructed
of o:-.ygen octahedrons IbC6 and TaO, connected just ds in perovskite.

Therefore ore can arrive at it from the rerovskite structure by rotating
the )ctphedrons in space. Hiere, of t~ie 12 oxygens of -he cubic octahledron,
three atome approach its cc ter, three leave its zeriter 3fld as a result the
space between the octahedrons in the niobare auzd tantalate of lithiuim car
be imagined as two oxygen octahedrons with a commaon face ý'Figure 19.23).
The question ;:f the location of the lithiitm !on in. shis space has lor~g
remained unclear.

c%71



I\

1. %

0"

Figure 19,13. Crystal structure of L•,%bO3 (para-

electric phase) and surroundings of LA ion by
oxygen ions. (According to Inpov [2401).

According to the results of neutron z-Adiographic analysis of Shiozaki
aid Mitsui (239], the averagT position of the lithxum ion (discounting
displacement on the tertiary axiv in the ferroele.tric phase) corresponds to
the center of the comnon facet of both octahedrons, comprising the free
space between the NbO. and TaO6 octahedrons. Sh.oza;-i and Mitsui theorize

that the lithium ions- are randomly distributed between these niobium- or
tantalum-free octahedrons, si that their average position then corre.spond-
to the center of the facet.

In 1964, at tOP 4th All-Union Conference on Ferroelectricity, Isupcv
[2401 advanced the theory that the lithium ion actually is located in the
center of the commn facet of both octahedrons, as illustrated in Figure
19.13. Here it is stressed that the lithitm -on is small enough fin
contrast to its usual coordination) to occupy the center of the triangular
oxygen ring, as is the c%se rith boron in most of its oxygen compounds.
Attenti:ou was also attracted by the fact that the interatomic distances
[239] agree satisfactorily with the ass=ption that the litbitu ion
occupies the center of the cocn facet. Actually, the distance between
the center nf the oxygen triangle and its vertex was found to be 1.19 .1,
a.d the sum. of radii'of the lithiLM ion and oxygen ion, according to Pauling,
as noted in [2391, is 1.)! A.

The coAclusions recently reached ty AVzrahms and his coworkers
[241-243] from the results of x-ray diffr;ction and neutron radiogra1 ic
analyses Df LiOWO3 , completely verified the validity of this assimptio

According to Abrahams. th- 1b ion of LiNbO., in the parcelectric phase lies

between the oxygen planes, perpendicular to the tertiary axis (i.e.,
inside the octahedron) and the lithiu i~n -- in the oxygen plane (i.e.,
in the paine of the facet). With the onset of the ferroelectric state the
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lithium ion leaves the plane of the coe-on facet and the niobium ion is
displaced fro- the center of the octahedro_. Both ions move in the sme
di':z ion.

The .-el o ic properties and thermal expansion of the Ni.bO3 crystal

was analyzed [244j in a wide, rarge of temperatures. It was discovered that
permittivity at IJVO0'C, measured at 75 .HI: oin the tertiary axis, peaks
sharply at 1,140*C (Figure 19.14', curve 1) and in about th- same region
sharp cont.action of the crystal occurs on heating. Hencte the authors
conclude that the Curie point is , Analysis of LibO3 crystals

grown by Chokhral'skiy's method, showed that the Curie temperature of these
cr-stals is 1,210°C [2411. Apparently the discrepancy between the results
[1241 is-related to differences in the methods oi growing the cry%':als.
(In [240) the cr" ýals were grown from 5olten solution an! could contain
impurities).

a There ?re indications [244-
1 1248] of the existence of low-

am •temperature phase transitions in
I Li.bO.. according to [245), the

Slattice parareters of LiNb.O3 change

abruptly at 6C0"C. These data were
verified [246, 247], where dielec-
tric anomalies were discc•vered at
600 and 950"C. A slight peak el
electrooptic coefficient r22 was

detected 12481 at ISO-170*C ind it
i W AV Tr.-C is indicated that there are also

blight anomalies of c and thermal

Figure 19.14. Temperature c-ependence expansion at the SaMe terM.1prature.

of r of LiNbO 3 (according to Smolen- LiTaO. has no sich anomalies

skiy, et al [240]): 1 - E on in thermal expansion below the Curie

tertiary axis; 2 -- perpendicular to point (249]. On heating, as the

tertiary axis. Curie point is approached, elonga-

tion on the tertiary axis is
replaced by contraction. In the paraelectric region the coefficie, ts of
linear expansion are: on the tertiary axis x3 = 5.7"10'l1/0 C: and perpen-
diLular to it -I = 21l10"lf/0 C.

At room temperature the clamped and free pernittivities of liNbO.3
T S, T a 18..T -91S,21

= (e and c , respective:y) are: 82-84.6. 28.6.29 [ZSO, 2511.

T s SAccording to [2-),£ - cl, 38.5, E-3 £33 2.5. Spontaneou•

polarization was estimated on the basis of pyroelectric measurements.
According to [2531. for LiNWO.. at room temperature P > 50_10-6 C/cm2 .

a S
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RE• According to 1254], for LiTaO3 at 200"C P 6S-10"6 C/cM2, and according

to [2SS], at 20"C P = (48-52)-I0-6 Cicm2 .

Li.•bO and LiTaO monocrystals usually break up into 180* domains,
E3 3

observ-ation of which is possible by etching the crystals [256-259]. It is
stated 1260, 2611 that lithium niobate monocrystals can be rather easily
monodosainized. One of the methods of monodomainization is polarization
of the polydosain crystals at temperatures of the order of 1,200*C with a
weak electric field (a few V/cu).

The elastic and piezoelectric propelties of Li'bO3 and LITaO3 are

rather thoroughly investigated in [250, 251, 262, 263]. According to [250],E 12 E
the elastic constants of LiNbO, at 20*C are s11 = 0.581*10-, s33 = 0.495 x

X1-1-2 E 10-2 2 E 12 E 1012E , s544 = 1.481- m2 /dyrne, c1 1 = 1.925.10'2, c 3 3  2.435.

c =0.565-1012 dyne/cM2 ; according to (251], in the 20-200°C temperature
44 E

range S~l = 0.5641 + (T• - 20)-l.5.-10"]-t012, 2s 13 + 544 = 1.39(1 +

+ (T - 20)-2.0*10]-10-S2 , ;24 -0.084-10-12, 533 = 0.494[1 * (T - 20) x

x 1.5lI10]0 c_) /dyne, where T is temperature in 0C. According to

'2631 the elastic constants of LiTaO. at 20tC are: c11  2.298101 2 , c1 2

= 0.441.1012, c1 3 = 0.811-1012, c 1 4 = 0.I04.1012, C3 3 = 2.781.1012, c44 =

= 0.%68-1012, c66 = 0.929-1012 dyne/cn2 . The piezoelectric constants and

the electromechanical bend coefficients of LiMO 3 [250] are: dzl = 0.097-10"h

d33 = 0.213-10-, d = 0.488"10" CGSE, k = 8.7%, k... = 32.7%, k
22 -7 31 3322

= 24.6%, k1 5 = 44.6%. and according to (251]: d1 5 = 222P1 + (T - 20)2.8 x

x 10-41-10-8. d22 = 62.3[1 + (T - 20)-2.4-10l*]*l0-8, d = 2.591

+ (T - 20)l-1i 1-10", 433 = 48.7(1 + (T - 20)°2.9-10-41-I0-8 CGSE,

k = 2, k = 32, k = 47%. The piezoelectric elements of Li.bO., were
31 -,22 '33 -

studied for the purpose of analyzing the elastic properties of other
compounds at tem.zratures up to 1,050IC (262). The viezoelectric constants
and bond casfficients of LiTaO.. are: d3 3 = 0.248-10 CGSE, k = 20w,

-i 3333 0.4 e-- = 1.40 Clm•
k 15 - 31.1 [2Itf2i e 1 5 = 2.58, e 2 = 1.59, e3 1  -0.24, e 14

[263]. flMe pr.nciples of propagation of acaustic waves in lithium niobate
crystals were extamined [264-2693 and extremely small attenuation was found.

- The Kechanica' 0-factor of monodovain lithium niobate Q -a 1.68l'10s at
500 MHz for longitudinal wav-es o~n the tertiary axis [269], permitting
lithium niobate to be employed in lag lines.

The refraction coeffizients of LiNbO-. and LiTaO3 , birefringence and
tV

their temperature and frequency dependences were znalyzed (248, 270-2751.
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At 2S"C and X - 4.200 A n = 2.3033, n0 = 1.4144; for , = 40,000 A, e =

- 2.0564, n 2.1193. Measurements of birerringence as a functton of
temperature indicate that phase transitions to the paraelectric state in
lithium niobate and lithium tantalate are second order transitions. The
electrooptic effect of LiN.bO3 and LiThO3 was investigated (243, 276-279].
The electrooptic constants of LiNbO at 20°C are [279]: r1 3 - 32.2l10 ,

r 1= 10.0°10-10, r22 = 6.8110-&', r5 1 = 32.6l0-10 cm/V. The piezoelec-

tric coefficients of lithium niobate were studied [248] and it was found
that the difference of piezoelectric coefficients v11 - i12 diminishes as
wavelength diminisher.

Several problems related to the use of'the optic properties of
LiNbO3 for p.ractical purposes, in particuiar the use of LiNbO3 for

modulating laser emission and for generating optic harmonics, are stucied
in [280-291]. The dielectric dispersion and optic spectra of lithium
itiobate were investigated in (292-295], and NQR in LiNbO3 and LiTaO3 in

[296]. The subject of crystal growth is discussed in [257, 261, 297-299].
Also noteworthy was an attemvpt to formulate a theory of ferroelectricity
in iNi'&03 and LiTaO3 crystals, based on the theory that they are of the

ilmenite t)pe structure [300].

§3. Ferroelectrics with Tetragonal Oxygen Structure of Potasso-Tungsten
Bronze

Many compounds with the general formulas AB2 06 and A6B 1030

crystallize in a structure of the tetragonal oxygen potasso-tungsten bronze
type. The octahedrons in this structure, as in perovskite, are connected
at their vertices ir parallel rectilinear octahedron chains. These chains,
however, are connected differeutly than in perovskite. Whereas in
perovskite tetragonal channels are formed between the chains directed on
the c axis, in the Kic-bron:e structure trigonal, tetragonal an.J pentagonal
channels are formed (Figure 19.15). If here the same infinite rectilinear
chains of octahedrons are formed in the perovskite in directions perpen--
dicular to the -connecting chains, these chains are finite in the KW-bronze
structure in these directions and are not rectilinear. They consist of
four octahedrons each and are connected through an octahedron, which uses
as the bond with its neighbors sectiops of the chains adjacent to the
vertex (Figure 19.15).

_0 Figure 19.15. Comparison of
•OA 0tetragonal KW-bronze type

structure (b) with perovskite
w o- type structure (a).
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Table 28. Certain Properties of Compounds with KW-Bronze Structure

1)I. I3). I - o
j I ii aIII, . ... i~ a I IA V I

_________OONLLJ,",, -
Pb.TPOg P 17.65 7.01 7-361 2 570 Q 3

MbabOt P 0.015S 1 7.73 7.749 -36D0 .. 250 U;1~.38.
Pb~asO. 07G 1.72 7.751 b 30W

32.-n - 3.915 - 310

Aj.N,,,.o., a '" 12.46 - 3.97 - . - 3W1
*tr1'at7.3 T 11.10) -- - 337. W8

12 3 *.4:

Sr.Nb 07* T 12.3 - 3.94 311
P4g~~bý3 17.15 1,.W3 7.as !a 30 u~u.3 W1. 311

Ka Nbj0% T 17.70 -7.82 ) -1104ma 312. 313

+,..,,• - - • -, - - 4-),I e:a 303

KSrNb,O,,. T 12.47 - 3.-- 1 - 10 --
Na.1P.Nb.Oa. r P - W --
K 1'b4Nhjj ) - I 316
N1 P 4 iO P 2
KoslCe 1 T_.;O0 T 12.56I -- * - 317

KID-:S1'.Ta2 ..0 T 12.55 - 3*91 -- 317

3 - 1--45 :1:

L'aga~bqv T t7.9 .!W ztPU - 13;332. Z032

319

12.50 - 1 - 32 , :13

1%dt~~TO 12:._3 - -oi .
l1a.NdNi 2 Nl,O3 T12.48 - 4, .03 - 312

1 %a030 T 112.54 -" 3.87 I 12
1N2.I - :" ( - - 321

H2.34 --;- % ".3 - :*', 2 3
1- 2I -- I55 -Y 112.2
12.41 - - 1 -5 :1Y)

lla'Mu~e boOje UI ... ./ - :1 :12.1.
Ihla u rl~ .",bOao T 1. . .. 12 - , , }+. '

lllll+'le•lmi+| T M--H IM -19 -- 7.

lNa4 FSr'eNa .O-mO T 12.33 - 1 !A-)- + 1 P? 3--lJartNmi~esN.1O:• T I--.43' M) .. / 1 -FI• M,, I 1

t la . N d iN i1,j • O .,,. T t 2 .4 8 -- I -I " ) / - -114 1? ] - 3 1 2

IB•<r~,N~tll/ T 12.54 3_ b -+m+ M/ - 312
7441r,~ -- T/23 .h -5 321i

X41J&.T*SW,_0% T 12.4t -- I .-q' I - -4- 13)
N&,SrT&,%%a |0; T 12.33 -- 3Vm 31

KEY: 1. Compound
2. Symmetry
3. Lattice parameters, A
4. c of polycrystalline specimens at 200C

S. Character of phase transition
6. Source
7. Distinct
8. Quite blurred
9. Blurred
10. Comment: P -- rhombic symmetry; T -- tetragonal
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In the KW-bronze lattice the A ions can theoretically occupy three
spaces in the pentagonal, tetragonal and trigonal channels and thiereby have
the coordination numbers 10 + 5 = 15, 8 + 4 = 12 and 3 + 6 = 9,..respectively.
The octahedrons in the elemental nucleus are also different. As seen in
Figure 19.15, the KW-brbnze structure has octahedrons of more regular and
less regular form. Considering the ratio of the number of different
channels and the difference between the octahedrons, the crystallochemical
formula of compounds with this structure should be written in the formFAt'A"Att'B'BtO or A'A"tAt
4-2"4 -8-2-30 2 A ' 'BIB"0 5 . Here A' are ions occupying spaces in

the pentagonal channels, All in tetragonal, A"l' in trigonal, B' are ions
occupying octahedrons of less regular form, B11, ions in more regular
octahedrons (Figure I9.15).

Characteribtically, nearly all compounds with the KW-hronze structure
have in positions A a greater or lesser number of vacancies. In practically
all these compounds the vacancies in the trigonal channels are unoccupied
and the chemical formula often has the form A6Bl1030. In compounds of the

type AB206 (i.e., A5 B1 0 O3 0), there are only five atoms for every six

vacancies in the tetragonal and pentagonal channels. Also known are
compounds such as Sb0. 6 7 Nb2 06 = Sb3. 3 3 Nb10 03 0 [301] and Sr 2 Nb1 0 O2 7 [302]

with the KW-bronze structure. These compounds are also known, however,
with the structure in which the vacancies in all channels, including
trigonal, can be assumed to be completely filled: K6 Li 4 Nb1 90 3 0 for example

[303]. In any case, of course, the possibility cannot be ruled out that
Li ions occupy the middle of the oxygen triangles in these channels
(similar to the distribution of Li in LiNbO3 ) rather than vacancies with
coordination number 9.

The lattice parameters of a number of compounds with the KW-bronze
structure at 20*C, and some information concerning phase transitions in
ferroelectrics with this structure, are listed in Table 28.

The geometric requirements of the KW-bronze type lattice on the
ions that constitute it have not yet been sufficiently investigated. In
particular, the distribution of atoms A' and A" &nd vacancies in the
spaces of the various channels, and of ions B' and B" in the octah.-dral
positions, has been studied little. Certain conclusions are made [324]
about this distribution in several compounds with the KWi-bronze structure.

'The ferroelectric properties of lead metaniobate were discovered by

Goodman [304].

PbNb20 6 melts congruently at 1,343*C (325], and below this

temperature exists in one of the two modifications: high-temperature
modification with the KW-bronze type structure, stable above 1,150-1,2000C,
and low-temperature rhombohedral form, stable below 1,150-l,200°C [3261.
According to Franc,,Abe [326], the low-temperature modification belongs to
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the rhom-)ohedrxlly deformed perovskite class with elemental nucleus
dimensiors a-- 6.206 A, a = 58*18' or, if regarded as pseudocubic, a' =

8.664 A, - = 88*301. This modification lacks ferroelectric properties.

The modification of lead metaniobate formed at high temperatures
exists at room temperature in the metastable state and changes to the
rhombohedral form when heated up to 700*C. The high-temperature modifica-
tion is tetragonal above 5700C with aT = 12.46, cT = 3.907 A, and below

570°C has rhombic symmetry and ferroelectric properties. On cooling below
S70*C the tetragonal elemental nucleus lengthens on bne ou the diagonals
of the square base and contracts on the other diagonal. Here the period c
becomes twice as large as cT. Using as the new crystallographic axes the

diagonals of the square face, we obtain a rhombic elemental nucleus,
containing 26 units. According to [305], a = 17.65 X, b = !7.91 X, c =

7.73 A. As the temperature rises, a increases and b decreases so that
the rhombic distortion becomes less, and period c increases linearly. At
the phase transition a and b decrease suddenly, c increases sharply aad
the volume of the nucleus decreases approximately 0.33% [3051. The
coefficient of linear expansion of PbNb206 is negative in a wide temperature

range, and between 570 and 1,000*C averages 8.8-10"6 l/*C [304].

The optic properties and domain structure were analyzed en flaky
monocrystals perpendicular to the c axis [305]. The refraction
cnefficients for X = 6,703 A were: n(, = 2.40 - 0.01 parallel to the a axis,

n8 z 2.43 t 0.01 parallel to the b axis and nY = 2.60 ± 0.01 parallel to

the c axis. Examinatiirn of the crystal on the c axis in polarized light
in the extinction position revealed a set of light narrow orthogonal bands
at an angle of 45 to the a and b axes. Hence it is concluded that planes
(110) may be thL planes of twinning. Assuming that P coincides with theS

b axis, the co-tinuity of the normal component of Ps on transition through

the domain wall is ensurtl when the boundaries make an angle of 44'35'
with the b axis. The 180' boundaries obviously should be parallel to the
b axis. Above 560*C the domain pattern vanishes. With recobling below
the Curie point, the domains reappear, but the pattern is usuzlly much
different from the former. An attempt to change the domain structure by
applying a field on the a and b axes failed to reveal any motion of the 900
boundaries in fields up to S kV/cm at temperatures up to 300°C.

The permittivity of pnlycrystalline PbNb 2 06 at 206C is -2190, and

peaks at about 7,000 [304]. Above the transition temperature the ':urie-
Weiss law, with C = 2.95-10 5%C and d = 488-53P0 C (304], is valid. Investi-
gation of the permittivity of nonocrystalline PbN'b206 (305, 3261 revealed

strong anisotropy. As seen in Figure 19.16, c on the c axis is nearly
independent of temperature, but on axes a and b c peaks ýharply at 5600C,
where it reaches 24,000. ca and % are lower than c at low temperatures,

and E > cb. It is concluded on the basis of dielectric measurements ane
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data on crystal structure that spontaneous polarization liea in the -lave
perpendicular to the c axis. By analogy with barium titanate, during whose
transition to the ferroelectric state elongation of the nucleus anAI the
greatest reduction of £ correspond to the direction of spontaneous polariza-
tion, it is assumed that spontaneous polarization in PbNb 0 occurs on the

V-0 b axis.

£ -

4 W

Figure 19.16. Temperature dependence of permittivity

of monocrystalline Pb.ib 0 and PbTa0 .0 (l) and

c " measured in nucually perpendicular directions.C

(According to Fra'corbe and Lewis [3051 and Subbarao,et al [309]).

At 20°C in fields of -60 kV/cm ceramic lead metaniobate has dielectric
hysteresis Icops, far from sLturation [304]. It was found from these loops
that P = 0.6-10' C/cm2 anc• F > 17 kV/cm. The dependence of polarization

res c
of the monocrystals on ficii nrength (up to 30 kV/ca) is slightly nonlinear.
Residual polarization is slight. Using a stationary field of 20 kV/cm at
200-250C it has possible to polarize ceramic PbNb2O6 and observe piezo-

electric properties [204]. The piezoelectric modulus of this ceramic
d3 = S.1-10 • C/kg, the electromechanical bond coefficient k__ = 26' and

Young's modulus c3 = 6.2-1011 dyne/cm.

Orientation polarization of ceramic Pb.Nb06 was calculated in [327]
26

as a function of the electric field applied to the specimen, proceeding
from th-e properties of the monocrystal with consideration of 180° and 90'
reorientations. As a result of the calculations the form of the basic
polarization curves was found for various ratios of E' and E" (critical

c c
fields, determining reorientation of 1800 and 90* dom.nins).

The ferroelectric properties of lead metatantalate were discovered
by Smolenskiy and Agranovskaya [306]. These authors did their study in
the assumption of possible isostructuring of the metatantalate and meta-
niobate of lead. Subsequent x-ray diffraction analyses verified that the
ferroelectric modification of PbTa.06 is isostructural to the :t-roelectric
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modificarion of Pb%•Nb 20 [309, 3281. The temperature of the phase transition

to the ferrcoelectric stat- vas initially determined from the results uf
dielectric measurements as 240-260*C [3(j, 307, 309].

PbTa2 06, like PbNbo20 6 , may exist in two modifications -- rhombo-

hedral .non,-,rroc.tctric. formed only belowc l,150C, and modificatiun with
the KW-br, ,.v structure, stable at higher temperatures [f09]. As pointed
out in " "",, once formt-., rhombic FbTa.06 cannot be returned by :.eat

t, et.,m-nt tv the rhombohedral forr'. The lattice parameters of the rb-z'mbo-
hedra! modification are: a = 7.147 X, a = 9407'. TNe elemental nucleus
coutains two forimlar units.

At 200C 1308] the ferroelectric modif'.cation of PbTa20 6 has a rhombic

lattice with paraaeterE a 17.605 A, b = 17.720 A, c = 7.749 A. According
tn 43•9], a 17.68 , b =17.27 R, c = 7.7S4 .1. The ratio b/a [308] is

.C,; according to 3041], approximately 1.002, and mucb smaller than that
or ""c2 6 (1.016). A. the temperature rises, period b decreases and

, •rze • "nd c arA the volumc of the ._.uc.eus increase (308]. It follows
.'c Q'i ..ata flat at 230*C the lattice is tetragonal (a = b).

.ccording to [3291, where the positions of the heavy atoms (Pb and
Ta), in Pbra,0%1 are detersi-Md, the vacancies for lead correspond to voids

in the tetragonal channels. Ta atoms were also observed to shift from the
ideal positiou•s fur KW-bronzv. it is suggested that the doubt -g of para-
aeter c is the result of the slope of the oxygen octahedrons.

Dilatome;rric analysis of polycrystalline spc-cimens [309, 330] showed
that the phase transition to the paraelectric state is accompanied by a
slight shrinkage of eolume, by virtue of which the coefficient of linear
expansion passes through ,- minimum. This indicates chat three-dimensional
spontaneous deformation and, consequently, three-dimensional electro-
striction are positive.

Ctical analysis of sonocrystals of the ferroelectric codification

of PM-ra.6 [309] showed them to be biaxial rhorbic crystals. The largest

refraction coefficient lies on crystallographic axis [001. Twinning c
often observed in thin sections of the crystal, parallel to plane (001J.
The boundaries of the twin are oriented approximately along (110), but are
alNays curved and irregular. Birefringetce was measured with an accuracy
of l0-i'S and the follod.ing values iere obtained: n, - na = 0.1;6, n -

- n0 = 0.043.n - na = 0.039. Hence the crystals are optically positive.

Analysis of bire-fring-nce durin? heating [3091 showed that PbTa20 6 ,

in contrast to Pb.b 0 . does not becomt tetragonal or, transition to the
2 6'

paraelectric state. but ro-vtirs slight rhombic distortion: at 360C
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n - n is still of the order of 0.03 and ihe crystals are still biiani.

Twin boundaries 4110) do not disappear and the twins retain the same
relative orientation in relation to each other. Thus, the tevperature of
the ierroelectric phase transition cann.t be determined by visuý, observa-
tion of a heated crys-tal under the microscope. On the basis of the
dperAiences of birm-fringence on temperature obtaineJ in [309"1 it was
assumed that the ferroelectric phase transition in PbTa2 0 is a second
order trtesetion. i

The permittivity of polycrystalline PbTa29 6 is relatively low
(-300') at 20"'C, and the peak reaches 1,000. In the paraelec~tric region

E charnges according to the Curie-Weiss law with the constant C = 6-6-10' bK

At room temperature c of ths monocrystal is -150 on the c axis. The
permittivity perpendicular to this axis is usually 300-700, depending on
the configuration of the twins in the crystal. The permittivity on the
c axis depends little on temperature and experiences no sudden changes at
the temperature o? the phase transition (Figure 19.16'. The f in two
mutually perpendicular directions, perpendicular to tn c axis, peaks at
265'C. The fact that c on these two axes is also diff.erent in the para-
electric phase substantiates that rhombic symmetry is retained even above
the Curie point. The peraittivity in the direction yielding the highest
peak obeys the Curie-Weiss law with C = 1.5.10S *C and 0 = 237C [309].

In the presence of vari'able fields up to 50 kV/cm at room temperature
polycrystalline specimens of PbTa2O6 have distinct, but nevertheless not
completely saturated dielectric hysteresis loops. Spor.tatieous polarization
of polycrystalline lead metatantalate has a value not less than 4-10"* C/cm,
and the coercive field -- not less than 12 kV/cm [330]. As the temperature
rises, the coercive field drops rapidly, and total polarization diminishes
slowly- Hysteresis loops are seen in monocrystals (riot completely saturate.i
at E = 25 kV/cm) when the field is perp-,ndicular to the c axis. At room
te--peracare Ps = (8-l0)'10- C/cm2. If the field is parallel to the c axis

the relation between polarization and fiela strength is linear up to
lS kV/cm [3091.

Coates and Kay [331] reported on the antifer•:oelec ric properties
of PbTa0 6 , but :his report is erroneous, apparently because of the sizable

deviation from the stoichiometric composition durim. prepara'ion of the
specimens [332].

The fact that the phase transition in PbTa20 6 is a second order phase

transition or close to it, whereas in PbNb%0 it is clearly a first order

phase transition, is extreaely interesting. In solid solutions of
K(?,k., Ta)O3 the transition also approaches the seconi transitions by

measure of -ubstitution of niobium ions with tantalum ions. Tht;s, there is
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reason to believe that the phase transitions in tantalates generally are

closer to second order than in the corresponding niobates.

There is presently great interest in the compounds KýLi 4 Nblo0 3 0 [303],

K2Sr4Nblo030 [3141 snd [315]. Monocrystals of potassolithiura

niobate are transparent from X = 4000 to 5000 A. Its refraction coefficients

are [303]: ne = 2.197, n = 2.326 at S,320 n ne = 2.163, n = 2.277 at

6,328 X, ne = 2.112, n n 2.208 at 10,640 A. For the point g'roup 4u, to
which the given crystal belongs, optic polarization of the second harmonic
is determined through the amplitude of electric field E and nonlinear
coefficients: P = 2X 1SEE P = 2X E Ez' Pz = X1(E2 - E2 ) - X E2. It

is found that X33 of potasso-lithium niobate is 18 times, and X31 14 times

greater than X11 of quartz and is about the same as X31 of LiNbO3. An
advantage of the given crystal over LiUbo 3 , however, is its much lower

"ontic fatigue" -- nonuniform refraction coefficient during long-term
illimination by strong (laser) light. The linear electrooptic matrix is
characterized 5y the coefficients rl 3 , rs 1 and r 3 3 . It was found that

n(e) 3r 13. = 7.9-i0" cm/V, and I(nO) 2 r1 31 = 1.05-I0-4 cm/V.

The ele,:trooptic coefficient of the •2Sr Nbl0 tetragonal at 20%,
24 1o0 30'ttaoala 0

is 7 times greater thau that of LibO3 (314]. The nonlinear coefficients

of the rhombic Na2 Ba4 N 10030 crystal are about double those of lithium

niobaze (X3 3 is 28, X3 2 20 and X3 1 23 times greater than X of quartz).

Its linear electrooptic matrix is characterized by the coefficients 1-3,

r 2 3 , r 3 , r d an r 4 2 . It was found that •n 3 3 = 6.2-10", In r 3 I2S 3,r1 z x 13
= n._j, r 1 = 1.7.10B cm/V. r1 ., r and r have the same sign.2.3-10" nyr23 23 33

Numerous studies have been done on solid solutions with the KW-bronze
structure. Solid solutions based on PbNb,,O are described in [333-35S].

Smolenslgiy and coworkers showed that although the metaniobate, of barium,
strontium and potassium do not have the KW-bronze structure, solid solu-
zic:ns (Ba, Sr).Nbo0 6 and (Ba, Ca)Nb 2 06 have this structure and are ferro-.

electrics [356]. The ferroelectric properties of the solid solutions
(Ba, L 213)b`206 and (Ba, Bi1. )* 2 06 were also discovered there. These

and other solid solutions based on BaNb20 6 were later scrutiniLed in
(348, 3S7-359].

i4. Cadmium Pyroniobate

Wainer and Wentworth [3601 reported a high L for cadmium pyroniobate
(i 2dN 2 GT), increasing rapidly on cooling from room temperature. The

2 PY
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same year Cook and Jaffe demonstrated that Cd2N620 is a fer.oelectric [061J.
2 2 isa7reeecrc[6]

Cadmium pyronicbate has a pyrochlore type structure (362, 3631, in
which many compounds with the general formula 2207 crystallize. ThisI •structure is characterized by oxygen octahedrons B06 , connected at their

vertices in endless chains. Hert rows of mutually parallel chains,
conaected at the vertices, r!ternate with rows of mutually parallel chains
perpendicular to the chains of the first row (the chains are packed by the
"polennitsa" principle). The octahedrons of the adjacent chains are also
connected together at the vertices (Figure 19.17). Conr rcted thusly the
-0-B-0- chains are zig-zags. The frazewiork formed out of octahedrons has

I the composition (B2 O6 ),.. In the spaces between the octahedrons are located

ions A and one-sevent,- of the oxygen ions not included in the framework of
octahedrons. Consequeitly a cubic lattice results, belonging to the
spatial group Cr-Fa3m. Compounds with a pyrochlore type structure can be

formed if the geometric criterion t = 0.866 (RA(8) + RO)/(RB + RO) (where

= 1.03 RA(6 ) is the radius of ion A for k. ch. 3) is from 0.94 to 1.16

(364].trniostaepaen
1he cadmium pyroniobate lattice is cubic at room temperature withS: ~a z 10.372 -± 0.001 X( [365]. Several phase transitions take place inC22Nb 2 0 7 as the temperature is lowered, of which the transition at -80-90°C

Sis related to a pea• on the curve or), characteristic of ferroelectrics
[365-369] (Figure 19.18g.. At temperatures a few degrees above the
temperature o: the main peak t.here is a step on the curve c(T), which

a pase transition [369-373]. Described also
Mill7 are bends on the curve c'T) at -68, -47 and -12C and, corresponding
to them, peaks in the temperatare dependence of heat capacity. The
Sexistence of these high-temperature phase transitions, a% will be seen
below, cannot be considered proved. At -188 to -1930C there is a "hump"
on the curve c(T5, which apparently is related to a low-temperature phase
transition [366, 367).

X-ray diffriction analysis
bcelow the Cutrie temperature, which

0 • we will call the temperature of the

peak on the curve £(T) at -80 to
-90"C, was carried out in [36S].

"" o At -lS0*C there was no separation
.-. 4of 1:f•-z related to lattice distor-

tion on the powder patterns of poly-
- crystalline Cd2,N 2 07 . Analysis of

eCe 44rb 0 monocrystals with the aid ,f the
Weissenberg chamber showed ere

Figure 19.17. Projection of weak splitting of some diffraction
structure of pyrochore te on maxima, but no conclusicn could be
plane (110). reached concerning the structure
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[ '.of the fe-roelectric p?.dse. The
only conclusion reached is that
there is displacement of cadmiumI ions in relation to niobium ions in
the ferroelectric phase. Mono-I crystal.? grown from Cd Nb..07 melt

I in NaV, in which some of the C4'0
I ~was su~bstituted by NaF, were

/ jt,5analyzed in the same work. The
- cemnposition of these crystals could

be descrilbed approxiImate*.y by the

The~se crystals had a lattice period
a =10.372 ± 0.001 A at 20'C, were4 k also ferroelectric. but had a lower
Curie temperature, equal to -120*C

P, on cooling and -112*C on heating.
':;l~tting of diffr.tction mx~iiia
was greater in these "onocrystals

Figure 19.18. Temperature dependence tha inamnc tal of -lire
of c and tan 6 of hot pressed and -d?,Nb 20 7. This precluded the
ordinary polycziystalline specimens, -osiblt -i -hmbhdandJ also monocrystal of Cd N1b.0_ 'he~it pfarhomboetersa2 Z/structure. eaamtra
(ir. direction [110]) at%. k~ i 10.3'78 A ai-i c/a = 1.0011 were
field of 4.1 V/cm (according to obtained on the assumption of a
do Bretteville f369)). tetragonal lattice, buit the "OIsi-

bility of rhombic distortion .>,)uld
L~ot be ruled out. Inv aithr cnclude that if thc lattice of pure
Cd~o07 is tetragonal a, -ISO'C. the lattice paxameters will then be: a=

10.364 K.ci 1.000~

Analynis oif Cd.). b2P7 manC'.s'sl& ?s,,P:e and with the impu1rity NaF,

in polarzled light [3651 revealrd ,h~t e transition acc~ur .o ai nnnLubic
phase in pure nonocrystils at 91K ýn .in onacry~stfs Wit %; imurt
*aF at 123C This agrees sarisiFactorily w:ith the re4ult~ of O'iceictric

mu-osur,'ients. Seloy, the Curic tp~peratuic thvre werne no rlosit ions of
extIncrion or domain strictu~re. At great manifcatl.ens many psrallel
we4ges were visible n~ear the A.ge6 of zhe crystal 1"cs They 3re par-liel
to direction (211] end are of the order of 1 dicron wide. A very five'
two-.dimensionil network is visible in the central part of Vic flake, Thbe
lines of the network are pterhaps the walls of very viny ciomalivs. That the
wedges are parallel to fi~ll] apparently indiratect tetrag~nnal or rhoinbic
distortion of the lattice. Birerringence is apparently very weak, at' the
order of 0.004 [36S).

The temperature dependence of thc heat capacity c p of cadmium

pyrotnlobate was studied in [368). The maximnum hert capacity was notc-d
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at 193.2*K. The latent heat of transition was 18 ± 2 cal/mole, and the
correspending entropy change was 0.09 t 0.01 cal/ 0 X*mole. According to
de Bretteville and Oman [371], the phase transition at -80 0 C, corr-sponding
to the Curie temperature, is relatad to a heat of transition of 18 cal/mole
and the transitions at -76, -68, -47 and -12*C, to the heats: 5.2, 1.2,
0.75, 0.39 cal/mole, respectively. de Bretteville [372], by calculating
the thermodynamic values according to the diel.'ctric properties, obtained
5.1 cal/mole for the transition at -80'C, 3.2 and 0.73 cal/mole for the
transitions at -74 and -60 0 C. The summary latent heat of these transitions
is 9.0 cal/mole, i.e., one-half the experimental value found for the transi-
tion at -80"C. The discrepancy is attributed to the random orientation of
the vector of polarization in polycrystalline specimens.

Above the Curie point E changes in accordance with the Curie-Weiss
law [365, 367]. Here the constant C of polycrystalline specimens varies
from 4-104 to 10-IO"K, and 0 from 145 to 175"K. Mhe p'rmittivity :F the
monocrystal with NaF impurity is 850 at 20"C and peaks at 2^,OX0 a- the
Curie temperature. Constant C is 1.1"lCS*K, o = 177*k.

It was found [369] that the nonlinearity of dielectric polarization
of cadmium pyroniebate, determined by the presence of the third harmonic
in the current thr 'ugh the specitoer, arpr-s 2t terperaturcs above **.e
Curie point. Since the temperature at which the third harmonic appears
does not depend on field strength (from 10 to 200 V/cm) and is close to
the temperature of the step on the curve c(T), the authors feel that
spontaneous polarization occurs with the phase transition corresponding
to the step. At extremely low temgeratures nonlinearity diminishes and the
third harmonic vanishes. At 21-10 Hz c of polycrystalline cadmium pyro-
niobate at 20"C is 150 and tan 6 = 0.002 [3691.

The application of a stationary field of 5 kV/cm to monocrystalline
Cd2,.207 (grown from NaF) or to a polycrystalline specimen displaces !he

Curie point toward higher temperatures [365, 370]. Here it decreas--s,
both 'elow and above the Curie temperature. At 15 kV/cm, however, there
is no further displacement of maximum c of the polycrystalline specimen.
Only a further reduction of E below and above the Curie point is noted,
and at the peak c was practically constant.

Dielectric hysteresis lops are seen below the Curie point down to
1.2*K. The residual polarization of a polycrysialline specimen [3611
near -196"C is 3.2-10 6 C/cm2 , and in a field of 25 kV/cm at 100*K 1367]

1.8.10" C/cm2 . A value of -6°10- C/.z2 was obtained for spontaneous

polarization at -18c*C in a field zpplied along [1I]1 from the loops
.btained for a monocrystal grown from NaF. If, however, spontaneous
polarization is directed along [1001, kt will h.- f times greater, i.e.,
about 10-10-6 C/cm2 . Froi the loops obtained f)r a monocrystal grdw^n by
Shtokbarger's method [3fi9], it was found that ij a field parallel to 1l1011
at -140*C, P = 5.!-10 • C/cm2.

The dependence of dielectric polarization of polycrystaltine



S_. • • - .• *•L•€ _' • • c•_••_-- - -r ' T•--ihI--.J... -. ,.r. r... ... -- _,... .

r~~www~~zr, M!frri~f

Cd2 20b on a variable field wait analyzed [370] for fields up to 60 kV/cm.

It was thereby established that below the Curie temperature, and not ve!ry
close to it in fields of the order of 20-25 kV/cm, dielectric hysteresis
loops are seen, typifying ferroelectrics, with pronounced saturation
(Figure 19.19a). As the field increases, a new strong increase in 1polari-
zation eccurs (Figure 19.19b), and thee new (secondary) saturation
(Figure iq.19c) Figure 19.09 illustrates the hysteresis loops at -118*C
(30°C below the Curie temperature). The loops, as seen in the figure, are
very narrow. Assuming that spontaneous polarization (P"1) can be calculated

s
on the basis of secondary saturation, just as (P;) is calculated on ti-e

basis of primary saturation, at -118 0 C (assuniag incomplete secondary
saturation;i P!:,', > 2.7 [376). As the 4',u~rie tomperature is approach~d

the secondary growth of polarixatzon and secorda.ry sazuration are mani-
festu-d in smailer flelds- The f'-nction P(E) iA also Alightl; nonlinear in
somt interval above the Curie tezpera'-, e 1376].

Figure 19.19. For.
Sb c. h/St:retis loops of poly1.y-stal-
V C iN-••.-itn pyron.ba.o tfor

'?a60u vrialefield stregts-1T 78- C (According is lsupov
aMdSutsi (3731): a --
S22.4; b -- 44.6, !z-- 6,0 kV/cm.

The temperature dependences of total and spontaneous polarization
and of the coercive field of c:ad•i= p'rron~obare, delernined in fields

; '121.2 and 40,1 kV/ci•, indicate difference in spontaneous polarizc-

tion detersirred in various fields. apparently related to the fact that in
the field E = 21.2 kV/=m primary saturation is incomplete in the poly-

crystalline specimen, although this is difficult to see by the shape of
the loop. It is noteworthy that the values of spontaneous polarization
(~3.5-1,-( C/c-) obtained in [3701 are close to those obtained in [361].
in hi-h fields near the Curie temperature there are peaks of total
polarization and coercive field, attributed to the secondary growth of
poiarization in high fields and to some expansion of the loop.

The elastic a- piezoelectric properti.s of polycrystalline specimens
of cadmium Pyroniobate were analyzed [371] by the dynamic method with the
sprcimen placed skultaneusly in a stationary biasing fi-i 4 in a wide
temperature range. It was foune thaz a sharp minimum of Young's moduius Y
o- the curve Y(T) corresponds to the peak on the curve e(T) (Figure 19.20).
Piezoelectric vibration; were also detected at temperatures above the
Curie point, a"d piezoelectric vibrations could be observed in large fields
to nearly 0'C. Neither minima nor discontinuities were noted on the
curves EcMr at tempe=-tures above the Curie point. It was discovered that
zhd deptf of the winisim on the curve Y(T) diminishes when the stationary
field is strengthentd to 7-9 kV/cm and then increases, and at somewhat
'tower tesperatures thsre is a level minimum, which is displnzt! toward
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V lower temperatures when the stationary field is increased. When E = 18.S
kV/cm this displacement leads to a change in the sign of curvature of theI : low-temperature part of the curve. Piezoelectric modulus d3 1 measured in

F biasing field . I kV/cm at -I50*C is -0.3S,10" CGSE and reaches
r -l,2,lQ" CGSP at the peak near the Curie point [%73].

FY.fc? dy e/cm2

0 U

*M

-fl U to

if

Figure 19.20. Temperature dependence of Young's modulus
-of polycrystalline specimns of Cd 2 Nb2 O7 in various

biasing stationary electric fields. The numbers to the
left of the curves indicate the strength of the stationary
field (in kV/cm). To avoid overlapping, the curves are
displaced on the ordinate axis. To each field corresponds
its zero point on the ordinate- axis. (According to
Isupov and Skubitskiy [373]).

Various possibitliies are examed to explain the anomalous dependence
of dielectric polarization of Cd2 Mb1 0, on electric field strength [370, 373].

It may be assumed first of all that cadmiut pyroniobate has twv)
types of domains with different: energies of fixation. The low-energy
domains rotate in relatively weak fields, forming a saturateJ hysteresis
loop. The high-energy domains are oiiented only by a strong field. As
the field weakens, elastic stresses or any other forces sbald return.
the domains to the initial position.

The ratio Ps/Ps, however, is too large to explain the secondary

growth of polarization of reori .iations of The 90°, 60, 70 or 1l0
domains. It follows fz;ý x-ray diffraction data, moreover, that
spontaneous deformation of the CdNb2 07 lattice is extremely low in the
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ferroelectric region (c/a 1.0005). That the reorientation of the domains
was rolatUd to high interna- stresses with such little deformation is
improbable. To this can be added the fact that the perfect matching of
the forward !nd reverse paths on the hysteresis loop in the region of high
fielu5 requireý. the 'omplete exclusion of any hysteresis whatsoever during
reorientation of domains with a high energy of fixation, which is hardly
acceptfbhe, regardless of the domain structure. This explanation, there-
fore, should probably be rejected.

It nay be assumed, secondly, that cadmium pyroniobate is a ferrco-
ehltric or ferrielectric with spontaneous polarization P' below the Curie

S
point, and changes in a strong electric field to another ferro- or ferri-ssSelectric state with spontaneous polarization ?P" As we have already

.4ndic,-t tI, at -118 0 C the ratio P/P' > 2.7. Since the higher the temperature

ia .m the closer it is to the Curie point the smaller the fields are ;n
wriich Aecondary growth and saturation of polarization appear on the
hy'stercsls loops, the difference of the free energies of the state with
P1 knd that with P" should a.so diminish as the Curie point is approached.

5 S
Conszquently, two phase transitions should occur in a rather strong
%iectric field as the specinen is cooled from high temperatures: one from
the paraelectric state to the state with P" and one from the state with P"
"to the state with P'. s s

The results of analysis of the elastic properties of cadmium pyro-
niobate (373] concur with the given hypothesis. In weak stationary fields
there is only one minimum on the curve Y(T), which corresponds to transi-
tion from the paraelectric phase to the P' phase. hen the field is

increased, two minima appear (Figure 19.20): a sharp at higher temperatures,
which may be rclated to transition from the paraelectric phase to the P"

S
phase, and a level minimum at lower temperatures, which apparently
corresponds to transition from the P" state to the P' state. The blurred

s s
character of the latter is probably caused by the fact that the specimen
is polycrystalline, the grains are oriented variously in relation to the
field and the transition from one state to the other occurs in the
different grains at different field strengths. The reduction and subse-
quent increase of the depth of the minimum on the curve Y(T) (Figure 19.20)
with increasing hiasing field strength cannot yet bu explained.

.ks regards the phase transitions in cadmium pyroniobate. three low-
temperature transitions can be tonsidered certain: near -190 0C, the C0rie
temperature at 80-90C and the transzitlon a few degreer :,hove. A report
f 371] of phase cqnversions at higher teapjrat-res requires furthcr cJ.ecIing.

It is notecorthy that Mcgaw f37 1, on the basis of examination of

chain s of oxygen octahedrons in a structure of the liyrochlore type, also
concluded that cadmium pyroniobate possibly has ferroclectric properties.
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It is clear from the exemined properties of Cd 2Nb207 that they are

extremely unusual and interesting. In future analysis of this compound,
however, it will be necersary to analyze monocrystals, primarily by micro-
scopic investigation in polarized light with the crystal subjected to
strong electric fields. It is desirable here to use variable fields and
stroboscopic illumination. Other properties of the moitocrystal, of course,

must also be scrutinized by means of low-temperature x-ray diffraction and
Mneutron radiographic analyses.

Some reports appeared relatively recently concerning new ferroelec-
trics with the pyrochlore zype structure [216]. The published data on
"hese compounds are pre'sented in Table 29.

Table 29. Some Properties of Compounds with the Py-rochlore
Type Structure, Described in [216]

1)~ 2) 3)

C.4~IflpnN _____ I~e.4-1P

6i 11.777. b 19. ;13.. = -.

Pbi41 ,.. 7 j Tir. ! a = I7 ai. c 4= 0.N' 4. W-13

Ab-)i! l' 2. W-13 "

KEY: 1. Formula
2. Symmetry
3. Lattice parameters, R
4. Curie temperature, *C
S. Electrical conductivity at 20°C, ohm cm"
6. Monoclinic
7. Tetragonal
8. Same

The permittivity of these compounds at 20*C varies from "5 to 95.
These compounds have c maxima at 400-500C [216], %here E reaches 120-145.
No information was given concerning dielectric hysteresis loops Dr the
piezcelectric effect of polarized ceramics. A conclusion concerning ferro-
electric properties was reached on the basis of the above-sentic.ied c maxima
and lattice distortions. These results and the conclusions require checking.

g'. Strontium Nn'otantalate

The ferroelectric properties of strontium pyrotantalate (;r2Ta 2 07 )

were discoverel by Smolenskiy and his coworkers [375)]. The permittivity
of polycrystalline specimens at I kHz was 100-120 at 20'C and increased
rn cootling. it was found that at temperatures from -84 to -SS*C it peaks
to approximately 170. At a temperature. which, for various specimens lies
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in the range fr•,m -190 to -lSO0 C there is a second C peak [307]. At 1 kHz
and 20°C tan 6 is 0.0007, and with cooling it increases, reaching 0.007 at
-180°C (37S]. Below the temperature of maximum E are diielectric hysteresis
loops. At -170°C the polycrystalline specimen has Ps = 0.14"10-6 C/cm2

[376]. Thus, strontium pyrotantalate is a ferroelectric with Curie
temperature of approximately -84 to -SS°C. The lcw-temperature peak is
apparently related to a low-temperature phase transition. Near 170*C
there is a slight bend in the curve E(T). It is prcbably related to yet
another phase transition. The linear expansion coefficient of the poly-
crystalline specimen is 7.4-70"6 lIC in the temperature range of -100 to 00C
(376].

The crystal structu-. of Sr 2 Ta20 7 was analyzed 1328]. It was found

that strontium pyrrotanta'Ate has a tetragonal lattice with a = 10,628 R,
c = 10.908 X. The lattize parameters of Sr2Ta207 are close to the lattice

periods of compounds with the pyrochlore type structure. 4owever, some
of the x-ray diffraction patterns are radically differCed This nearness
of parameters to the parameters of pyrochlore compounds is ,•ry i•iV
random only, ai.,t the structure of strontium pyrotantalate has nothing in
common with the pyrochlore structure.

The dielectric properties of several solid solutions based en
strontium pyrotantalate were analyzed in [307, 375, 377]. The phase transi-
tion temperatures of these solutions jump sharply when tantalum ions are
substituted by niobium ions: the Curie temperatire rises approximately 320
per mole % of.Sr 2 Nb2 07 . This rise in the Curie temporature with identical

NbS+ and Ta5+ ion radii can be attributed to a change in the character of

chemical bond and great polarizability of the NbS+ ion compared to the TaS4

ion. The Curie temperature of (Sr, Ba) 2 Ta 2 07 solid solutions rises by

measure of substitution of strontium ions by barium ions. The low-
temperature phase transition apparently shifts in the same direction ar
the Curie temperatire. A slight discontinuity on the curve c(T), seen in
strontium pyrotantalate near 16S°C, is transformed here into a small peak,
the height of which increases, and the temperature at which it occurs
decreases linearly. In the (Sr, Ca) 2 Ta 2 07 system the Curie temperature

rises rapidly by measure of substitution of Sr ions by Ca ions.

Thus, in solid solutions based on strontium pyrotantalate, as
strontium ions are substituted by the larger barium ions with higher
electron polarizabxlity and by smaller eWcium ions with lower electron
polarizability the transition temperatures change quite differently than
in ferroelectric solid solutions (Sr, Ba)TiO- and (Sr, Ca)TiO_. with the

pcrovskite type structure, where the substitution of Sr ions by Ba ions
raises the Curie temperature, and by Ca ions -- raises the Curie temperature
somewhat at first and then lowers it. Ar attempt is made [3761 tn explain
this dependence of the Curie temperature on the concentration of solid
solutions by the as3umption that the phase transition in strontium
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pyrotantalate to the state possessing spontaneous polarization is of a
character intermediate between the ferroelectric phase transition and the
buckling transition. This assumption enables one to understand the
dependence of the transition temperature on the average dimension of A
ions, which is inre characteristic of the buckling transition.

§6. Ferroelectrics with Lamellar Perovskite-Like Structure

Smolenskiy, Isupov, Agranovskaya, analyzing the properties of
lamellar compounds described by Aurivillius [37E], discovered the ferro-
electric ptoperties of PbBi 2 Nb209 (379]. The discovery of the ferro-
electric properties of one representative of a large family of lamellar

compounds, which include compounds
of the types ABi 2 B2 09 , A2 Bi 2 B3 01 2 ,

etc. stimulated interest in the
properties of other --."ounds of
this class. The dielectric

S* properties awnd crystal structure
of numerous compounds with a
lamellar structure were analyzed
concurrently by Smolenskiy, Ispupov
and Agranovskaya r380, 381] a4
Ismailzade (382-384]. Thus, a
vast new class of ferroelectrics
was discovered. The discovery of
the ferroelectric properties of
PbBi 2 NJ2 09 also nrompted a number

of foreign investigators (Subbarao
[385-390], Fang [391-394], Van
Uitert [395], among others) to
start investigating lamellar
compounds.

Compounds belonging to the
examine-d struc:ural types have a

cca aE. 7C 00 common formula An- Bi- nC.3+ They

S1 Care all built on the same principle:
oigurf l9.l1. Crystal structure perovskite-liie layers, which are

compound CaBieTar O formed by cutting the cubic perov-
2 9 skite lattice with parallel planes

(001), alternating with bismuth-
oxygen layers (Figure 19.21) 1378].

The thickness of the perovskite-like layers is determiaed by the value n
entering the chemical formula: these layers, in terms of their thickness,
contain n oxygen octahedra. By virtue of the fact that the bismuth-oxygen
layers are parallel to planes 1001) of the cubiz perovskite lattice, the

structure of these compounds above the Curie point is tetragonal. As
follows from [382], the structure of A~i2209 r•onpounds in the par.electric
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state is apparently described by the spatial group D h-I 4 /mmm.

Adjacent perovskite-like layers are displaced relative to each other
by a//" in the direction [110]. The result is that in directions [001]
segments of the chains from octrahedrons in terms of n octahedrons,
connected at the vertices, alternate with segments of chains from Bi0 12

and A01 2 cubic o-.tahedrons, connected to each other by their faces. (It

should be pointed out that the surrounding of the Bi ion in the bismuth-
oxygen layer can also be regarded as a polyhedron with 13 vertices, rather
thin as a cubic octahedron, with the result that above one of the square
faces of the cubic octahedron there is yet another oxygen ion. Naturally,
it is not any farther from the examined bismuth ion than the ion at the
vertices of the cubic octahedron).

From a number of works it follows convincingly that the total sub-

stitution of Bi+ by the trivalent ions of the rare-earth elements is
impossible in these compounds [388, 396). As regards the dimensions of
ions A and B, since they form a perovskite-like layer the same require-
ment must be imposed on them as in the case of the perovskite structure,
but somewhat more rigid. As stated in (381], changes in the dimensions of
perovbkite nuclei, which can be distinguished in perovskite-like layers,
will lead to expansion or contraction of the bismuth-oxygen layers.
Naturally, the possibilities of this expansion or contraction are unlimited.

The geometric criterion (tolerance-factor) t of the perovskitc type
structure is used [397] for determining the possiblity of the forotion of
lamellar perovskite-like compounds. It is shown tht in such evaluation
the fol-wation of the series An- 3 Bi4 BnO3 n+3 with A = Ba, Ca, Pb and Bi, B

= Ti and Fe, where r, increases from compound to compound, is correctly
predicted. It was established, in particular, that in the -erics
Ban_3 Bi4 TinOn+3, where the criterion t increases with the value n, compounds

are formed only to n = 6. When n = 6, t = 0.99. Hence it is concluded
that t = 0.99 is the tnmper bound of the values of t 3t which compounds with
a lamellar perovskite-like structure are formed. The low•r bound is found
to be 0.87. Such an evaluation nevertheless does not explain why there
are no zirccnates with a lamellar structure. When Ti is .,ubstitutcd by
Zr the geometric criterion of the perovskite structure ob,'iously would
decrease considerably, indicating the possibility of the formation of the
compounds Ban- Bi4 ZrnO3 n-5 with a rather large n. Fuch ccapounds, however,

do not ftra. Apparently it would be correct to edd to the estimate
proposed In [397] another estimate that compares the dimensions of
verovskite nuclei with the optimal distances netwcen the bismuth and oxygen
ions in bismuth-oxygen layers, for instance with the aid of the geometric
criteria:

Am+Ro ______

e 
+

A +9 -0



The condition that t' and t" must be close to one limits the sizes
of ions A and B, and by the same token the tension or compression of the
bismuth-oxygen layers.

Ferroelectrics with a lamellar perovskite-like structure have a
rhombically (or more complexly) distorted pseudotetragonal structure below
the Cuii -temperature. Elongation occurs on one of the diagonals of the
square base of the tetragonal nucleus, and compression on the other. On
this basis Smolenskiy and coworkers [379] proposed that spontaneous
polarization in this type of compounds is directed parallel to the plane
of the layers (perpendicular to the c axis). Subbarao [389], who t-ound
the dielectric hysteresis loop of bismuth titanate monocrstal on the c
axis, concluded that the c axis is the ferroelectric axis. Subsequent
studies have shown that the spontaneous polarization of bismuth titanate
lies nearly in the plane of the layers. Vie will examine this subject in
greater detail below.

The characteristics of ferroelectrics with a lamellar perovskite-like
stzucture are listed in Table 30. It is seen there that when going from
Ba compounds to Sr compounds, and then Ca, i.e., with diminishing radius
of the A ion, the cOrle temperature increases. We will examine in detail
only a few of the ferroelectrics listed in Table 30.

Table 30. Ferroelectrics with Laneilar Perovskitý.-Like Stracturv

"ttice Paramter- Curle
Compound V t 20"C Tin A) leap., Soirce

5= 5.66 25 Sor5.. e
&45• S.M5 2I M 3M. M
5.A35 5.1 W 575-0 378 a8*

Pis4TA 2 -Atr SA W passes 361t Wo2T0° 2 i 192 25..0 17, h Vn: e53.
2 5.-4 593O 2505 310 M . 30
2 SAX435.AM8 2MS7 350-60 381.M

BiMs, 2 SA402 UM43 25A4 870 378& X89

K2a3 SAM05 5A444 32-M 0 5 M.h 3833. 595

544&? 1 -,641.78 375-4&3 30, 138. 30

Ci~IO~ 4 5.420 L.428 41XIOS -M 38k M. 37

4 IS440 5.5W0 41.36 570 ),30
ris 4  -1. 4 :7 &4 60  40.0 s 3"

"1,I!M0 .z 5.456 41.31 _750 44O
1~cO 4 31 3 5". VV9 3M

55SC 01 4M.8 2M

5 .1 !-.416 49.70 MO~ 368&
MI -

The permittivity of po~ycrystalline BaBi N2~h2 O9 wpeasurt.d at SOS! kift,

is 220-280 at row temperature and passes through a snooth ma~ximtr, near
260O0C (Figure 19.22). At I k~fl, however, the maxim=n is seen near u000C.
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The curve tan 6(T) has a .sximusw, the location of which also depend3 on
frequency. Thus, dielectric polarization is of distinctly relaxation
character. No dielectric hysteresis loops were evidenced in the 20-1504,g
temperature range in fields up to 60 kV/cm (381].

* 4 Solid solutions of
(Ba, Pb)Bi Nb 0 and (Ba, Sr)3i 2 Nb 2 09I#WX ~~2 2 9 Vb0

A\ (381] were analyzed to prove the
M at eiistence cf ferroelectric proper-

ties in BaBift2 O,9 . The temperature

- / of peak c in. (BM, Pb)Bi ,Nb 2 09 rises

as hy measure of substitution of Ba
ions by ?b ien, and zh- peak itsel'

50 becomes more distinct, whereupon
the dependence of the temeperature

I •of the peak on frequency decreases.
75 (Figure 19.22). Dielectric1 0 hysteresis loops were found in thej -. -
7 us investignted solid solutions with

a ccncentration of 25 and SO mole t
PbBi 2 N•b%2. The analogous phenomena

I are also found in the second system.
Hence it may be concluded that solid

V, solutions of these systems are
ferroelectrics and that Ba2 Nb 209

Fi-ure 19.22. Tempnra. :re dependence is therefore also a fer2 electric.
of c and tan S of sol. solutions The relaxatior character of its
(PbS.xBax)Bi 2Nb209 in weak fields at dielectric pala:.ization, however,

I kllz and of compound BaBi 2 N%09 gat compels the assumption that this

I kIIz (continuous curves) and 450 compound is a -erroelectric with a

kHz (broken curves). The numbers blurred phase transition.

near the curves indicate the value The blurring of the phase
of x in mole % (according to transition in EaBiNb 0 car be
Smolenskiy, et al (3811). - 209

explained by assuming some of the Ba
ions get into the bismuth-oxygen layers, substituting Ri ions, whereas some
of the Bi ions substitute Ba ions in the perovskite-like layers 13811.
Actually, as we have already pointed out, if all Sa ions (R = 1.38 A) are
located in. a perovskite-like layer, and all Bi ions (R = 1.23 A) are in a
bismuth-oxygen layer, the lattice should have large deformations: elongation
of the bismuth-oxygen layers 3nd compression of the perovski~e-like layers
perpendicular to the c axis. This is clearly seen by comparing the dimen-
sions of the elemental nucleus of BaTiGO (a = 3.486 X; c = 4.026 A) and the

period aT - 3.912 A of the compound BaBi2% 209. The migration of some of

the Ba ions to the bismuth-oxygen layers ard of some of the ai ions to the
perovckite-likr layers should reduce, but not completely eliminate,

594l
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compression of the perovskite-like layers. The random distribution of Ba
icns iaigrati-ng into the biAsmuth-oxygen layers and of Bi ions crossing over
into the pero'skite-like layers leads to blurring of the 6hase transition
in the nodes of thes- layers and to dielectric polarization of relaxation
character 3811.

The gradual substitution of Ba ion in solid solutions by Pb ions

cauisos the average radius of the divalent ion to decrease (for Pb R =
1.26k); tne cause of the redistribution of ions is apparently eliminated

little by little and the concentration of divatent ions in bismuth-oxygen
layers and of Bi ions in the perovskite-like layers decreases [381]. Here
the blurring of the phase transition decreases correspondingly and
dielectric pclarization gradually loses its relaxation character.

The high per-Aittivity of bismuth titanales has long been known
[396, 402;. The ferroelectric properties of Bi 4Ti3O12 were discovered

independently and almost simultaneously by various researchers: in the USSR
Smolenskiy and coworkers [381] discovered dielectric hysteresis loops in
polycrystalline Bi4 Ti32, and Ismailzade (383] -- phase transition from

the rhombic to tetraganal phase. Abroad Subbarao 1387] and Van Uit-Tt and
Egerte• [39Sj discovered and quite thoroughly analyzed the ferroelectric
properties of this co%pound.

Bi 4Ti3012 0 onocrystals are thin flakes, like mica, readily separating.

The c axis is perpendicular to the plane of the flakes. The permittivity
in the direction of the c axis is 110-220 at 203C [395, 403]. Investiga-
tions in polarized 1.ght [389, 39S, 402] showed that the crystals have
twinned regions and the twins are shaped like thin strips paralll or
perpendicular to er:h other. Often the twins are spindle-shaped, starting
or ending at the niddle of the crystal. Twin boundaries like at an angle
of 450 to extinction and are parallel to the a axes of the paraelectric
phase [389]. The optical ill:minence of aejacent regions differs and
changes (dark regions become light and conversely) when the crystal is
rotated 4* with crossed nicols. The application of a stationary V eld to
the crystal on the c axis did not cause any notable motion of twit
boundaries [395, 4031. In a variable field and in stroboscopic light,
however, there was notable motion of some of then [3951. Birefringence
vanishes at 643*C [395].

In a field parallel to the c axis the hysteresis loop is well
expressed, but is, as a rule. asymetric. After "conditioning" of the
crystal in a variable field t:he loop becomes sysietric and nearly
rectangular. Spontaneous polarization, determined an the basis of these
loops, varies from (1.5-2)*I0- C/cm2 1402] to (3-3.5)-10- C/cm1 (389,
395]. As pointed out in j404-406], Bi4 Ti 3 Ol has some threshold field,

below which dielectric hysteresis loops do not ai',ew:r. Double loops may
eccur in higher fields and ordinary loops in ever higher fields. In this
connection the authors consider the question orf the existence of

- 595 -



ferroelec:tric and antiferroelectric phases, and in inany cases speak offerroelectricity in bismuth titanate.

Ce 8 An analysis of c on the c
axis of monocrystalline Di4Ti 30I 2
and perpendicular to it was con-

duced in [407]. It was disclosed
here that a sharp E peak occurs at

______,_, ____the Curie point only perpendicular
0 + to the c axis (Figrre 19.23).

tah 4tProcesses of repolarization of
3i Ti 01 and tae effect of a

stationary field on the hysteresis
loops were stud'ed in [408, 40,i].

Very noteworthy in terms of
understanding the phenomena that

•_._____occur in bismuth titanate, are the
* ZX #v F le works of Cummins and Cross [410,

411]. It is M.k:,jwn in these works
Figure 19.23. Temperature dependence that when the plana of the crystal
of Ec (a) and cab (b) of Bi 4Ti4012 is rotated 10-IS* in relation to

monocrystal (according to Kraynik, the plane of the microscope stage

et al [4a7i). it becomes possib e to see ferro-
electric domains. These domain
walls are seen together with the

twin netwtork observed in preceding works. The walls of the domains are
displaced by an electric field applied along the b axis. Hysteresis loops
were fournd in direction b with a coercive field of SO kV/cm and

P b) ; X1301-6 C/cm2 . Spontaneous polarization on the c axis was p(C)

4-10-6 C/cm2 . Hence Cummins and Cross conclude that Bi4 Ti32 0 ias mono-

clinic symmetry (point group m), that spontaneous polarization exceeds
30-10-6 C/cm2 and iies at an angle of - * to the plane of the crystal, and

that reversal of the direction of the component s(c) on the c axi- is not

accompanied by a change in the sign of P0'3 .S

§7. Barium Aluminate (BaAl 2 04 )

The ferroelectric properties of BaLi 2 xAl ?.2xF4xO4-4x monocrystals

w.1th x from 0.15 to 0.30, the Curie temperature of which lies in the range
from 127 to 1S3*C, and which have a hexagoesal lattice with a = 10.44, c =
= 8.77 A, were described In (412]. SpoIrta:,eous polarization was found on
the hexa, .-I axis c. Hysteresis loops were far from rectangular.
Spontaneous polarization varied from 0.08-10"6 to O.!S.1O C/cm2 , the
coercive field from 4.7 to 20.1 kV/cm. Ps and Ec decrease on heating and

vanish at the transition point. Pervittivity c varies from :0 to 14 at
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room temperature. The ratio of c at the peak to c at 20*C varies from
1.27 to 1.68.

It is presumed [412] that these crystals have the BaAl204 structure

with doubled parameter a (for BaA1 2 04 a = 5.209, c = 8.761 X [413]). U,

follows from [414], however, that the parameter a of BMAI2O4 is doubled,

so that we may assume that the structure of the fe:roelectric crysta's
produced in [412] is the same as that o'. barium aluminate. According tc
[413] the symmetry of BaA1 2 04 is described by the centro~ymmetric spatial

group D -C63 2. Apparently, if BaA1 2 04 is also a ferroelectric its para-

electric phase will be characterized by this spatial group.

In contrast to the ferreelectrics examined above, the lattice of
BaAl2O4 is built up of AiO4 tetrahedrons connected at the verticc.ý and

forming an endless three-dimensional frameuork. Bazium ion3 are located
in the Spaces of the framework [413], and they have the coordination
number nine: six oxyge, ions form the top and bottom 'aces of the poly-
hedron, three -- the relatively large equatorial triangle.

The existence of ferroelectric properties in barium aluminte has
not yet been provel conclusively.

§8. Molybdates of Rare-Earth Elements

The ferroelectric properties of gadolinium mclybdate Gd2 (MoO 4 ) 3
were reported in [415]. Gadolinium molybdate, dopel with neodymium
(Gd0 . 9 7 N0.03)2(o004)3, with the Curie p6int 1S9*C, operated as a laser

crystal at -138 and 2S5C. A light beam cin also be modulated by an
electric field with the aid of ferroelectrics containing paramagnetic ions.
So far, however, such modulati-n has not been achieved.

The compound Gd2 (MoO 4 ) 3 has a pseudotetragonal (rhombic) nucleus,

belonging to the spatial group Cjsub- and superscripts illegible]-Pba2,
afillegible signib = 10.40 and c = t0.66 X [415]. Examinution of the
crystal in polarized light on the c axis reveals two families of mutually
perpendicular domain boundaries. The boundaries lie at an angle 5' to the
a and b axes On heating zo IS9°C they disappear, and on cooling reappear.
The permittivity is ec 1 10 and peaks at the Curie p3int. Spontaneous

polarization, determined according to the hysteresis loops in a field
parallel to the c axis, drops on heating and vanishes at IS9gC. Data are
listed in Table 31 on the molybdates of certain rare-eaxth elements
according to [416, 417]. The growth of monocrystals of these nolybdates
(by Chokhrai'skiy's method) is described in [418].
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Table 31. Characteristics of Certain Rare-Earth 4oly!dares

I • i . I'
1 M 7.5 12

KEY: 1. Compound
7not to in =~ 0. 2Ato 2

2. Paraeters of pseudot e tragonal nucleus [417],
3. Dielectric characteristics o410]
4. Temperature at which dielectric properties were measured
S. t eishW10p CiCMin
6. c kV/cm

i9. Ferroelectrics of the Type YenO

Ferroelectrics of the NOf 3 type crystallize in a hexagonal structure
[419-428]. Spontaneous polarization of the order of (4-5)*I0-6 C/cm2 occurs

on the c axis. 'rhese forroelectrics have artierrosafnetic properties at
low temperatures. These properties were already discussed in Chapter 18.
Therefore we will no- examine they- in this section. We oile point out
sirply thai the low-temperahure modifications of the alumrnaees of yttrium
and certain rare-earth elements also have a hexagoeal structure with
a 3.7 . and c r 10.w h (the high-temperature modifications of these
zompounds have a structur of the perovskite type) [429]. It is presumedthat at. temperatures above the Curie point ferroelectrics of the type YMn0 3
have the lattice of the low-temperature Tp-,dification of YA10O3' The lattice

of Y.AlO.,, as that of YnO 3  adure 18.4), is constructed of trigonal
b~lpyramids of BOS, connected together by t.he vertices of the equatorial

-triangular section of the b'•pyramid in flat networks perpendicu~lar to the

c axis. These layers of bipyramids are separated from each other by the
planes of yttrium ions. The ions of the rare-earth elements or of yttrium,
are suriounded by eight oxygen ions. This environment can be represented
as an octahedron, near which are two oxygen atoms, one above the top face
and one below the bottm• face. In contrast to the parovskite t~ype structure,
the lattice of hexagonal YAIO3 and YMnO3 does not have the chains

-04-A 41-0-- or -O-Mn-O-Mn-0- on che c axis. There are, however, -O-Y-O-Y-G-

chains on the c axis.
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SID. opunds with Borac-te Type Structure

24.2
' C..mpounds with th- general formula Me2V'O -X where Me =g, Ni2

Co, Fe, Zr., Cd, Cu and Cr, and X = C3, Br and p, possess a boracite type
s ructdre. This s,:ructural type derived its name from the mineral boracite
4g9B 7 01 3 . The phase transition from the low-temperature modification to

the cubic high-temperature modification occurs in this compound at 265 0 C
[430]. For the cubic modification a = 12.1 A, the nucleus contains 8 units
,'-9 t4-° spatial group is T'-F43c. The low-temperature modification, the

d
result of weak c.st~rtion of the cubic lattice, has rbombic symmetry with
a 8.54, c = 12.0 A. The nucleus contains 4 units. The spatial group is

C -Pca.2v

An idea of the distribution of atoms in the lattice of the high-
temperature modification of borac-.te can be gained from Figure 19.24, which
illustrates one-eighth of the cubic elemental nucleus, constructed
according to the data in (430]. Tho vertices of the cube are occupied by
chlorine iolas, which are surrounded octahedrally by magnesium ions. The
magnesiim ions, occupying the middle of the edges, form a cubic octahedron.
"11he boron ions, located at the center of the faces of the cube, form an
octahedron. On the edges of this octahedron are oxygen ions, which divide
the distance from one vertex of the octahedron to the other as 1/3:2/3.
Thus, the oxygen ions form 8 oxygen triangles. Four of these triangles
are centered by boron ions (in the figure -- the left front and right rear
top faces of the octahedron, and also tht right front and left rear bottom
faces). The four boron ions located in these triangle3 form a tetrahedron
around the oxygen ion located at the center of the cube. These boron ions
are displaced somewhat from the plane of the tr~angle in the direction of
the central oxygen ion (this enabled the authors [430] to talk about
trigonal B030 p,-ramids). However, the approach to examination of the

structure througn hO 3 triaugles is more convenient and no less correct, if

the dispihcement of the boron ion from the plane of the triangular ring is
borne in m3nd. The elemental nucleus is obtained from the cubes shown in
Figure 19.24 by translating them a/2 in directions (100], [010] and [0013
and rotating them ir/2 around these axes. .he Mg ions are located in the
elongated C10 CI octahedron-i, where the 0 ions form a nearly- square

4%
rectangle, the plane of which is perpendicular to the direction Cl-Cl.
Four boron ions are located in the oxygen triangles and three in the oxygen
tetrahedrons.

It is useful to conside.r the boracite type structure as CIMg 6

octahedrons connected at the vertices in the same manner as TiO6 octahedrons

are connected in the perovskite structure. All othcr atoms are located in
the spaces between the CIMg 6 octahedrons and perhaps in the initial exanina-

tion of ferroelectric phenomera they can be viewed tenporarily as complet
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(P. 013;- ions. Then the formula of boracite can be written the same as fo"
perovskites in the form ABC 3 , where A = 013

@ 00 -py of

Figure 19.24. Boracite type crystal structure (one-
eighth of elemental nucleus).

The distance Mg-Cl in the octahedron is a/4 = 3.02 X. The sum of the
ionic radii of Mg2 * and C1 is 0.74 + 1.81 = 2.55 X. Thus, ionic polariz-
ability of Cl- should be exceptionally high. After substitution of chlorine
by bromine the sum of radii becomes 0.74 + 1.96 = 2.70 X, and after substi-
tution by iodine -- 0.74 + 2.20 = 2.94 A. Here the ionic polarizability of
the halogen decreases sharply, which should lead to a lowering of the phase
transition temperature. It is clear from Table 32, where th= character'stics
of several compounds of the boracite type structure are listed, that the
substitution of chlorine by bromine and iodine is actually associated with
a substantial reduction of the phase transition temperatures. The only
exception is ZnI-boracite. Bnracites with Cd, Zn and Mn2 + ions and high
electron polarizability, have the maximum T.

The temperature depe~ience of c and tan 6 of certain compounds -itil
the boracite structure is illastrated in Figure 19.25 [434]. !'ere we see
that the permittivity is low (of the order oi 10). The temperatures of c
peaks correspond to the phase transition temperatures. In electr•_ fields
Ni3 B703Cl, at temperatures 10%C below the transition point, display motion

of domain walls [434], Thus, the phase transitions are transitions from
the nonpolar phase to the polar phase. According to [435] several boracites
(FeCI-, FeBr-, Fel-, C1CI-, ZnCl-boracites) have a low-tekperature phase
transition from The rhombic phase to rhombohedral. The various properties
of boracites are also examitied in '436-440].
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Figure 19.25. Temperature dependence Qf permittivity
and tan 6 of various boracite monocrystals (Asclier
[434]). a -- Ni3 B7 01 3 C1 in direction [1001 at 48 MHz;

b -- Co3 B7 O13Br in direction [1I1.] at 100 kHz; c --

Co B70 13I in direction [1111 at 50 kHz, in relative

units.

Table 32. Parameters of Pseudocubic Lattice and Phase Transition
Temperatures of Compounds with Boracite Structure

2+ X- ions
Men .. Q r
ions5 gA Ir~..z .Ai *x j A

Hg t2.070 538 12.M 292

c , ' 121 .I2M 12., I <10(??I 12•7i <1,
3 1248 I 6 12.30 1 | 5662- 12.T2 ' 412
S. 12.17 1605 12.100 49 1225 I 345
Cc 12.123 GM 12A108 456 f2.119 197
NI MOO1 610 12.035 306 M2046 61
Cd 11.933 365 41.M5 224 - -

Za 12.10 72 12.104 SSG 12AM1 697
Ad "3 M.501 73X 50 6t7

§11. Ferroelectric Chalcohalides of Antimony and Bismuth

-he feiroelectric properties of the crystals of compounds of the
type SbSI, where instead of antimcny bismuth may also be used, instead of

2 sulfur-selenium, instead of iodine -- other halogens, were described in
[441, 442]. The rystal lattice has rhombic sy~etry, both in the para-
electric and in the ferr.eiectric phases. The lattice parameters at room
temperature and at the Curie temperature [441, 443] are presented in Table. 33.
The c axis is the ferroelectric axis.

6-6 -



Table 33. Lattice rarameters and Curie Temperatures of
Ferroelectric Chalcohalides

Compound tt ara

inside he70 hi litT

i od in• e is 4aArect a

The elemental nucleus, described according to Donges [443] by the

spatial group D 16h-Pnaa and characteristic of the paraelectric phase n is
illustraated in Figure 19.26. the lattice is constru'cted of SbS1poy

hed-ons. Sulfur ions are located at the vertices of the triangu ar pyramid,
inside which lies the Sba+ ion. The
"fomeios ••md a rectangle, the

Svetice os which lies between the
- antimony ioas and the more distant

nsulfur ions. In this way irregular
, spolyhedrons with o vertices are

formed. They nre connected by their
vertices, !.7"ces and edges so that

The peo it it -b on the c axis are formed channels
on te cr ) iwith aalls constructed of negatively

charged iodine and sulfur ions, and
Figure 19.26. Crysal structurcive fl s antimony or bismuth ions
of SbS p. are located in the c zannels.

s n te permittivitv a ,f SbSn r the e c axis passes through a shtarp peak
at the transition point: C eax = Tic5eut There are small discontinuities

on the curve nca(T) in the 210-230rK region, and also near 160°K [444i.

Perpendicular to tle c axis c is -25 [445]. Spontaneous polarization at
OlC is 2h-10yo C/cp2, the coercive field is d 100 Vrcm [4451. Th.e piezo-
electric properties of SbS( are analyzed in [446. 4471. The piezoelectric
modulus dvy in the eak near the Curie point, i.e., near room temperature,

reaches 127a10n h CGSu. The coefficieat of the electromechanical bond kas

reaches 90p near the transition temperature, and noar 0°C is equal to
7S-85% and changes little on cooling f4471. SbST is characterized by a

large hydrostatic piezoelectric modulus dmhk reaching t4a10-6 CGSE at ihe
p-ak [446].

Trke very interesting phenomena in SbST and isomorphic crystals were
discovered and thoroughly analyzed by Fridklxn and his coworkers, and also
br a number of other Soviet researchers r448-4661. It was shown [4481
that the presence of a relatively high concentration of nonequilibrium
carriers in ferroeiectric semiconductors makes it essential to take into
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account the free energy of the electron subsystem in the expansion of the
free energy of the crystal in terms of P:

where n is the concentration of nonequilibrium carriers, determined by

photoconductivity, and E is the width of the forbidden zone. The conclu-

sion is drawn from thermodynamic examination that the wicdth of the
forbidden zone should depend on the temperature and pressure in the vicinity
of the phase tran•.ition iii SbSI. This conclusion was confirmed experi-
mentally in (4651, where the change in the width of the forbidden zone
associated with changing pressure and temperature was recorded on the basis
of the displacement of maximum photocurrent, which in SbSI fits on the
edge of natural absorption. The width of the forbidden zone remains
constant in the ferroelectric phase up to 250 atm. It decreases as hydro-

static pressure is further increased, and 1 = -(1.3 ± 0.3)-10"4 eV/atm,

but at pressures above 1,000 atm it again changes little. The dependence
on pressure is slight in the paraelectric state. The width of the forbidden
zone decreases as the temperature rises, and rapidly in the phase transition

BE

region, where (wA& = -(20 ± 4)-10-4 eV/deg.

The displacement nf the Curie temparature of SbSI during illumina-
tion of the crystal, predicted by Fridkin, is experimentally proved [450,
453]:

where APs is the jump of spontaneous polarization, C is the Curie-Weiss

constant. The direction of displacement of Tc is determined by the sing

of AEE . It turned out that during illumination, which causes n to growg
two orders of magnitude, the Curie temperature drops 1°C. The displacement
is noninertial in relation to the turning on and off of the light.

The character of the temperature dependence of permittivity, the
presence of a jump in spontaneous polarization, the existence of sharp
phase boundaries between the paraelectric and ferroelectric phases in the
vicinity of the phase transition indicate that the ferroelectric phase
transition in SbSI is a first order transition.

Maiy works have been published pertaining 1o analysis of the optical
and semiconductor properties of SbSI and isomorphic ferrnelectrics
[449, 451-453, 457-460, 462-4721, analysis of changes in the crystal
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structure during phase transition f473, .175], microscopic observation of
domain structure and lattice distortions of SbSI crystals tider the
influence of various factors [46.1, 4-'6-478), 2nalysis and dise-Assion ot
other properties [444, 453-455, .79-485], preparation of crystals [46-,
.1•6, 4S7j.
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